1
|
Meier S, Ridgway ZM, Picciano AL, Caputo GA. Impacts of Hydrophobic Mismatch on Antimicrobial Peptide Efficacy and Bilayer Permeabilization. Antibiotics (Basel) 2023; 12:1624. [PMID: 37998826 PMCID: PMC10669323 DOI: 10.3390/antibiotics12111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial resistance continues to be a major threat to world health, with the continued emergence of resistant bacterial strains. Antimicrobial peptides have emerged as an attractive option for the development of novel antimicrobial compounds in part due to their ubiquity in nature and the general lack of resistance development to this class of molecules. In this work, we analyzed the antimicrobial peptide C18G and several truncated forms for efficacy and the underlying mechanistic effects of the sequence truncation. The peptides were screened for antimicrobial efficacy against several standard laboratory strains, and further analyzed using fluorescence spectroscopy to evaluate binding to model lipid membranes and bilayer disruption. The results show a clear correlation between the length of the peptide and the antimicrobial efficacy. Furthermore, there is a correlation between peptide length and the hydrophobic thickness of the bilayer, indicating that hydrophobic mismatch is likely a contributing factor to the loss of efficacy in shorter peptides.
Collapse
Affiliation(s)
- Steven Meier
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
| | - Zachary M. Ridgway
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
| | - Angela L. Picciano
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA (A.L.P.)
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
2
|
Peng F, Ye M, Liu Y, Liu J, Lan Y, Luo A, Zhang T, Jiang Z, Song H. Comparative genomics reveals response of Rhodococcus pyridinivorans B403 to phenol after evolution. Appl Microbiol Biotechnol 2022; 106:2751-2761. [DOI: 10.1007/s00253-022-11858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022]
|
3
|
Asadi M, Oanca G, Warshel A. Effect of Environmental Factors on the Catalytic Activity of Intramembrane Serine Protease. J Am Chem Soc 2022; 144:1251-1257. [PMID: 35023734 PMCID: PMC10349665 DOI: 10.1021/jacs.1c10494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cleavage of protein inside cell membranes regulates pathological pathways and is a subject of major interest. Thus, the nature of the coupling between the physical environment and the function of such proteins has recently attracted significant experimental and theoretical efforts. However, it is difficult to determine the nature of this coupling uniquely by experimental and theoretical studies unless one can separate the chemical and the environmental factors. This work describes calculations of the activation barriers of the intramembrane rhomboid protease in neutral and charged lipid bilayers and in detergent micelle, trying to explore the environmental effect. The calculations of the chemical barrier are done using the empirical valence bond (EVB) method. Additionally, the renormalization method captures the energetics and dynamical effects of the conformational change. The simulations indicate that the physical environment around the rhomboid protease is not a major factor in changing the chemical catalysis and that the conformational and substrate dynamics do not exhibit long-time coupling. General issues about the action of membrane-embedded enzymes are also considered.
Collapse
Affiliation(s)
- Mojgan Asadi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Gabriel Oanca
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
4
|
Barniol-Xicota M, Verhelst SHL. Isolation of intramembrane proteases in membrane-like environments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183193. [PMID: 31945321 DOI: 10.1016/j.bbamem.2020.183193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Intramembrane proteases (IMPs) are proteolytic enzymes embedded in the lipid bilayer, where they cleave transmembrane substrates. The importance of IMPs relies on their role in a wide variety of cellular processes and diseases. In order to study the activity and function of IMPs, their purified form is often desired. The production of pure and active IMPs has proven to be a challenging task. This process unavoidably requires the use of solubilizing agents that will, to some extent, alter the native environment of these proteases. In this review we present the current solubilization and reconstitution techniques that have been applied to IMPs. In addition, we describe how these techniques had an influence on the activity and structural studies of IMPs, focusing on rhomboid proteases and γ-secretase.
