1
|
Prikalkhoran S, Guiliano D, Khalili H. Storage stability and solution binding affinity of an Fc-fusion mimetic. J Pharm Sci 2024:S0022-3549(24)00539-2. [PMID: 39631526 DOI: 10.1016/j.xphs.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
This study evaluates the storage stability and solution binding affinity of a novel Fc-fusion mimetic, receptor-PEG-receptor (RpR), designed to address limitations of the current therapeutic aflibercept, a gold-standard therapy for age-macular degeneration (AMD). Using di(bis-sulfone) PEG linker as a structural scaffold, the mimetic aims to improve the storage stability and binding efficacy of the Fc fusion protein. Mass photometry and size-exclusion chromatography demonstrated that RpR, even in an unformulated buffer, exhibits superior storage stability exceeding 10 months compared to aflibercept. Furthermore, microscale thermophoresis was employed to determine RpR's binding affinity to VEGF in solution, providing a more physiologically relevant assessment than traditional binding assays. These findings highlight RpR's potential as a therapeutic candidate for the treatment of AMD disease, warranting further investigation.
Collapse
Affiliation(s)
- Sama Prikalkhoran
- School of Medicine and Biosciences, University of West London, W55RF, UK; School of Life Sciences, University of Westminster, W1W 6UW, UK
| | - David Guiliano
- School of Life Sciences, University of Westminster, W1W 6UW, UK
| | - Hanieh Khalili
- School of Medicine and Biosciences, University of West London, W55RF, UK; School of Pharmacy, University College London, WC1N 1AX, UK.
| |
Collapse
|
2
|
Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, Esfahani G. Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. Eur J Pharm Biopharm 2024; 204:114530. [PMID: 39393712 DOI: 10.1016/j.ejpb.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Simone Carneiro
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; RNhale GmbH, München 81371, Germany; Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Munich, German Center for Lung Research (DZL), 81377 Munich, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Golbarg Esfahani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle 06120, Saale, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS).
| |
Collapse
|
3
|
Arakawa T, Tomioka Y, Akuta T, Shiraki K. The contrasting roles of co-solvents in protein formulations and food products. Biophys Chem 2024; 312:107282. [PMID: 38944944 DOI: 10.1016/j.bpc.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Protein aggregation is a major hurdle in developing biopharmaceuticals, in particular protein formulation area, but plays a pivotal role in food products. Co-solvents are used to suppress protein aggregation in pharmaceutical proteins. On the contrary, aggregation is encouraged in the process of food product making. Thus, it is expected that co-solvents play a contrasting role in biopharmaceutical formulation and food products. Here, we show several examples that utilize co-solvents, e.g., salting-out salts, sugars, polyols and divalent cations in promoting protein-protein interactions. The mechanisms of co-solvent effects on protein aggregation and solubility have been studied on aqueous protein solution and applied to develop pharmaceutical formulation based on the acquired scientific knowledge. On the contrary, co-solvents have been used in food industries based on empirical basis. Here, we will review the mechanisms of co-solvent effects on protein-protein interactions that can be applied to both pharmaceutical and food industries and hope to convey knowledge acquired through research on co-solvent interactions in aqueous protein solution and formulation to those involved in food science and provide those involved in protein solution research with the observations on aggregation behavior of food proteins.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA 92130, USA.
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd, 3333-26, Aza-Asayama, Kamitezuna Tahahagi, Ibaraki 318-0004, Japan
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd, 3333-26, Aza-Asayama, Kamitezuna Tahahagi, Ibaraki 318-0004, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
4
|
Pawaskar GM, Raval R. Development of a fluorescence-based excipient screening for improved stability and shelf-life of recombinant chitin deacetylase. Biochem Biophys Rep 2024; 38:101718. [PMID: 38708424 PMCID: PMC11066597 DOI: 10.1016/j.bbrep.2024.101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Chitin deacetylase (CDA) modifies chitin into chitosan by removing acetyl groups, but its inherent instability poses a challenge for successful crystallisation. Despite limited successes in crystallizing CDAs, prior attempts with recombinant chitin deacetylase (BaCDA) failed due to poor stability. To address this, we propose an enzyme buffer formulation as a cost-effective strategy to enhance stability, prolong shelf life, and increase the likelihood of crystallisation. Utilizing the high-throughput screening technique FTSA, we developed a screening method correlating BaCDA stability with its activity. The optimised formulation comprises 50 mM Tris-HCl buffer pH 7, 1 M NaCl, 20 % glycerol, and 1 mM Mg2+ as excipients. This formulation significantly improves BaCDA's thermostability (140.47 % increase) and enzyme activity (2.9-fold enhancement). BaCDA remains stable in the formulated buffer at -20 °C and -80 °C for 30 days and at 4 °C for 15 days. The current study has designed a high-throughput screening method approach to assess the stability of CDA enzyme formulations. The results of this study could contribute to the exploration of formulation elements that enhance the structural stability of CDA, thereby facilitating investigations into the enzyme's structure-function relationships.
Collapse
Affiliation(s)
- Goutam Mohan Pawaskar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| |
Collapse
|
5
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
6
|
Du Y, Song J, Lu L, Yeung E, Givand J, Procopio A, Su Y, Hu G. Design of a Reciprocal Injection Device for Stability Studies of Parenteral Biological Drug Products. J Pharm Sci 2024; 113:1330-1338. [PMID: 38113997 DOI: 10.1016/j.xphs.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Formulation screening, essential for assessing the impact of physical, chemical, and mechanical stresses on protein stability, plays a critical role in biologics drug product development. This research introduces a Reciprocal Injection Device (RID) designed to accelerate formulation screening by probing protein stability under intensified stress conditions within prefilled syringes. This versatile device is designed to accommodate a broad spectrum of injection parameters and diverse syringe dimensions. A commercial drug product was employed as a model monoclonal antibody formulation. Our findings effectively highlight the efficacy of the RID in assessing concentration-dependent protein stability. This device exhibits significant potential to amplify the influences of interfacial interactions, such as those with buffer salts, excipients, air, metals, and silicone oils, commonly found in combination drug products, and to evaluate the protein stability under varied stresses.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Jing Song
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Lynn Lu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Edward Yeung
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Jeffrey Givand
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Adam Procopio
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States.
| | - Guangli Hu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, United States.
| |
Collapse
|
7
|
Lou H, Luan X, Hu G, Hageman MJ. Development of a drying method for proteins based on protein-hyaluronic acid precipitation. Int J Pharm 2024; 654:123940. [PMID: 38408551 DOI: 10.1016/j.ijpharm.2024.123940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
This study aims to develop a new method to dry proteins based on protein-hyaluronic acid (HA) precipitation and apply the precipitation-redissolution technique to develop highly concentrated protein formulations. Lysozyme was used as a model protein and HA with various molecular weights (MW) were investigated. Under low ionic strength, low-MW HA (e.g., MW: around 5 K) did not induce lysozyme precipitation. Conversely, high-MW HA (e.g., MW: approximately from 40 K to 1.5 M) precipitated more than 90 % of lysozyme. The dried lysozyme-HA precipitates had moisture levels between 4 % and 5 %. The lysozyme-HA precipitates could be redissolved using PBS (pH 7.4, ionic strength: ∼ 163 mM). The viscosity of the reconstituted solution was dependent on HA MW, e.g., 4 cP for HA40K, and 155 cP for HA1.5 M, suggesting low-MW HA might be a proper excipient for highly concentrated solution formulations for subcutaneous/intraocular injection and high-MW HA may fit for other applications. The tertiary structure of lysozyme after the precipitation-redissolution steps had no significant difference from that of the original lysozyme as confirmed by fluorescence spectroscopy. The denaturation temperature of lysozyme after the precipitation-redissolution steps and that of the original lysozyme were close, indicating they possessed similar thermal stability. The accelerated stability study revealed that lysozyme stored in the dry precipitates was more physically stable than that in the buffer solution. Overall, this new drying technique is suitable for drying proteins and exhibits several benefits such as minimum energy consumption, cost effectiveness, high production yield, and mild processing conditions. In addition, the precipitation-redissolution technique proposed in this study can potentially be used to develop highly concentrated formulations, especially for proteins experiencing poor stability in the liquid state.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, KS 66047, USA
| | - Xi Luan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Gang Hu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, KS 66047, USA
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
8
|
Zhang Y, Wu Y, Schöneich C. Near UV Photodegradation Mechanisms of Amino Acid Excipients: Formation of the Carbon Dioxide Radical Anion from Aspartate and Fe(III). Mol Pharm 2024; 21:1233-1245. [PMID: 38350108 DOI: 10.1021/acs.molpharmaceut.3c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Carbon dioxide radical anion (•CO2-) is a powerful reducing agent that can reduce protein disulfide bonds and convert molecular oxygen to superoxide. Therefore, the generation of •CO2- can be detrimental to pharmaceutical formulations. Iron is among the most prevalent impurities in formulations, where Fe(III) chelates of histidine (His) can produce •CO2- upon exposure to near-UV light (Zhang and Schöneich, Eur. J. Pharm. Biopharm. 2023, 190, 231-241). Here, we monitor by spin-trapping in combination with electron paramagnetic resonance spectroscopy and/or high-performance liquid chromatography-mass spectrometry analysis the photochemical formation of •CO2- for a series of common amino acid excipients, including arginine (Arg), methionine (Met), proline (Pro), glutamic acid (Glu), glycine (Gly), aspartic acid (Asp), and lysine (Lys). Our results indicate that in the presence of Fe(III), Asp, and Glu produce significant yields of •CO2- under photoirradiation with near-UV light. Notably, Asp demonstrates the highest efficiency of •CO2- generation compared with that of the other amino acid excipients. Stable isotope labeling indicates that •CO2- exclusively originates from the α-carboxyl group of Asp. Mechanistic studies reveal two possible pathways for •CO2- formation, which involve either a β-carboxyl radical or an amino radical cation intermediate.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Yaqi Wu
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
9
|
Mehrotra S, Kalyan BG P, Nayak PG, Joseph A, Manikkath J. Recent Progress in the Oral Delivery of Therapeutic Peptides and Proteins: Overview of Pharmaceutical Strategies to Overcome Absorption Hurdles. Adv Pharm Bull 2024; 14:11-33. [PMID: 38585454 PMCID: PMC10997937 DOI: 10.34172/apb.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Proteins and peptides have secured a place as excellent therapeutic moieties on account of their high selectivity and efficacy. However due to oral absorption limitations, current formulations are mostly delivered parenterally. Oral delivery of peptides and proteins (PPs) can be considered the need of the hour due to the immense benefits of this route. This review aims to critically examine and summarize the innovations and mechanisms involved in oral delivery of peptide and protein drugs. Methods Comprehensive literature search was undertaken, spanning the early development to the current state of the art, using online search tools (PubMed, Google Scholar, ScienceDirect and Scopus). Results Research in oral delivery of proteins and peptides has a rich history and the development of biologics has encouraged additional research effort in recent decades. Enzyme hydrolysis and inadequate permeation into intestinal mucosa are the major causes that result in limited oral absorption of biologics. Pharmaceutical and technological strategies including use of absorption enhancers, enzyme inhibition, chemical modification (PEGylation, pro-drug approach, peptidomimetics, glycosylation), particulate delivery (polymeric nanoparticles, liposomes, micelles, microspheres), site-specific delivery in the gastrointestinal tract (GIT), membrane transporters, novel approaches (self-nanoemulsifying drug delivery systems, Eligen technology, Peptelligence, self-assembling bubble carrier approach, luminal unfolding microneedle injector, microneedles) and lymphatic targeting, are discussed. Limitations of these strategies and possible innovations for improving oral bioavailability of protein and peptide drugs are discussed. Conclusion This review underlines the application of oral route for peptide and protein delivery, which can direct the formulation scientist for better exploitation of this route.
