1
|
Gerzen OP, Votinova VO, Potoskueva IK, Tzybina AE, Nikitina LV. Direct Effects of Toxic Divalent Cations on Contractile Proteins with Implications for the Heart: Unraveling Mechanisms of Dysfunction. Int J Mol Sci 2023; 24:10579. [PMID: 37445756 PMCID: PMC10341779 DOI: 10.3390/ijms241310579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The binding of calcium and magnesium ions to proteins is crucial for regulating heart contraction. However, other divalent cations, including xenobiotics, can accumulate in the myocardium and enter cardiomyocytes, where they can bind to proteins. In this article, we summarized the impact of these cations on myosin ATPase activity and EF-hand proteins, with special attention given to toxic cations. Optimal binding to EF-hand proteins occurs at an ionic radius close to that of Mg2+ and Ca2+. In skeletal Troponin C, Cd2+, Sr2+, Pb2+, Mn2+, Co2+, Ni2+, Ba2+, Mg2+, Zn2+, and trivalent lanthanides can substitute for Ca2+. As myosin ATPase is not a specific MgATPase, Ca2+, Fe2+, Mn2+, Ni2+, and Sr2+ could support myosin ATPase activity. On the other hand, Zn2+ and Cu2 significantly inhibit ATPase activity. The affinity to various divalent cations depends on certain proteins or their isoforms and can alter with amino acid substitution and post-translational modification. Cardiac EF-hand proteins and the myosin ATP-binding pocket are potential molecular targets for toxic cations, which could significantly alter the mechanical characteristics of the heart muscle at the molecular level.
Collapse
Affiliation(s)
- Oksana P Gerzen
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Veronika O Votinova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Iulia K Potoskueva
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Alyona E Tzybina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia
| |
Collapse
|
2
|
Walker BC, Walczak CE, Cochran JC. Switch-1 instability at the active site decouples ATP hydrolysis from force generation in myosin II. Cytoskeleton (Hoboken) 2021; 78:3-13. [PMID: 33381891 PMCID: PMC7986744 DOI: 10.1002/cm.21650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022]
Abstract
Myosin active site elements (i.e., switch‐1) bind both ATP and a divalent metal to coordinate ATP hydrolysis. ATP hydrolysis at the active site is linked via allosteric communication to the actin polymer binding site and lever arm movement, thus coupling the free energy of ATP hydrolysis to force generation. How active site motifs are functionally linked to actin binding and the power stroke is still poorly understood. We hypothesize that destabilizing switch‐1 movement at the active site will negatively affect the tight coupling of the ATPase catalytic cycle to force production. Using a metal‐switch system, we tested the effect of interfering with switch‐1 coordination of the divalent metal cofactor on force generation. We found that while ATPase activity increased, motility was inhibited. Our results demonstrate that a single atom change that affects the switch‐1 interaction with the divalent metal directly affects actin binding and productive force generation. Even slight modification of the switch‐1 divalent metal coordination can decouple ATP hydrolysis from motility. Switch‐1 movement is therefore critical for both structural communication with the actin binding site, as well as coupling the energy of ATP hydrolysis to force generation.
Collapse
Affiliation(s)
- Benjamin C Walker
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Claire E Walczak
- Medical Sciences, Indiana University School of Medicine-Bloomington, Bloomington, Indiana, USA
| | - Jared C Cochran
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
3
|
Ge J, Gargey A, Nesmelova IV, Nesmelov YE. CaATP prolongs strong actomyosin binding and promotes futile myosin stroke. J Muscle Res Cell Motil 2019; 40:389-398. [PMID: 31556008 DOI: 10.1007/s10974-019-09556-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Calcium plays an essential role in muscle contraction, regulating actomyosin interaction by binding troponin of thin filaments. There are several buffers for calcium in muscle, and those buffers play a crucial role in the formation of the transient calcium wave in sarcomere upon muscle activation. One such calcium buffer in muscle is ATP. ATP is a fuel molecule, and the important role of MgATP in muscle is to bind myosin and supply energy for the power stroke. Myosin is not a specific ATPase, and CaATP also supports myosin ATPase activity. The concentration of CaATP in sarcomeres reaches 1% of all ATP available. Since 294 myosin molecules form a thick filament, naïve estimation gives three heads per filament with CaATP bound, instead of MgATP. We found that CaATP dissociates actomyosin slower than MgATP, thus increasing the time of the strong actomyosin binding. The rate of the basal CaATPase is faster than that of MgATPase, myosin readily produces futile stroke with CaATP. When calcium is upregulated, as in malignant hyperthermia, kinetics of myosin and actomyosin interaction with CaATP suggest that myosin CaATPase activity may contribute to observed muscle rigidity and enhanced muscle thermogenesis.