Collapse
Affiliation(s)
- Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49, Box 802, B-3000, Belgium.
| | - Steven H L Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49, Box 802, B-3000, Belgium; Leibniz Institute for Analytical Sciences, ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.
| |
Collapse
|
5
|
Foo ACY, Thompson PM, Perera L, Arora S, DeRose EF, Williams J, Mueller GA. Hydrophobic ligands influence the structure, stability, and processing of the major cockroach allergen Bla g 1. Sci Rep 2019; 9:18294. [PMID: 31797892 PMCID: PMC6893020 DOI: 10.1038/s41598-019-54689-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022] Open
Abstract
The cockroach allergen Bla g 1 forms a novel fold consisting of 12 amphipathic alpha-helices enclosing an exceptionally large hydrophobic cavity which was previously demonstrated to bind a variety of lipids. Since lipid-dependent immunoactivity is observed in numerous allergens, understanding the structural basis of this interaction could yield insights into the molecular determinants of allergenicity. Here, we report atomic modelling of Bla g 1 bound to both fatty-acid and phospholipids ligands, with 8 acyl chains suggested to represent full stoichiometric binding. This unusually high occupancy was verified experimentally, though both modelling and circular dichroism indicate that the general alpha-helical structure is maintained regardless of cargo loading. Fatty-acid cargoes significantly enhanced thermostability while inhibiting cleavage by cathepsin S, an endosomal protease essential for antigen processing and presentation; the latter of which was found to correlate to a decreased production of known T-cell epitopes. Both effects were strongly dependent on acyl chain length, with 18-20 carbons providing the maximal increase in melting temperature (~20 °C) while completely abolishing proteolysis. Diacyl chain cargoes provided similar enhancements to thermostability, but yielded reduced levels of proteolytic resistance. This study describes how the biophysical properties of Bla g 1 ligand binding and digestion may relate to antigen processing, with potential downstream implications for immunogenicity.
Collapse
Affiliation(s)
- Alexander C Y Foo
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Peter M Thompson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Simrat Arora
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Jason Williams
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, HHS, Research Triangle Park, NC, 27709, North Carolina, USA.
| |
Collapse
|
6
|
Abstract
Membranes surrounding the biological cell and its internal compartments host proteins that catalyze chemical reactions essential for the functioning of the cell. Rather than being a passive structural matrix that holds membrane-embedded proteins in place, the membrane can largely shape the conformational energy landscape of membrane proteins and impact the energetics of their chemical reaction. Here, we highlight the challenges in understanding how lipids impact the conformational energy landscape of macromolecular membrane complexes whose functioning involves chemical reactions including proton transfer. We review here advances in our understanding of how chemical reactions occur at membrane interfaces gleaned with both theoretical and experimental advances using simple protein systems as guides. Our perspective is that of bridging experiments with theory to understand general physicochemical principles of membrane reactions, with a long term goal of furthering our understanding of the role of the lipids on the functioning of complex macromolecular assemblies at the membrane interface.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - M Joanne Lemieux
- University of Alberta , Department of Biochemistry, Membrane Protein Disease Research Group , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
7
|
Membrane properties that shape the evolution of membrane enzymes. Curr Opin Struct Biol 2018; 51:80-91. [PMID: 29597094 DOI: 10.1016/j.sbi.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Spectacular recent progress in structural biology has led to determination of the structures of many integral membrane enzymes that catalyze reactions in which at least one substrate also is membrane bound. A pattern of results seems to be emerging in which the active site chemistry of these enzymes is usually found to be analogous to what is observed for water soluble enzymes catalyzing the same reaction types. However, in light of the chemical, structural, and physical complexity of cellular membranes plus the presence of transmembrane gradients and potentials, these enzymes may be subject to membrane-specific regulatory mechanisms that are only now beginning to be uncovered. We review the membrane-specific environmental traits that shape the evolution of membrane-embedded biocatalysts.
Collapse
|
8
|
Embedded in the Membrane: How Lipids Confer Activity and Specificity to Intramembrane Proteases. J Membr Biol 2017; 251:369-378. [PMID: 29260282 DOI: 10.1007/s00232-017-0008-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
Proteases, sharp yet unforgivable tools of every cell, require tight regulation to ensure specific non-aberrant cleavages. The relatively recent discovered class of intramembrane proteases has gained increasing interest due to their involvement in important signaling pathways linking them to diseases including Alzheimer's disease and cancer. Despite tremendous efforts, their regulatory mechanisms have only started to unravel. There is evidence that the membrane composition itself can regulate intramembrane protease activity and specificity. In this review, we highlight the work on γ-secretase and rhomboid proteases and summarize several studies as to how different lipids impact on enzymatic activity.