Collapse
Affiliation(s)
- Sonal Mehrotra
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pavan Kalyan BG
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology,Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | | | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
10
|
Dai L, Davis J, Nagapudi K, Mantik P, Zhang K, Pellett JD, Wei B. Predicting Long-Term Stability of an Oral Delivered Antibody Drug Product with Accelerated Stability Assessment Program Modeling. Mol Pharm 2024; 21:325-332. [PMID: 38060811 DOI: 10.1021/acs.molpharmaceut.3c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2024]
Abstract
The oral delivery of protein therapeutics offers numerous advantages for patients but also presents significant challenges in terms of development. Currently, there is limited knowledge available regarding the stability and shelf life of orally delivered protein therapeutics. In this study, a comprehensive assessment of the stability of an orally delivered solid dosage variable domain of heavy-chain antibody (VHH antibody) drug product was conducted. Four stability related quality attributes that undergo change as a result of thermal and humidity stress were identified. Subsequently, these attributes were modeled using an accelerated stability approach facilitated by ASAPprime software. To the best of our knowledge, this is the first time that this approach has been reported for an antibody drug product. We observed overall good model quality and accurate predictions regarding the protein stability during storage. Notably, we discovered that protein aggregation, formed through a degradation pathway, requires additional adjustments to the modeling method. In summary, the ASAP approach demonstrated promising results in predicting the stability of this complex solid-state protein formulation. This study sheds light on the stability and shelf life of orally delivered protein therapeutics, addressing an important knowledge gap in the field.
Collapse
Affiliation(s)
- Lulu Dai
- Synthetic Molecule Pharmaceutical Science, Early Research and Development, Genentech, South San Francisco, California 94080, United States
| | - Jeff Davis
- Synthetic Molecule Pharmaceutical Science, Early Research and Development, Genentech, South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Synthetic Molecule Pharmaceutical Science, Early Research and Development, Genentech, South San Francisco, California 94080, United States
| | - Priscilla Mantik
- Synthetic Molecule Pharmaceutical Science, Early Research and Development, Genentech, South San Francisco, California 94080, United States
| | - Kelly Zhang
- Synthetic Molecule Pharmaceutical Science, Early Research and Development, Genentech, South San Francisco, California 94080, United States
| | - Jackson D Pellett
- Synthetic Molecule Pharmaceutical Science, Early Research and Development, Genentech, South San Francisco, California 94080, United States
| | - Bingchuan Wei
- Synthetic Molecule Pharmaceutical Science, Early Research and Development, Genentech, South San Francisco, California 94080, United States
| |
Collapse
|
11
|
Schlosser CS, Williams GR, Dziemidowicz K. Advanced Formulation Approaches for Proteins. Handb Exp Pharmacol 2024; 284:69-91. [PMID: 37059912 DOI: 10.1007/164_2023_647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Proteins and peptides are highly desirable as therapeutic agents, being highly potent and specific. However, there are myriad challenges with processing them into patient-friendly formulations: they are often unstable and have a tendency to aggregate or degrade upon storage. As a result, the vast majority of protein actives are delivered parenterally as solutions, which has a number of disadvantages in terms of cost, accessibility, and patient experience. Much work has been undertaken to develop new delivery systems for biologics, but to date this has led to relatively few products on the market. In this chapter, we review the challenges faced when developing biologic formulations, discuss the technologies that have been explored to try to overcome these, and consider the different delivery routes that can be applied. We further present an overview of the currently marketed products and assess the likely direction of travel in the next decade.
Collapse
|
12
|
Han Q, Darmanin C, Rosado CJ, Veríssimo NV, Pereira JFB, Bryant G, Drummond CJ, Greaves TL. Structure, aggregation dynamics and crystallization of superfolder green fluorescent protein: Effect of long alkyl chain imidazolium ionic liquids. Int J Biol Macromol 2023; 253:127456. [PMID: 37844813 DOI: 10.1016/j.ijbiomac.2023.127456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Green fluorescent protein (GFP) and its variants are widely used in medical and biological research, especially acting as indicators of protein structural integrity, protein-protein interactions and as biosensors. This study employs superfolder GFP (sfGFP) to investigate the impact of varying alkyl chain length of 1-Cn-3-methylimidazolium chloride ionic liquid (IL) series ([Cnmim]Cl, n = 2, 4, 6, 8, 10, 12) on the protein fluorescence, structure, hydration, aggregation dynamics and crystallization behaviour. The results revealed a concentration-dependent decrease in the sfGFP chromophore fluorescence, particularly in long alkyl chain ILs ([C10mim]Cl and [C12mim]Cl). Tryptophan (Trp) fluorescence showed the quenching rate increased with longer alkyl chains indicating a nonpolar interaction between Trp57 and the alkyl chain. Secondary structural changes were observed at the high IL concentration of 1.5 M in [C10mim]Cl and [C12mim]Cl. Small-angle X-ray scattering (SAXS) indicated relatively stable protein sizes, but with IL aggregates present in [C10mim]Cl and [C12mim]Cl solutions. Dynamic light scattering (DLS) data showed increased protein size and aggregation with longer alkyl chain ILs. Notably, ILs and salts, excluding [C2mim]Cl, promoted sfGFP crystallization. This study emphasizes the influence of the cation alkyl chain length and concentration on protein stability and aggregation, providing insights into utilizing IL solvents for protein stabilization and crystallization purposes.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| | - Connie Darmanin
- La Trobe Institute for Molecular Science, Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Carlos J Rosado
- Department of Diabetes, Central Clinical School, Monash University, VIC 3004, Australia; Department of Biochemistry, Monash University, VIC 3800, Australia
| | - Nathalia Vieira Veríssimo
- School of Pharmaceutical Sciences, São Paulo University (USP), Av. Prof. Lineu Prestes, no. 580, B16, 05508-000, Cidade de Universitária, São Paulo, SP, Brazil
| | - Jorge F B Pereira
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
13
|
Heinemann L, Davies M, Home P, Forst T, Vilsbøll T, Schnell O. Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials. J Diabetes Sci Technol 2023; 17:1649-1661. [PMID: 35818669 PMCID: PMC10658691 DOI: 10.1177/19322968221105864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A wave of expiring patents for first-generation insulin analogues has created opportunities in the global insulin market for highly similar versions of these products, biosimilar insulins. Biologics are generally large, complex molecules produced through biotechnology in a living system, such as a microorganism, plant cell, or animal cell. Since manufacturing processes of biologics vary, biosimilars cannot be exact copies of their reference product but must exhibit a high degree of functional and structural similarity. Biosimilarity is proven by analytical approaches in comparative assessments, preclinical cell-based and animal studies, as well as clinical studies in humans facilitating the accumulation of evidence across all assessments. The approval of biosimilars follows detailed regulatory pathways derived from those of their reference products and established by agencies such as the European Medicines Agency and the US Food and Drug Administration. Regulatory authorities impose requirements to ensure that biosimilars meet high standards of quality, safety, and efficacy and are highly similar to their reference product. PURPOSE This review aims to aid clinical understanding of the high standards of development, manufacturing, and regulation of biosimilar insulins. METHODS Recent relevant studies indexed by PubMed and regulatory documents were included. CONCLUSIONS Driven by price competition, the emergence of biosimilar insulins may help expand global access to current insulin analogues. To maximize the impact of the advantage for falling retail costs of biosimilar insulins compared with that of reference insulins, healthcare professionals and insulin users must gain further awareness and confidence.