Collapse
Affiliation(s)
- Jinghua Ge
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
- Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, 28223, USA
| | - Akhil Gargey
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
- Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, 28223, USA
- Department of Biological Science, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Irina V Nesmelova
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
- Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, 28223, USA
| | - Yuri E Nesmelov
- Department of Physics and Optical Science, University of North Carolina Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA.
- Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, 28223, USA.
| |
Collapse
|
4
|
Andrews DA, Nesmelov YE, Wilce MC, Roujeinikova A. Structural analysis of variant of Helicobacter pylori MotB in its activated form, engineered as chimera of MotB and leucine zipper. Sci Rep 2017; 7:13435. [PMID: 29044185 PMCID: PMC5647336 DOI: 10.1038/s41598-017-13421-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023] Open
Abstract
Rotation of the bacterial flagellum is powered by a proton influx through the peptidoglycan (PG)-tethered stator ring MotA/B. MotA and MotB form an inner-membrane complex that does not conduct protons and does not bind to PG until it is inserted into the flagellar motor. The opening of the proton channel involves association of the plug helices in the periplasmic region of the MotB dimer into a parallel coiled coil. Here, we have characterised the structure of a soluble variant of full-length Helicobacter pylori MotB in which the plug helix was engineered to be locked in a parallel coiled coil state, mimicking the open state of the stator. Fluorescence resonance energy transfer measurements, combined with PG-binding assays and fitting of the crystal structures of MotB fragments to the small angle X-ray scattering (SAXS) data revealed that the protein's C-terminal domain has a PG-binding-competent conformation. Molecular modelling against the SAXS data suggested that the linker in H. pylori MotB forms a subdomain between the plug and the C-terminal domain, that 'clamps' the coiled coil of the plug, thus stabilising the activated form of the protein. Based on these results, we present a pseudo-atomic model structure of full-length MotB in its activated form.
Collapse
Affiliation(s)
- Daniel A Andrews
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Yuri E Nesmelov
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Matthew C Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Anna Roujeinikova
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
5
|
Ge J, Bouriyaphone SD, Serebrennikova TA, Astashkin AV, Nesmelov YE. Macromolecular Crowding Modulates Actomyosin Kinetics. Biophys J 2017; 111:178-84. [PMID: 27410745 DOI: 10.1016/j.bpj.2016.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022] Open
Abstract
Actomyosin kinetics is usually studied in dilute solutions, which do not reflect conditions in the cytoplasm. In cells, myosin and actin work in a dense macromolecular environment. High concentrations of macromolecules dramatically reduce the amount of free space available for all solutes, which results in an effective increase of the solutes' chemical potential and protein stabilization. Moreover, in a crowded solution, the chemical potential depends on the size of the solute, with larger molecules experiencing a larger excluded volume than smaller ones. Therefore, since myosin interacts with two ligands of different sizes (actin and ATP), macromolecular crowding can modulate the kinetics of individual steps of the actomyosin ATPase cycle. To emulate the effect of crowding in cells, we studied actomyosin cycle reactions in the presence of a high-molecular-weight polymer, Ficoll70. We observed an increase in the maximum velocity of the actomyosin ATPase cycle, and our transient-kinetics experiments showed that virtually all individual steps of the actomyosin cycle were affected by the addition of Ficoll70. The observed effects of macromolecular crowding on the myosin-ligand interaction cannot be explained by the increase of a solute's chemical potential. A time-resolved Förster resonance energy transfer experiment confirmed that the myosin head assumes a more compact conformation in the presence of Ficoll70 than in a dilute solution. We conclude that the crowding-induced myosin conformational change plays a major role in the changed kinetics of actomyosin ATPase.
Collapse
Affiliation(s)
- Jinghua Ge
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina; Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, North Carolina
| | - Sherry D Bouriyaphone
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina
| | | | - Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Yuri E Nesmelov
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina; Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, North Carolina.
| |
Collapse
|