Collapse
|
9
|
Reading E, Hall Z, Martens C, Haghighi T, Findlay H, Ahdash Z, Politis A, Booth PJ. Interrogating Membrane Protein Conformational Dynamics within Native Lipid Compositions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eamonn Reading
- Department of Chemistry; King's College London; Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Zoe Hall
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road Cambridge CB2 1GA UK
| | - Chloe Martens
- Department of Chemistry; King's College London; Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Tabasom Haghighi
- Department of Chemistry; King's College London; Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Heather Findlay
- Department of Chemistry; King's College London; Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Zainab Ahdash
- Department of Chemistry; King's College London; Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Argyris Politis
- Department of Chemistry; King's College London; Britannia House, 7 Trinity Street London SE1 1DB UK
| | - Paula J. Booth
- Department of Chemistry; King's College London; Britannia House, 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
10
|
Reading E, Hall Z, Martens C, Haghighi T, Findlay H, Ahdash Z, Politis A, Booth PJ. Interrogating Membrane Protein Conformational Dynamics within Native Lipid Compositions. Angew Chem Int Ed Engl 2017; 56:15654-15657. [PMID: 29049865 DOI: 10.1002/anie.201709657] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/18/2017] [Indexed: 12/14/2022]
Abstract
The interplay between membrane proteins and the lipids of the membrane is important for cellular function, however, tools enabling the interrogation of protein dynamics within native lipid environments are scarce and often invasive. We show that the styrene-maleic acid lipid particle (SMALP) technology can be coupled with hydrogen-deuterium exchange mass spectrometry (HDX-MS) to investigate membrane protein conformational dynamics within native lipid bilayers. We demonstrate changes in accessibility and dynamics of the rhomboid protease GlpG, captured within three different native lipid compositions, and identify protein regions sensitive to changes in the native lipid environment. Our results illuminate the value of this approach for distinguishing the putative role(s) of the native lipid composition in modulating membrane protein conformational dynamics.
Collapse
Affiliation(s)
- Eamonn Reading
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Zoe Hall
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Chloe Martens
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Tabasom Haghighi
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Heather Findlay
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Zainab Ahdash
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Argyris Politis
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Paula J Booth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| |
Collapse
|
11
|
Harris NJ, Reading E, Ataka K, Grzegorzewski L, Charalambous K, Liu X, Schlesinger R, Heberle J, Booth PJ. Structure formation during translocon-unassisted co-translational membrane protein folding. Sci Rep 2017; 7:8021. [PMID: 28808343 PMCID: PMC5556060 DOI: 10.1038/s41598-017-08522-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/10/2017] [Indexed: 01/16/2023] Open
Abstract
Correctly folded membrane proteins underlie a plethora of cellular processes, but little is known about how they fold. Knowledge of folding mechanisms centres on reversible folding of chemically denatured membrane proteins. However, this cannot replicate the unidirectional elongation of the protein chain during co-translational folding in the cell, where insertion is assisted by translocase apparatus. We show that a lipid membrane (devoid of translocase components) is sufficient for successful co-translational folding of two bacterial α-helical membrane proteins, DsbB and GlpG. Folding is spontaneous, thermodynamically driven, and the yield depends on lipid composition. Time-resolving structure formation during co-translational folding revealed different secondary and tertiary structure folding pathways for GlpG and DsbB that correlated with membrane interfacial and biological transmembrane amino acid hydrophobicity scales. Attempts to refold DsbB and GlpG from chemically denatured states into lipid membranes resulted in extensive aggregation. Co-translational insertion and folding is thus spontaneous and minimises aggregation whilst maximising correct folding.