Collapse
Affiliation(s)
- Lutz Heinemann
- Science Consulting in Diabetes GmbH, Kaarst, Deutschland
| | - Melanie Davies
- University of Leicester, Leicester General Hospital, Leicester, UK
| | - Philip Home
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas Forst
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Schnell
- Forschergruppe Diabetes e.V., Neuherberg, Munich, Germany
| |
Collapse
|
14
|
Willis LF, Toprani V, Wijetunge S, Sievers A, Lin L, Williams J, Crowley TJ, Radford SE, Kapur N, Brockwell DJ. Exploring a role for flow-induced aggregation assays in platform formulation optimisation for antibody-based proteins. J Pharm Sci 2023; 113:S0022-3549(23)00441-0. [PMID: 39492475 DOI: 10.1016/j.xphs.2023.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The development time of therapeutic monoclonal antibodies (mAbs) has been shortened by formulation platforms and the assessment of 'protein stability' using 'developability' assays. A range of assays are used to measure stability to a variety of stresses, including forces induced by hydrodynamic flow. We have previously developed a low-volume Extensional Flow Device (EFD) which subjects proteins to defined fluid flow fields in the presence of glass interfaces and used it to identify robust candidate sequences. Here, we study the aggregation of mAbs and Fc-fusion proteins using the EFD and orbital shaking under different formulations, investigating the relationship between these assays and evaluating their potential in formulation optimisation. EFD experiments identified the least aggregation-prone molecule using a fraction of the material and time involved in traditional screening. We also show that the EFD can differentiate between different formulations and that protective formulations containing polysorbate 80 stabilised poorly developable Fc-fusion proteins against EFD-induced aggregation up to two-fold. Our work highlights common platform formulation additives that affect the extent of aggregation under EFD-stress, as well as identifying factors that modulate the underlying aggregation mechanism. Together, our data could aid the choice of platform formulations early in development for next-generation therapeutics including fusion proteins.
Collapse
Affiliation(s)
- Leon F Willis
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds UK LS2 9JT
| | - Vishal Toprani
- Pharmaceutical Research and Development, Pfizer Inc. 1 Burtt Road, Andover, Massachusetts, USA, 01810.
| | - Sashini Wijetunge
- Pharmaceutical Research and Development, Pfizer Inc. 1 Burtt Road, Andover, Massachusetts, USA, 01810
| | - Annette Sievers
- BioMedicine Design, Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, MA 02139
| | - Laura Lin
- BioMedicine Design, Pfizer Worldwide Research & Development, 610 Main Street, Cambridge, MA 02139
| | - Jeanine Williams
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds UK LS2 9JT
| | - Tom J Crowley
- Pharmaceutical Research and Development, Pfizer Inc. 1 Burtt Road, Andover, Massachusetts, USA, 01810
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds UK LS2 9JT
| | - Nikil Kapur
- School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds UK LS2 9JT
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds UK LS2 9JT.
| |
Collapse
|
15
|
Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Adv Drug Deliv Rev 2023; 199:114904. [PMID: 37263542 PMCID: PMC10526705 DOI: 10.1016/j.addr.2023.114904] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
The global pharmaceutical market has recently shifted its focus from small molecule drugs to peptide, protein, and nucleic acid drugs, which now comprise a majority of the top-selling pharmaceutical products on the market. Although these biologics often offer improved drug specificity, new mechanisms of action, and/or enhanced efficacy, they also present new challenges, including an increased potential for degradation and a need for frequent administration via more invasive administration routes, which can limit patient access, patient adherence, and ultimately the clinical impact of these drugs. Controlled-release systems have the potential to mitigate these challenges by offering superior control over in vivo drug levels, localizing these drugs to tissues of interest (e.g., tumors), and reducing administration frequency. Unfortunately, adapting controlled-release devices to release biologics has proven difficult due to the poor stability of biologics. In this review, we summarize the current state of controlled-release peptides and proteins, discuss existing techniques used to stabilize these drugs through encapsulation, storage, and in vivo release, and provide perspective on the most promising opportunities for the clinical translation of controlled-release peptides and proteins.
Collapse
Affiliation(s)
- Miusi Shi
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Chemistry, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Graf TP, Qiu SY, Varshney D, Laracuente ML, Euliano EM, Munnangi P, Pogostin BH, Baryakova T, Garyali A, McHugh KJ. A Scalable Platform for Fabricating Biodegradable Microparticles with Pulsatile Drug Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300228. [PMID: 36862114 PMCID: PMC10247432 DOI: 10.1002/adma.202300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/20/2023] [Indexed: 06/02/2023]
Abstract
Pulsatile drug delivery systems have the potential to improve patient adherence and therapeutic efficacy by providing a sequence of doses in a single injection. Herein, a novel platform, termed Particles Uniformly Liquified and Sealed to Encapsulate Drugs (PULSED) is developed, which enables the high-throughput fabrication of microparticles exhibiting pulsatile release. In PULSED, biodegradable polymeric microstructures with an open cavity are formed using high-resolution 3D printing and soft lithography, filled with drug, and sealed using a contactless heating step in which the polymer flows over the orifice to form a complete shell around a drug-loaded core. Poly(lactic-co-glycolic acid) particles with this structure can rapidly release encapsulated material after delays of 10 ± 1, 15 ± 1, 17 ± 2, or 36 ± 1 days in vivo, depending on polymer molecular weight and end group. The system is even compatible with biologics, releasing over 90% of bevacizumab in its bioactive form after a two-week delay in vitro. The PULSED system is highly versatile, offering compatibility with crystalline and amorphous polymers, easily injectable particle sizes, and compatibility with several newly developed drug loading methods. Together, these results suggest that PULSED is a promising platform for creating long-acting drug formulations that improve patient outcomes due to its simplicity, low cost, and scalability.
Collapse
Affiliation(s)
- Tyler P Graf
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Sherry Yue Qiu
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Dhruv Varshney
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Mei-Li Laracuente
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Erin M Euliano
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Pujita Munnangi
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Brett H Pogostin
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | | | - Arnav Garyali
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
17
|
Almeida C, Pedro AQ, Tavares APM, Neves MC, Freire MG. Ionic-liquid-based approaches to improve biopharmaceuticals downstream processing and formulation. Front Bioeng Biotechnol 2023; 11:1037436. [PMID: 36824351 PMCID: PMC9941158 DOI: 10.3389/fbioe.2023.1037436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The emergence of biopharmaceuticals, including proteins, nucleic acids, peptides, and vaccines, revolutionized the medical field, contributing to significant advances in the prophylaxis and treatment of chronic and life-threatening diseases. However, biopharmaceuticals manufacturing involves a set of complex upstream and downstream processes, which considerably impact their cost. In particular, despite the efforts made in the last decades to improve the existing technologies, downstream processing still accounts for more than 80% of the total biopharmaceutical production cost. On the other hand, the formulation of biological products must ensure they maintain their therapeutic performance and long-term stability, while preserving their physical and chemical structure. Ionic-liquid (IL)-based approaches arose as a promise alternative, showing the potential to be used in downstream processing to provide increased purity and recovery yield, as well as excipients for the development of stable biopharmaceutical formulations. This manuscript reviews the most important progress achieved in both fields. The work developed is critically discussed and complemented with a SWOT analysis.
Collapse
Affiliation(s)
- Catarina Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Augusto Q. Pedro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana P. M. Tavares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Márcia C. Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
18
|
Spray Freeze Drying of Biologics: A Review and Applications for Inhalation Delivery. Pharm Res 2022; 40:1115-1140. [DOI: 10.1007/s11095-022-03442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
|
19
|
Lou H, Hageman MJ. Development of an In Vitro System To Emulate an In Vivo Subcutaneous Environment: Small Molecule Drug Assessment. Mol Pharm 2022; 19:4017-4025. [PMID: 36279508 DOI: 10.1021/acs.molpharmaceut.2c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A reliable in vitro system can support and guide the development of subcutaneous (SC) drug products. Although several in vitro systems have been developed, they have some limitations, which may hinder them from getting more engaged in SC drug product development. This study sought to develop a novel in vitro system, namely, Emulator of SubCutaneous Absorption and Release (ESCAR), to better emulate the in vivo SC environment and predict the fate of drugs in SC delivery. ESCAR was designed using computer-aided design (CAD) software and fabricated using the three-dimensional (3D) printing technique. ESCAR has a design of two acceptor chambers representing the blood uptake pathway and the lymphatic uptake pathway, respectively, although only the blood uptake pathway was investigated for small molecules in this study. Via conducting a DoE factor screening study using acetaminophen solution, the relationship of the output (drug release from the "SC" chamber to the "blood circulation" chamber) and the input parameters could be modeled using a variety of methods, including polynomial equations, machine learning methods, and Monte Carlo simulation-based methods. The results suggested that the hyaluronic acid (HA) concentration was a critical parameter, whereas the influence of the injection volume and injection position was not substantial. An in vitro-in vivo correlation (IVIVC) study was developed using griseofulvin suspension to explore the feasibility of applying ESCAR in formulation development and bioequivalence studies. The developed LEVEL A IVIVC model demonstrated that the in vivo PK profile could be correlated with the in vitro release profile. Therefore, using this model, for new formulations, only in vitro studies need to be conducted in ESCAR, and in vivo studies might be waived. In conclusion, ESCAR had important implications for research and development and quality control of SC drug products. Future work would be focused on further optimizing ESCAR and expanding its applications via assessing more types of molecules and formulations.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas66047, United States
| | - Michael J. Hageman
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas66047, United States
| |
Collapse
|
20
|
Ullah A, Kwon HT, Lim SI. Albumin: A Multi-talented Clinical and Pharmaceutical Player. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Li D, Chen P, Dong Q, Liu B, Zhang W, Wei DQ, Guo B. Investigating the stabilisation of IFN-α2a by replica exchange molecular dynamics simulation. J Mol Model 2022; 28:232. [PMID: 35882698 DOI: 10.1007/s00894-022-05212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
Current biopharmaceutical drugs are mainly a class of peptides or proteins that play an essential role in the treatment of many diseases. Such peptides/proteins are usually thermally unstable and may lose their bioactivity when exposed to ambient conditions. Therefore, they are not suitable for long-term storage. Lyophilisation is the most common method to prolong shelf life of solid peptide/protein drugs; however, the freeze-drying process can lead to irreversible damage. In the present study, human interferon-alpha 2a (IFN-α2a) was selected as a model protein drug; four disaccharides (β-lactose, β-maltose, sucrose, and trehalose) were selected as bioactive protectants. We investigated the effects of different protectants on IFN-α2a under various ambient conditions (vacuum, dry state, and aqueous solution) using replica exchange molecular dynamics simulation. The protective effect of β-maltose on IFN-α2a was the highest in aqueous solution and dry state, β-lactose showed a poor protective effect in all three conditions, the performance of sucrose was good in all conditions, and trehalose showed a better protective effect under vacuum conditions and in aqueous solution. Disaccharides form H-bonds with water, thereby preventing water from the tertiary structure of proteins. Trehalose forms strong H-bonds with water which explains its extraordinary stability.