Collapse
Affiliation(s)
- Nicola J Harris
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, UK
| | - Eamonn Reading
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, UK
| | - Kenichi Ataka
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Dahlem, Germany
| | - Lucjan Grzegorzewski
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Dahlem, Germany
| | - Kalypso Charalambous
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, UK
| | - Xia Liu
- School of Biochemistry, Medical Sciences, University Walk, University of Bristol, Bristol, UK
| | - Ramona Schlesinger
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Dahlem, Germany
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Dahlem, Germany
| | - Paula J Booth
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, UK.
| |
Collapse
|
12
|
Taylor KC, Sanders CR. Regulation of KCNQ/Kv7 family voltage-gated K + channels by lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:586-597. [PMID: 27818172 DOI: 10.1016/j.bbamem.2016.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022]
Abstract
Many years of studies have established that lipids can impact membrane protein structure and function through bulk membrane effects, by direct but transient annular interactions with the bilayer-exposed surface of protein transmembrane domains, and by specific binding to protein sites. Here, we focus on how phosphatidylinositol 4,5-bisphosphate (PIP2) and polyunsaturated fatty acids (PUFAs) impact ion channel function and how the structural details of the interactions of these lipids with ion channels are beginning to emerge. We focus on the Kv7 (KCNQ) subfamily of voltage-gated K+ channels, which are regulated by both PIP2 and PUFAs and play a variety of important roles in human health and disease. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Keenan C Taylor
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Duneau JP, Khao J, Sturgis JN. Lipid perturbation by membrane proteins and the lipophobic effect. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:126-134. [PMID: 27794424 DOI: 10.1016/j.bbamem.2016.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 11/26/2022]
Abstract
Understanding how membrane proteins interact with their environment is fundamental to the understanding of their structure, function and interactions. We have performed coarse-grained molecular dynamics simulations on a series of membrane proteins in a membrane environment to examine the perturbations of the lipids by the presence of protein. We analyze these perturbations in terms of elastic membrane deformations and local lipid protein interactions. However these two factors are insufficient to describe the variety of effects that we observe and the changes caused by membranes proteins to the structure and dynamics of their lipid environment. Other factors that change the conformation available to lipid molecules are evident and are able to modify lipid structure far from the protein surface, and thus mediate long-range interactions between membrane proteins. We suggest that these multiple modifications to lipid behavior are responsible, at the molecular level, for the lipophobic effect we have proposed to account for our observations of membrane protein organization.
Collapse
Affiliation(s)
- Jean-Pierre Duneau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS and Aix-Marseille Univ, Marseille 13402 cedex 20, France.
| | - Jonathan Khao
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS and Aix-Marseille Univ, Marseille 13402 cedex 20, France
| | - James N Sturgis
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, CNRS and Aix-Marseille Univ, Marseille 13402 cedex 20, France.
| |
Collapse
|
14
|
Wolf EV, Seybold M, Hadravová R, Strisovsky K, Verhelst SHL. Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes. Chembiochem 2015; 16:1616-21. [PMID: 26032951 DOI: 10.1002/cbic.201500213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 11/07/2022]
Abstract
Although activity-based protein profiling (ABPP) has been used to study a variety of enzyme classes, its application to intramembrane proteases is still in its infancy. Intramembrane proteolysis is an important biochemical mechanism for activating proteins residing within the membrane in a dormant state. Rhomboid proteases (intramembrane serine proteases) are embedded in the lipid bilayers of membranes and occur in all phylogenetic domains. The study of purified rhomboid proteases has mainly been performed in detergent micelle environments. Here we report on the reconstitution of rhomboids in liposomes. Using ABPP, we have been able to detect active rhomboids in large and giant unilamellar vesicles. We have found that the inhibitor profiles of rhomboids in micelles and liposomes are similar, thus validating previous inhibitor screenings. Moreover, fluorescence microscopy experiments on the liposomes constitute the first steps towards activity-based imaging of rhomboid proteases in membrane environments.
Collapse
Affiliation(s)
- Eliane V Wolf
- Center for Integrated Protein Science Munich, Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising (Germany)
| | - Martin Seybold
- Center for Integrated Protein Science Munich, Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising (Germany)
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague, 166 10 (Czech Republic)
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague, 166 10 (Czech Republic)
| | - Steven H L Verhelst
- Center for Integrated Protein Science Munich, Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising (Germany). .,Leibniz Institut für Analytische Wissenschaften, ISAS, e.V. Otto-Hahn-Strasse 6b, 44227 Dortmund (Germany). .,Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, Box 802, 3000 Leuven (Belgium).
| |
Collapse
|
15
|
Chica RA. Protein engineering in the 21st century. Protein Sci 2015; 24:431-3. [PMID: 25644972 DOI: 10.1002/pro.2656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Roberto A Chica
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| |
Collapse
|