Collapse
Affiliation(s)
- Daixi Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China.
| | - Peiqin Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Qingli Dong
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Baolin Liu
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Wujie Zhang
- Physics and Chemistry Department, Milwaukee School of Engineering, Milwaukee, WI, 53202, USA
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center On Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Baisong Guo
- Injection Laboratory, Shanghai Tofflon Science and Technology Co, Ltd, Shanghai, 201108, China
| |
Collapse
|
22
|
Bi S, Li M, Liang Z, Li G, Yu G, Zhang J, Chen C, Yang C, Xue C, Zuo YY, Sun B. Self-assembled aluminum oxyhydroxide nanorices with superior suspension stability for vaccine adjuvant. J Colloid Interface Sci 2022; 627:238-246. [PMID: 35849857 DOI: 10.1016/j.jcis.2022.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
The suspension stability of aluminum-based adjuvant (Alum) plays an important role in determining the Alum-antigen interaction and vaccine efficacy. Inclusion of excipients has been shown to stabilize antigens in vaccine formulations. However, there is no mechanistic study to tune the characteristics of Alum for improved suspension stability. Herein, a library of self-assembled rice-shaped aluminum oxyhydroxide nanoadjuvants i.e., nanorices (NRs), was synthesized through intrinsically controlled crystallization and atomic coupling-mediated aggregations. The NRs exhibited superior suspension stability in both water and a saline buffer. After adsorbing hepatitis B surface antigen (HBsAg) virus-like particles (VLPs), human papillomavirus virus (HPV) VLPs, or bovine serum albumin, NR-antigen complexes exhibited less sedimentation. Further mechanistic study demonstrated that the improved suspension stability was due to intraparticle aggregations that led to the reduction of the surface free energy. By using HBsAg in a murine vaccination model, NRs with higher aspect ratios elicited more potent humoral immune responses. Our study demonstrated that engineered control of particle aggregation provides a novel material design strategy to improve suspension stability for a diversity of biomedical applications.
Collapse
Affiliation(s)
- Shisheng Bi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Jiarui Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Cheng Yang
- School of Chemistry, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
23
|
Guncheva M. Role of ionic liquids on stabilization of therapeutic proteins and model proteins. Protein J 2022; 41:369-380. [PMID: 35661292 DOI: 10.1007/s10930-022-10058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) exhibit potential as excipients to stabilize proteins in solutions. This mini-review is not a detailed reference book on ILs, rather a brief overview of the main achievements published in the literature on their effect on protein aggregation, unfolding, structural and thermal stability, and activity. The main focus of the manuscript is three widely studied groups of ionic liquids: imidazolium-, cholinium- and alkylammonium-based and their effect on the model and therapeutic proteins.
Collapse
Affiliation(s)
- Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 9, 1113, Sofia, Bulgaria.
| |
Collapse
|
24
|
Danielsen M, Hempel C, Andresen TL, Urquhart AJ. Biopharmaceutical nanoclusters: Towards the self-delivery of protein and peptide therapeutics. J Control Release 2022; 347:282-307. [PMID: 35513210 DOI: 10.1016/j.jconrel.2022.04.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022]
Abstract
Protein and peptide biopharmaceuticals have had a major impact on the treatment of a number of diseases. There is a growing interest in overcoming some of the challenges associated with biopharmaceuticals, such as rapid degradation in physiological fluid, using nanocarrier delivery systems. Biopharmaceutical nanoclusters (BNCs) where the therapeutic protein or peptide is clustered together to form the main constituent of the nanocarrier system have the potential to mimic the benefits of more established nanocarriers (e.g., liposomal and polymeric systems) whilst eliminating the issue of low drug loading and potential side effects from additives. These benefits would include enhanced stability, improved absorption, and increased biopharmaceutical activity. However, the successful development of BNCs is challenged by the physicochemical complexity of the protein and peptide constituents as well as the dynamics of clustering. Here, we present and discuss common methodologies for the synthesis of therapeutic protein and peptide nanoclusters, as well as review the current status of this emerging field.
Collapse
Affiliation(s)
- Mia Danielsen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Casper Hempel
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Andrew J Urquhart
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
25
|
Protic Ionic Liquid Cation Alkyl Chain Length Effect on Lysozyme Structure. Molecules 2022; 27:molecules27030984. [PMID: 35164252 PMCID: PMC8839406 DOI: 10.3390/molecules27030984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Solvents that stabilize protein structures can improve and expand their biochemical applications, particularly with the growing interest in biocatalytic-based processes. Aiming to select novel solvents for protein stabilization, we explored the effect of alkylammonium nitrate protic ionic liquids (PILs)-water mixtures with increasing cation alkyl chain length on lysozyme conformational stability. Four PILs were studied, that is, ethylammonium nitrate (EAN), butylammonium nitrate (BAN), hexylammonium nitrate (HAN), and octylammonium nitrate (OAN). The surface tension, viscosity, and density of PIL-water mixtures at low to high concentrations were firstly determined, which showed that an increasing cation alkyl chain length caused a decrease in the surface tension and density as well as an increase in viscosity for all PIL solutions. Small-angle X-ray scattering (SAXS) was used to investigate the liquid nanostructure of the PIL solutions, as well as the overall size, conformational flexibility and changes to lysozyme structure. The concentrated PILs with longer alkyl chain lengths, i.e., over 10 mol% butyl-, 5 mol% hexyl- and 1 mol% octylammonium cations, possessed liquid nanostructures. This detrimentally interfered with solvent subtraction, and the more structured PIL solutions prevented quantitative SAXS analysis of lysozyme structure. The radius of gyration (Rg) of lysozyme in the less structured aqueous PIL solutions showed little change with up to 10 mol% of PIL. Kratky plots, SREFLEX models, and FTIR data showed that the protein conformation was maintained at a low PIL concentration of 1 mol% and lower when compared with the buffer solution. However, 50 mol% EAN and 5 mol% HAN significantly increased the Rg of lysozyme, indicating unfolding and aggregation of lysozyme. The hydrophobic interaction and liquid nanostructure resulting from the increased cation alkyl chain length in HAN likely becomes critical. The impact of HAN and OAN, particularly at high concentrations, on lysozyme structure was further revealed by FTIR. This work highlights the negative effect of a long alkyl chain length and high concentration of PILs on lysozyme structural stability.
Collapse
|
26
|
Sorokina I, Mushegian AR, Koonin EV. Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process? Int J Mol Sci 2022; 23:521. [PMID: 35008947 PMCID: PMC8745595 DOI: 10.3390/ijms23010521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The prevailing current view of protein folding is the thermodynamic hypothesis, under which the native folded conformation of a protein corresponds to the global minimum of Gibbs free energy G. We question this concept and show that the empirical evidence behind the thermodynamic hypothesis of folding is far from strong. Furthermore, physical theory-based approaches to the prediction of protein folds and their folding pathways so far have invariably failed except for some very small proteins, despite decades of intensive theory development and the enormous increase of computer power. The recent spectacular successes in protein structure prediction owe to evolutionary modeling of amino acid sequence substitutions enhanced by deep learning methods, but even these breakthroughs provide no information on the protein folding mechanisms and pathways. We discuss an alternative view of protein folding, under which the native state of most proteins does not occupy the global free energy minimum, but rather, a local minimum on a fluctuating free energy landscape. We further argue that ΔG of folding is likely to be positive for the majority of proteins, which therefore fold into their native conformations only through interactions with the energy-dependent molecular machinery of living cells, in particular, the translation system and chaperones. Accordingly, protein folding should be modeled as it occurs in vivo, that is, as a non-equilibrium, active, energy-dependent process.
Collapse
Affiliation(s)
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, VA 22314, USA;
- Clare Hall College, University of Cambridge, Cambridge CB3 9AL, UK
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
27
|
Benedini L. Advanced protein drugs and formulations. Curr Protein Pept Sci 2021; 23:2-5. [PMID: 34895120 DOI: 10.2174/1389203722666211210115040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
For a long time, proteins were a subset of molecules rarely applied as therapeutically active molecules. Some of the first applications of proteins as drugs have been insulin and vaccines for supply a physiological deficiency and the prevention of diseases, respectively. Nowadays, proteins have increased their range of application, not only as drugs but also as drug delivery systems to be administered by different routes. Due to their nature, proteins show different behavior while the conditions of the environment are modified. For this reason, it has been necessary to study their behavior for predicting the correct manufacturing, storing, or combination with other possible molecules in a formulation or into the body. The application of techniques for predicting the behavior of proteins in different environments has led to associate this type of behavior into the body with the occurrence of diseases such as celiac disease or Alzheimer's disease. Thus, this work shows an overview of the main types of proteins applied as active therapeutically molecules, proteins-based drug delivery systems, and techniques for predicting their stability into the storing container and the body.
Collapse
Affiliation(s)
- Luciano Benedini
- CONICET-INQUISUR, Universidad Nacional del Sur, Bahía Blanca 8000. Argentina
| |
Collapse
|
28
|
Gilfanova R, Callegari A, Childs A, Yang G, Luarca M, Gutierrez AG, Medina KI, Mai J, Hui A, Kline M, Wei X, Norris PJ, Muench MO. A bioinspired and chemically defined alternative to dimethyl sulfoxide for the cryopreservation of human hematopoietic stem cells. Bone Marrow Transplant 2021; 56:2644-2650. [PMID: 34155359 PMCID: PMC8563414 DOI: 10.1038/s41409-021-01368-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023]
Abstract
The cryopreservation of hematopoietic cells using dimethyl sulfoxide (DMSO) and serum is a common procedure used in transplantation. However, DMSO has clinical and biological side effects due to its toxicity, and serum introduces variation and safety risks. Inspired by natural antifreeze proteins, a novel class of ice-interactive cryoprotectants was developed. The corresponding DMSO-, protein-, and serum-free cryopreservation media candidates were screened through a series of biological assays using human cell lines, peripheral blood cells, and bone marrow cells. XT-Thrive-A and XT-Thrive-B were identified as lead candidates to rival cryopreservation with 10% DMSO in serum based on post-thaw cell survival and short-term proliferation assays. The effectiveness of the novel cryopreservation media in freezing hematopoietic stem cells from human whole bone marrow was assessed by extreme limiting dilution analysis in immunodeficient mice. Stem cell frequencies were measured 12 weeks after transplant based on bone marrow engraftment of erythroid, myeloid, B-lymphoid, and CD34+ progenitors measured by flow cytometry. The recovered numbers of cryopreserved stem cells were similar among XT-Thrive A, XT-Thrive B, and DMSO with serum groups. These findings show that cryoprotectants developed through biomimicry of natural antifreeze proteins offers a substitute for DMSO-based media for the cryopreservation of hematopoietic stem cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Justin Mai
- Vitalant Research Institute, San Francisco, CA, USA
| | - Alvin Hui
- Vitalant Research Institute, San Francisco, CA, USA
| | | | | | - Philip J Norris
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Marcus O Muench
- Vitalant Research Institute, San Francisco, CA, USA.
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
29
|
Hirschman J, Venkataramani D, Murphy MI, Patel SM, Du J, Amin S. Application of thin gap rheometry for high shear rate viscosity measurement in monoclonal antibody formulations. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Das TK, Sreedhara A, Colandene JD, Chou DK, Filipe V, Grapentin C, Searles J, Christian TR, Narhi LO, Jiskoot W. Stress Factors in Protein Drug Product Manufacturing and Their Impact on Product Quality. J Pharm Sci 2021; 111:868-886. [PMID: 34563537 DOI: 10.1016/j.xphs.2021.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
Injectable protein-based medicinal products (drug products, or DPs) must be produced by using sterile manufacturing processes to ensure product safety. In DP manufacturing the protein drug substance, in a suitable final formulation, is combined with the desired primary packaging (e.g., syringe, cartridge, or vial) that guarantees product integrity and enables transportation, storage, handling and clinical administration. The protein DP is exposed to several stress conditions during each of the unit operations in DP manufacturing, some of which can be detrimental to product quality. For example, particles, aggregates and chemically-modified proteins can form during manufacturing, and excessive amounts of these undesired variants might cause an impact on potency or immunogenicity. Therefore, DP manufacturing process development should include identification of critical quality attributes (CQAs) and comprehensive risk assessment of potential protein modifications in process steps, and the relevant steps must be characterized and controlled. In this commentary article we focus on the major unit operations in protein DP manufacturing, and critically evaluate each process step for stress factors involved and their potential effects on DP CQAs. Moreover, we discuss the current industry trends for risk mitigation, process control including analytical monitoring, and recommendations for formulation and process development studies, including scaled-down runs.
Collapse
Affiliation(s)
- Tapan K Das
- Bristol Myers Squibb, Biologics Development, New Brunswick, New Jersey 08903, USA.
| | | | - James D Colandene
- GlaxoSmithKline, Biopharmaceutical Product Sciences, 1250 S Collegeville Road, Collegeville, PA 19425, USA
| | - Danny K Chou
- Compassion BioSolution, LLC, Lomita, CA 90717, USA
| | | | - Christoph Grapentin
- Lonza AG, Drug Product Services, Hochbergerstrasse 60G, 4057 Basel, Switzerland
| | - Jim Searles
- Pfizer Inc., Biotherapeutics Pharmaceutical Sciences Research and Development, 875 Chesterfield Pkwy W, Chesterfield, MO 63017 USA
| | | | | | - Wim Jiskoot
- Leiden University, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, the Netherlands; Coriolis Pharma, Martinsried, Germany
| |
Collapse
|
31
|
Kalayan J, Curtis RA, Warwicker J, Henchman RH. Thermodynamic Origin of Differential Excipient-Lysozyme Interactions. Front Mol Biosci 2021; 8:689400. [PMID: 34179093 PMCID: PMC8226134 DOI: 10.3389/fmolb.2021.689400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 01/15/2023] Open
Abstract
Understanding the intricate interplay of interactions between proteins, excipients, ions and water is important to achieve the effective purification and stable formulation of protein therapeutics. The free energy of lysozyme interacting with two kinds of polyanionic excipients, citrate and tripolyphosphate, together with sodium chloride and TRIS-buffer, are analysed in multiple-walker metadynamics simulations to understand why tripolyphosphate causes lysozyme to precipitate but citrate does not. The resulting multiscale decomposition of energy and entropy components for water, sodium chloride, excipients and lysozyme reveals that lysozyme is more stabilised by the interaction of tripolyphosphate with basic residues. This is accompanied by more sodium ions being released into solution from tripolyphosphate than for citrate, whilst the latter instead has more water molecules released into solution. Even though lysozyme aggregation is not directly probed in this study, these different mechanisms are suspected to drive the cross-linking between lysozyme molecules with vacant basic residues, ultimately leading to precipitation.
Collapse
Affiliation(s)
- Jas Kalayan
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.,Department of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Robin A Curtis
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.,Departments of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, United Kingdom
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.,Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.,Department of Chemistry, The University of Manchester, Manchester, United Kingdom.,Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Castro LS, Lobo GS, Pereira P, Freire MG, Neves MC, Pedro AQ. Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation. Vaccines (Basel) 2021; 9:328. [PMID: 33915863 PMCID: PMC8065594 DOI: 10.3390/vaccines9040328] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The advent of biopharmaceuticals in modern medicine brought enormous benefits to the treatment of numerous human diseases and improved the well-being of many people worldwide. First introduced in the market in the early 1980s, the number of approved biopharmaceutical products has been steadily increasing, with therapeutic proteins, antibodies, and their derivatives accounting for most of the generated revenues. The success of pharmaceutical biotechnology is closely linked with remarkable developments in DNA recombinant technology, which has enabled the production of proteins with high specificity. Among promising biopharmaceuticals are interferons, first described by Isaacs and Lindenmann in 1957 and approved for clinical use in humans nearly thirty years later. Interferons are secreted autocrine and paracrine proteins, which by regulating several biochemical pathways have a spectrum of clinical effectiveness against viral infections, malignant diseases, and multiple sclerosis. Given their relevance and sustained market share, this review provides an overview on the evolution of interferon manufacture, comprising their production, purification, and formulation stages. Remarkable developments achieved in the last decades are herein discussed in three main sections: (i) an upstream stage, including genetically engineered genes, vectors, and hosts, and optimization of culture conditions (culture media, induction temperature, type and concentration of inducer, induction regimens, and scale); (ii) a downstream stage, focusing on single- and multiple-step chromatography, and emerging alternatives (e.g., aqueous two-phase systems); and (iii) formulation and delivery, providing an overview of improved bioactivities and extended half-lives and targeted delivery to the site of action. This review ends with an outlook and foreseeable prospects for underdeveloped aspects of biopharma research involving human interferons.
Collapse
Affiliation(s)
- Leonor S. Castro
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Guilherme S. Lobo
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Patrícia Pereira
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal;
| | - Mara G. Freire
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Márcia C. Neves
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| | - Augusto Q. Pedro
- CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (L.S.C.); (G.S.L.); (M.G.F.)
| |
Collapse
|
33
|
Structural, Thermal, and Storage Stability of Rapana Thomasiana Hemocyanin in the Presence of Cholinium-Amino Acid-Based Ionic Liquids. Molecules 2021; 26:molecules26061714. [PMID: 33808584 PMCID: PMC8003507 DOI: 10.3390/molecules26061714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Novel biocompatible compounds that stabilize proteins in solution are in demand for biomedical and/or biotechnological applications. Here, we evaluated the effect of six ionic liquids, containing mono- or dicholinium [Chol]1or2 cation and anions of charged amino acids such as lysine [Lys], arginine [Arg], aspartic acid [Asp], or glutamic acid [Glu], on the structure, thermal, and storage stability of the Rapana thomasiana hemocyanin (RtH). RtH is a protein with huge biomedicinal potential due to its therapeutic, drug carrier, and adjuvant properties. Overall, the ionic liquids (ILs) induce changes in the secondary structure of RtH. However, the structure near the Cu-active site seems unaltered and the oxygen-binding capacity of the protein is preserved. The ILs showed weak antibacterial activity when tested against three Gram-negative and three Gram-positive bacterial strains. On the contrary, [Chol][Arg] and [Chol][Lys] exhibited high anti-biofilm activity against E. coli 25213 and S. aureus 29213 strains. In addition, the two ILs were able to protect RtH from chemical and microbiological degradation. Maintained or enhanced thermal stability of RtH was observed in the presence of all ILs tested, except for RtH-[Chol]2[Glu].
Collapse
|
34
|
Hall MP, Kincaid VA, Jost EA, Smith TP, Hurst R, Forsyth SK, Fitzgerald C, Ressler VT, Zimmermann K, Lazar D, Wood MG, Wood KV, Kirkland TA, Encell LP, Machleidt T, Dart ML. Toward a Point-of-Need Bioluminescence-Based Immunoassay Utilizing a Complete Shelf-Stable Reagent. Anal Chem 2021; 93:5177-5184. [PMID: 33730483 DOI: 10.1021/acs.analchem.0c05074] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme-linked immunosorbent assays (ELISAs) are used extensively for the detection and quantification of biomolecules in clinical diagnostics as well as in basic research. Although broadly used, the inherent complexities of ELISAs preclude their utility for straightforward point-of-need testing, where speed and simplicity are essential. With this in mind, we developed a bioluminescence-based immunoassay format that provides a sensitive and simple method for detecting biomolecules in clinical samples. We utilized a ternary, split-NanoLuc luciferase complementation reporter consisting of two small peptides (11mer, 13mer) and a 17 kDa polypeptide combined with a luminogenic substrate to create a complete, shelf-stable add-and-read assay detection reagent. Directed evolution was used to optimize reporter constituent sequences to impart chemical and thermal stability, as well as solubility, while formulation optimization was applied to stabilize an all-in-one reagent that can be reconstituted in aqueous buffers or sample matrices. The result of these efforts is a robust, first-generation bioluminescence-based homogenous immunoassay reporter platform where all assay components can be configured into a stable lyophilized cake, supporting homogeneous, rapid, and sensitive one-step biomolecule quantification in complex human samples. This technology represents a promising alternative immunoassay format with significant potential to bring critical diagnostic molecular detection testing closer to the point-of-need.
Collapse
Affiliation(s)
- Mary P Hall
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | - Emily A Jost
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Thomas P Smith
- Promega Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Robin Hurst
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | - Connor Fitzgerald
- Promega Biosciences LLC, San Luis Obispo, California 93401, United States
| | | | - Kris Zimmermann
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Dan Lazar
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Monika G Wood
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Keith V Wood
- Promega Corporation, Madison, Wisconsin 53711, United States
| | - Thomas A Kirkland
- Promega Biosciences LLC, San Luis Obispo, California 93401, United States
| | - Lance P Encell
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | - Melanie L Dart
- Promega Corporation, Madison, Wisconsin 53711, United States
| |
Collapse
|
35
|
Zheng Y, Pokorski JK. Hot melt extrusion: An emerging manufacturing method for slow and sustained protein delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1712. [PMID: 33691347 DOI: 10.1002/wnan.1712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
Abstract
With the rapid development of the biopharmaceutical industry, an increasing number of new therapeutic protein products (TPPs) have been approved by the FDA and many others are under pre-clinical and clinical evaluation. A major limitation of biopharmaceuticals is their limited half-life when administered systemically. A one-time, implantable, sustained protein delivery device would be advantageous in order to improve the quality of life of patients. Hot melt extrusion (HME) is a mature technology that has been extensively used for a broad spectrum of applications in the polymer and pharmaceutical industry and has achieved success as evidenced by a variety of FDA-approved commercial products. These commercial products are mostly for sustained delivery of small molecule therapeutics, leaving a significant gap for HME formulation of therapeutic proteins. With the increasing need of sustained TPP delivery, HME shows promise as a downstream processing method due to its high efficiency and economic value. Several challenges remain for the application of HME in protein delivery. Progress of HME for protein delivery, challenges encountered, and potential solutions will be detailed in this review article. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Yi Zheng
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
36
|
Santra S, Dhurua S, Jana M. Analyzing the driving forces of insulin stability in the basic amino acid solutions: A perspective from hydration dynamics. J Chem Phys 2021; 154:084901. [PMID: 33639734 DOI: 10.1063/5.0038305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amino acids having basic side chains, as additives, are known to increase the stability of native-folded state of proteins, but their relative efficiency and the molecular mechanism are still controversial and obscure as well. In the present work, extensive atomistic molecular dynamics simulations were performed to investigate the hydration properties of aqueous solutions of concentrated arginine, histidine, and lysine and their comparative efficiency on regulating the conformational stability of the insulin monomer. We identified that in the aqueous solutions of the free amino acids, the nonuniform relaxation of amino acid-water hydrogen bonds was due to the entrapment of water molecules within the amino acid clusters formed in solutions. Insulin, when tested with these solutions, was found to show rigid conformations, relative to that in pure water. We observed that while the salt bridges formed by the lysine as an additive contributed more toward the direct interactions with insulin, the cation-π was more prominent for the insulin-arginine interactions. Importantly, it was observed that the preferentially more excluded arginine, compared to histidine and lysine from the insulin surface, enriches the hydration layer of the protein. Our study reveals that the loss of configurational entropy of insulin in arginine solution, as compared to that in pure water, is more as compared to the entropy loss in the other two amino acid solutions, which, moreover, was found to be due to the presence of motionally bound less entropic hydration water of insulin in arginine solution than in histidine or lysine solution.
Collapse
Affiliation(s)
- Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Shakuntala Dhurua
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
37
|
The Impact of Product and Process Related Critical Quality Attributes on Immunogenicity and Adverse Immunological Effects of Biotherapeutics. J Pharm Sci 2020; 110:1025-1041. [PMID: 33316242 DOI: 10.1016/j.xphs.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
The pharmaceutical industry has experienced great successes with protein therapeutics in the last two decades and with novel modalities, including cell therapies and gene therapies, more recently. Biotherapeutics are complex in structure and present challenges for discovery, development, regulatory, and life cycle management. Biotherapeutics can interact with the immune system that may lead to undesired immunological responses, including immunogenicity, hypersensitivity reactions (HSR), injection site reactions (ISR), and others. Many product and process related critical quality attributes (CQAs) have the potential to trigger or augment such immunological responses to the product. Tremendous efforts, both clinically and preclinically, have been invested to understand the impact of product and process related CQAs on adverse immunological effects. The information and knowledge are critical for the implementation of Quality by Design (QbD), which requires risk assessment and establishment of specifications and control strategies for CQAs. A quality target product profile (QTPP) that identifies the key CQAs through process development can help assign severity scores based on safety, immunogenicity, pharmacokinetics (PK) and pharmacodynamics (PD) of the molecule. Gaps and future directions related to biotherapeutics and emerging novel modalities are presented.
Collapse
|
38
|
Butreddy A, Janga KY, Ajjarapu S, Sarabu S, Dudhipala N. Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins. Int J Biol Macromol 2020; 167:309-325. [PMID: 33275971 DOI: 10.1016/j.ijbiomac.2020.11.188] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/06/2023]
Abstract
Solid-state is the preferred choice for storage of protein therapeutics to improve stability and preserve the biological activity by decreasing the physical and chemical degradation associated with liquid protein formulations. Lyophilization or freeze-drying is an effective drying method to overcome the instability problems of proteins. However, the processing steps (freezing, primary drying and secondary drying) involved in the lyophilization process can expose the proteins to various stress and harsh conditions, leading to denaturation, aggregation often a loss in activity of protein therapeutics. Stabilizers such as sugars and surfactants are often added to protect the proteins against physical stress associated with lyophilization process and storage conditions. Another way to curtail the degradation of proteins due to process related stress is by modification of the lyophilization process. Slow freezing, high nucleation temperature, decreasing the extent of supercooling, and annealing can minimize the formation of the interface (ice-water) by producing large ice crystals with less surface area, thereby preserving the native structure and stability of the proteins. Hence, a thorough understanding of formulation composition, lyophilization process parameters and the choice of analytical methods to characterize and monitor the protein instability is crucial for development of stable therapeutic protein products. This review provides an overview of various stress conditions that proteins might encounter during lyophilization process, mechanisms to improve the stability and analytical techniques to tackle the proteins instability during both freeze-drying and storage.
Collapse
Affiliation(s)
- Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Shameerpet, Hyderabad, Telangana State 500078, India; Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Karthik Yadav Janga
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Srinivas Ajjarapu
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sandeep Sarabu
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India
| | - Narendar Dudhipala
- Laboratory of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State 506009, India; Department of Pharmaceutics, Vaagdevi College of Pharmacy, Warangal, Telangana State 506 005, India..
| |
Collapse
|
39
|
Tomeh MA, Zhao X. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems. Mol Pharm 2020; 17:4421-4434. [PMID: 33213144 DOI: 10.1021/acs.molpharmaceut.0c00913] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug delivery systems (DDSs) have great potential for improving the treatment of several diseases, especially microbial infections and cancers. However, the formulation procedures of DDSs remain challenging, especially at the nanoscale. Reducing batch-to-batch variation and enhancing production rate are some of the essential requirements for accelerating the translation of DDSs from a small scale to an industrial level. Microfluidic technologies have emerged as an alternative to the conventional bench methods to address these issues. By providing precise control over the fluid flows and rapid mixing, microfluidic systems can be used to fabricate and engineer different types of DDSs with specific properties for efficient delivery of a wide range of drugs and genetic materials. This review discusses the principles of controlled rapid mixing that have been employed in different microfluidic strategies for producing DDSs. Moreover, the impact of the microfluidic device design and parameters on the type and properties of DDS formulations was assessed, and recent applications in drug and gene delivery were also considered.
Collapse
Affiliation(s)
- Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom.,School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
40
|
Somani S, Jo S, Thirumangalathu R, Rodrigues D, Tanenbaum LM, Amin K, MacKerell AD, Thakkar SV. Toward Biotherapeutics Formulation Composition Engineering using Site-Identification by Ligand Competitive Saturation (SILCS). J Pharm Sci 2020; 110:1103-1110. [PMID: 33137372 DOI: 10.1016/j.xphs.2020.10.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Formulation of protein-based therapeutics employ advanced formulation and analytical technologies for screening various parameters such as buffer, pH, and excipients. At a molecular level, physico-chemical properties of a protein formulation depend on self-interaction between protein molecules, protein-solvent and protein-excipient interactions. This work describes a novel in silico approach, SILCS-Biologics, for structure-based modeling of protein formulations. SILCS Biologics is based on the Site-Identification by Ligand Competitive Saturation (SILCS) technology and enables modeling of interactions among different components of a formulation at an atomistic level while accounting for protein flexibility. It predicts potential hotspot regions on the protein surface for protein-protein and protein-excipient interactions. Here we apply SILCS-Biologics on a Fab domain of a monoclonal antibody (mAbN) to model Fab-Fab interactions and interactions with three amino acid excipients, namely, arginine HCl, proline and lysine HCl. Experiments on 100 mg/ml formulations of mAbN showed that arginine increased, lysine reduced, and proline did not impact viscosity. We use SILCS-Biologics modeling to explore a structure-based hypothesis for the viscosity modulating effect of these excipients. Current efforts are aimed at further validation of this novel computational framework and expanding the scope to model full mAb and other protein therapeutics.
Collapse
Affiliation(s)
- Sandeep Somani
- Discovery Sciences, Janssen Research and Development (Janssen R&D), Spring House, PA 19477, USA
| | | | - Renuka Thirumangalathu
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Danika Rodrigues
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Laura M Tanenbaum
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Ketan Amin
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA
| | - Alexander D MacKerell
- SilcsBio LLC, Baltimore, MD 21202, USA; Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA.
| | - Santosh V Thakkar
- BioTherapeutics Drug Product Development (BioTD DPD), Janssen Research and Development (Janssen R&D), Malvern, PA 19355, USA; BioTherapeutics Cell and Developability Sciences (BioTD CDS), Janssen Research and Development (Janssen R&D), Spring House, PA 19477, USA.
| |
Collapse
|
41
|
Darriba ML, Cerutti ML, Bruno L, Cassataro J, Pasquevich KA. Stability Studies of the Vaccine Adjuvant U-Omp19. J Pharm Sci 2020; 110:707-718. [PMID: 33058898 PMCID: PMC7815325 DOI: 10.1016/j.xphs.2020.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 01/18/2023]
Abstract
Unlipidated outer membrane protein 19 (U-Omp19) is a novel mucosal adjuvant in preclinical development to be used in vaccine formulations. U-Omp19 holds two main properties, it is capable of inhibiting gastrointestinal and lysosomal peptidases, increasing the amount of co-administered antigen that reaches the immune inductive sites and its half-life inside cells, and it is able to stimulate antigen presenting cells in vivo. These activities enable U-Omp19 to enhance the adaptive immune response to co-administrated antigens. To characterize the stability of U-Omp19 we have performed an extensive analysis of its physicochemical and biological properties in a 3-year long-term stability study, and under potentially damaging freeze-thawing and lyophilization stress processes. Results revealed that U-Omp19 retains its full protease inhibitor activity, its monomeric state and its secondary structure even when stored in solution for 36 months or after multiple freeze-thawing cycles. Non-enzymatic hydrolysis resulted the major degradation pathway for storage in solution at 4 °C or room temperature which can be abrogated by lyophilization yet increasing protein tendency to form aggregates. This information will play a key role in the development of a stable formulation of U-Omp19, allowing an extended shelf-life during manufacturing, storage, and shipping of a future vaccine containing this pioneering adjuvant.
Collapse
Affiliation(s)
- M Laura Darriba
- Instituto de Investigaciones Biotecnológicas (UNSAM-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - María L Cerutti
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.
| | - Laura Bruno
- Instituto de Investigaciones Biotecnológicas (UNSAM-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas (UNSAM-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Karina A Pasquevich
- Instituto de Investigaciones Biotecnológicas (UNSAM-CONICET), Universidad Nacional de San Martín, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Zhang Y, Zhang H, Ghosh D, Williams RO. Just how prevalent are peptide therapeutic products? A critical review. Int J Pharm 2020; 587:119491. [PMID: 32622810 PMCID: PMC10655677 DOI: 10.1016/j.ijpharm.2020.119491] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
Abstract
How prevalent are peptide therapeutic products? How innovative are the formulations used to deliver peptides? This review provides a critical analysis of therapeutic peptide products and the formulations approved by the United States Food and Drug administration (FDA), the European Medicines Agency (EMA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). This review also provides an in-depth analysis of dosage forms and administration routes for delivering peptide therapeutics, including injectables, oral dosage forms, and other routes of administration. We discuss the function of excipients in parenteral formulations in detail, since most peptide therapeutics are parenterally administered. We provide case studies of alternate delivery routes and dosage forms. Based on our analysis, therapeutic peptides administered as injectables remain the most commonly used dosage forms, particularly in the form of subcutaneous, intravenous, or intramuscular injections. In addition, therapeutic peptides are formulated to achieve prolonged release, often through the use of polymer carriers. The limited number of oral therapeutic peptide products and their poor absorption and subsequent low bioavailability indicate a need for new technologies to broaden the formulation design space. Therapeutic peptide products may also be delivered through other administration routes, including intranasal, implant, and sublingual routes. Therefore, an in-depth understanding of how therapeutic peptides are now formulated and administered is essential to improve peptide delivery, improve patient compliance, and reduce the healthcare burden for these crucial therapeutic agents.
Collapse
Affiliation(s)
- Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Hairui Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
43
|
Deokar V, Sharma A, Mody R, Volety SM. Comparison of Strategies in Development and Manufacturing of Low Viscosity, Ultra-High Concentration Formulation for IgG1 Antibody. J Pharm Sci 2020; 109:3579-3589. [PMID: 32946895 PMCID: PMC7491461 DOI: 10.1016/j.xphs.2020.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/26/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies requiring higher doses for exerting therapeutic effect but having lower stability, are administered as dilute infusions, or as two (low concentration) injections both resulting in reduced patient compliance. Present research summarizes impact of manufacturing conditions on ultra-high concentration (≥150 mg/mL) IgG1 formulation, which can be administered as one subcutaneous injection. IgG1 was concentrated to ~200 mg/mL using tangential flow filtration (TFF). Alternatively, spray dried (SPD) and spray freeze dried (SFD) IgG1, was reconstituted in 30%v/v propylene glycol to form ultra-high concentration (~200 mg/mL) injectable formulation. Reconstituted, SPD and SFD IgG1 formulations, increased viscosity beyond an acceptable range for subcutaneous injections (<20 cP). Formulations developed by reconstitution of SPD IgG1, demonstrated increase in high and low molecular weight impurities, at accelerated and stressed conditions. Whereas, the stability data suggested reconstituted SFD IgG1 was comparable to control IgG1 formulation concentrated by TFF. Also, formulation of IgG1 diafiltered with proline using TFF, reduce viscosity from ~21.9 cP to ~11 cP at 25 °C and had better stability. Thus, conventional TFF technique stands to be one of the preferred methods for manufacturing of ultra-high concentration IgG1 formulations. Additionally, SFD could be an alternative method for long term storage of IgG1 in a dry powder state.
Collapse
Affiliation(s)
- Vaibhav Deokar
- Lupin Limited (Biotechnology Division), A-401, G.O. Square Mall, Sr. No. 249/50, Wakad, Pune 411057, India.
| | - Alok Sharma
- Lupin Limited (Biotechnology Division), A-401, G.O. Square Mall, Sr. No. 249/50, Wakad, Pune 411057, India
| | - Rustom Mody
- Lupin Limited (Biotechnology Division), A-401, G.O. Square Mall, Sr. No. 249/50, Wakad, Pune 411057, India
| | - Subrahmanyam M Volety
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (Deemed University), Manipal 576104, Karnataka, India
| |
Collapse
|
44
|
Kumar M, Pant A, Bansal R, Pandey A, Gomes J, Khare K, Singh Rathore A, Banerjee M. Electron microscopy-based semi-automated characterization of aggregation in monoclonal antibody products. Comput Struct Biotechnol J 2020; 18:1458-1465. [PMID: 32637043 PMCID: PMC7327430 DOI: 10.1016/j.csbj.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
Size-based quantification of small heterogeneous proteins using electron microscopy. Electron microscopy as an orthogonal tool for characterizing protein aggregates. Quick assessment of small heterogeneous proteins via softEM, a GUI-based algorithm.
Aggregation is a critical parameter for protein-based therapeutics, due to its impact on the immunogenicity of the product. The traditional approach towards characterization of such products is to use a collection of orthogonal tools. However, the fact that none of these tools is able to completely classify the distribution and physical characteristics of aggregates, implies that there exists a need for additional analytical methods. We report one such method for characterization of heterogeneous population of proteins using transmission electron microscopy. The method involves semi-automated, size-based clustering of different protein species from micrographs. This method can be utilized for quantitative characterization of heterogeneous populations of antibody/protein aggregates from TEM images of proteins, and may also be applicable towards other instances of protein aggregation.
Collapse
Key Words
- Aggregation
- Antibodies
- CD, Circular Dichroism
- Connected component labelling
- DLS, Dynamic Light Scattering
- DPBS, Dulbecco's phosphate-buffered saline
- EM, Electron Microscopy
- Electron microscopy
- FEG, field emission electron gun
- GUI, Graphical User Interface
- HDX-MS, Hydrogen Deuterium Exchange Mass Spectroscopy
- Heterogeneity
- MS, Mass Spectroscopy
- SEC, Size Exclusion Chromatography
- SEC-MALS, Size Exclusion Chromatography Multi Angle Light Scattering
- TEM, Transmission Electron Microscopy
- TV, Total Variation
- UV, Ultra Violet
- mAb, monoclonal Antibody
Collapse
Affiliation(s)
- Mohit Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi 110016, India
| | - Apoorv Pant
- Department of Physics, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi 110016, India
| | - Rohit Bansal
- Department of Chemical Engineering, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashutosh Pandey
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi 110016, India
| | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi 110016, India
| | - Kedar Khare
- Department of Physics, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag Singh Rathore
- Department of Chemical Engineering, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi 110016, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology - Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
45
|
Pohl C, Zalar M, Bialy IE, Indrakumar S, Peters GHJ, Friess W, Golovanov AP, Streicher WW, Noergaard A, Harris P. The Effect of Point Mutations on the Biophysical Properties of an Antimicrobial Peptide: Development of a Screening Protocol for Peptide Stability Screening. Mol Pharm 2020; 17:3298-3313. [DOI: 10.1021/acs.molpharmaceut.0c00406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christin Pohl
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens, Lyngby, Denmark
| | - Matja Zalar
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Inas El Bialy
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, 81377 Muenchen, Germany
| | - Sowmya Indrakumar
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens, Lyngby, Denmark
| | - Günther H. J. Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens, Lyngby, Denmark
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5, 81377 Muenchen, Germany
| | - Alexander P. Golovanov
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | | | | | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
46
|
Willis LF, Kumar A, Jain T, Caffry I, Xu Y, Radford SE, Kapur N, Vásquez M, Brockwell DJ. The uniqueness of flow in probing the aggregation behavior of clinically relevant antibodies. ENGINEERING REPORTS : OPEN ACCESS 2020; 2:e12147. [PMID: 34901768 PMCID: PMC8638667 DOI: 10.1002/eng2.12147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
The development of therapeutic monoclonal antibodies (mAbs) can be hindered by their tendency to aggregate throughout their lifetime, which can illicit immunogenic responses and render mAb manufacturing unfeasible. Consequently, there is a need to identify mAbs with desirable thermodynamic stability, solubility, and lack of self-association. These behaviors are assessed using an array of in silico and in vitro assays, as no single assay can predict aggregation and developability. We have developed an extensional and shear flow device (EFD), which subjects proteins to defined hydrodynamic forces which mimic those experienced in bioprocessing. Here, we utilize the EFD to explore the aggregation propensity of 33 IgG1 mAbs, whose variable domains are derived from clinical antibodies. Using submilligram quantities of material per replicate, wide-ranging EFD-induced aggregation (9-81% protein in pellet) was observed for these mAbs, highlighting the EFD as a sensitive method to assess aggregation propensity. By comparing the EFD-induced aggregation data to those obtained previously from 12 other biophysical assays, we show that the EFD provides distinct information compared with current measures of adverse biophysical behavior. Assessing a candidate's liability to hydrodynamic force thus adds novel insight into the rational selection of developable mAbs that complements other assays.
Collapse
Affiliation(s)
- Leon F. Willis
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| | - Amit Kumar
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
- Department of Life SciencesImperial College LondonLondonUK
| | | | - Isabelle Caffry
- Adimab LLCLebanonNew HampshireUSA
- Cornell Johnson Graduate School of ManagementIthacaNew YorkUSA
| | - Yingda Xu
- Adimab LLCLebanonNew HampshireUSA
- Biotheus Inc.ZhuhaiGuangdong ProvinceChina
| | - Sheena E. Radford
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| | - Nikil Kapur
- School of Mechanical Engineering, Faculty of EngineeringUniversity of LeedsLeedsUK
| | | | - David J. Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
| |
Collapse
|
47
|
Binding of excipients is a poor predictor for aggregation kinetics of biopharmaceutical proteins. Eur J Pharm Biopharm 2020; 151:127-136. [PMID: 32283214 DOI: 10.1016/j.ejpb.2020.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
One of the major challenges in formulation development of biopharmaceuticals is improving long-term storage stability, which is often achieved by addition of excipients to the final formulation. Finding the optimal excipient for a given protein is usually done using a trial-and-error approach, due to the lack of general understanding of how excipients work for a particular protein. Previously, preferential interactions (binding or exclusion) of excipients with proteins were postulated as a mechanism explaining diversity in the stabilisation effects. Weak preferential binding is however difficult to quantify experimentally, and the question remains whether the formulation process should seek excipients which preferentially bind with proteins, or not. Here, we apply solution NMR spectroscopy to comprehensively evaluate protein-excipient interactions between therapeutically relevant proteins and commonly used excipients. Additionally, we evaluate the effect of excipients on thermal and colloidal protein stability, on aggregation kinetics and protein storage stability at elevated temperatures. We show that there is a weak negative correlation between the strength of protein-excipient interactions and effect on enhancing protein thermal stability. We found that the overall protein-excipient binding per se can be a poor criterion for choosing excipients enhancing formulation stability. Experiments on a diverse set of excipients and test proteins reveal that while excipients affect all of the different aspects of protein stability, the effects are very much protein specific, and care must be taken to avoid apparent generalisations if a smaller dataset is being used.
Collapse
|
48
|
The Physiological Effects of Amino Acids Arginine and Citrulline: Is There a Basis for Development of a Beverage to Promote Endurance Performance? A Narrative Review of Orally Administered Supplements. BEVERAGES 2020. [DOI: 10.3390/beverages6010011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nutritional and ergogenic aid supplementation is prevalent within athletic or general fitness populations, and is only continuing to gain momentum. Taken in isolation or as a combination, amino acid (AA) supplementation has the potential to increase endurance performance among other benefits. L-Arginine (L-Arg) and L-Citrulline (L-Cit) are two AAs proposed to increase endothelial nitric oxide (NO) synthesis, with potential additional physiological benefits, and therefore may contribute to enhanced performance outcomes such as increased power output, or time to exhaustion. However, the appropriate dose for promoting physiological and performance benefits of these AAs, and their potential synergistic effects remains to be determined. Therefore, the aim of this review was to evaluate the varied concentrations used in the current literature, assess the effects of L-Arg and L-Cit in combination on physiological responses and endurance performance, and consider if there is a fundamental basis for providing these supplements in the form of a beverage. A total of six studies were considered eligible for the review which utilized a range of 3–8 g of the AA constituents. The findings support the notion that supplementing with a combination of L-Arg and L-Cit may increase NO production, enhance vasodilation, and therefore increase performance capacity in athletes. A beverage as a carrier for the two AAs is worth considering; however, there remains limited research assessing these outcomes across a consistent range of concentrations in order to see their full potential.
Collapse
|
49
|
Excipients in freeze-dried biopharmaceuticals: Contributions toward formulation stability and lyophilisation cycle optimisation. Int J Pharm 2020; 576:119029. [DOI: 10.1016/j.ijpharm.2020.119029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/08/2023]
|
50
|
Edwards JM, Harris P, Bukrinski JT, Golovanov AP. Use of 19 F Differential Labelling for the Simultaneous Detection and Monitoring of Three Individual Proteins in a Serum Environment. Chempluschem 2020; 84:443-446. [PMID: 31943902 DOI: 10.1002/cplu.201900110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/14/2019] [Indexed: 11/12/2022]
Abstract
Protein behavior in complex mixtures, such as biological fluids, is often modeled by simplified buffer systems in solution. Here we have used the recently described differential 19 F labelling approach (with NMR detection) to monitor and compare the solution behaviour of three proteins at once: human serum albumin (HSA), transferrin (TrF), and immunoglobulin G (IgG), both in serum and in buffer. We demonstrate that monitoring three proteins simultaneously and independently in biological fluid is possible, and that the presence of other endogenous components greatly changes the association characteristics of these proteins. For example, in the simplified model buffer system, all three proteins diffuse at a similar rate, while in serum HSA diffuses around three times faster than TrF, and four times faster than IgG. This 19 F NMR approach allows characterization of the behaviour of complex multiprotein systems in their native environment, e. g., in biological fluids.
Collapse
Affiliation(s)
- John M Edwards
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Pernille Harris
- DTU Chemistry, Technical University of Denmark Building 207, 2800, Kgs. Lyngby, Denmark
| | | | - Alexander P Golovanov
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|