1
|
Das D, Ainavarapu SRK. Protein engineering using circular permutation - structure, function, stability, and applications. FEBS J 2024; 291:3581-3596. [PMID: 38676939 DOI: 10.1111/febs.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Protein engineering is important for creating novel variants from natural proteins, enabling a wide range of applications. Approaches such as rational design and directed evolution are routinely used to make new protein variants. Computational tools like de novo design can introduce new protein folds. Expanding the amino acid repertoire to include unnatural amino acids with non-canonical side chains in vitro by native chemical ligation and in vivo via codon expansion methods broadens sequence and structural possibilities. Circular permutation (CP) is an invaluable approach to redesigning a protein by rearranging the amino acid sequence, where the connectivity of the secondary structural elements is altered without changing the overall structure of the protein. Artificial CP proteins (CPs) are employed in various applications such as biocatalysis, sensing of small molecules by fluorescence, genome editing, ligand-binding protein switches, and optogenetic engineering. Many studies have shown that CP can lead to either reduced or enhanced stability or catalytic efficiency. The effects of CP on a protein's energy landscape cannot be predicted a priori. Thus, it is important to understand how CP can affect the thermodynamic and kinetic stability of a protein. In this review, we discuss the discovery and advancement of techniques to create protein CP, and existing reviews on CP. We delve into the plethora of biological applications for designed CP proteins. We subsequently discuss the experimental and computational reports on the effects of CP on the thermodynamic and kinetic stabilities of proteins of various topologies. An understanding of the various aspects of CP will allow the reader to design robust CP proteins for their specific purposes.
Collapse
Affiliation(s)
- Debanjana Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | |
Collapse
|
2
|
Das D, Ainavarapu SRK. Circular permutation at azurin's active site slows down its folding. J Biol Inorg Chem 2023; 28:737-749. [PMID: 37957357 DOI: 10.1007/s00775-023-02023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Circular permutation (CP) is a technique by which the primary sequence of a protein is rearranged to create new termini. The connectivity of the protein is altered but the overall protein structure generally remains unperturbed. Understanding the effect of CP can help design robust proteins for numerous applications such as in genetic engineering, optoelectronics, and improving catalytic activity. Studies on different protein topologies showed that CP usually affects protein stability as well as unfolding rates. Though a significant number of proteins contain metals or other cofactors, reports of metalloprotein CPs are rare. Thus, we chose a bacterial metalloprotein, azurin, and its CP within the metal-binding site (cpF114). We studied the stabilities, folding, and unfolding rates of apo- and Zn2+-bound CP azurin using fluorescence and circular dichroism. The introduced CP had destabilizing effects on the protein. Also, the folding of the Zn2+-CP protein was much slower than that of the Zn2+-WT or apo-protein. We compared this study to our previously reported azurin-cpN42, where we had observed an equilibrium and kinetic intermediate. cpF114 exhibits an apparent two-state equilibrium unfolding but has an off-pathway kinetic intermediate. Our study hinted at CP as a method to modify the energy landscape of proteins to alter their folding pathways. WT azurin, being a faster folder, may have evolved to optimize the folding rate of metal-bound protein compared to its CPs, albeit all of them have the same structure and function. Our study underscores that protein sequence and protein termini positions are crucial for metalloproteins. TOC Figure. (Top) Zn2+-azurin WT structure (PDB code: 1E67) and 2-D topology diagram of Zn2+-cpF114 azurin. (Bottom) Cartoon diagram representing folding (red arrows) and unfolding (blue arrows) of apo- and Zn2+- WT and cpF114 azurins. The width of the arrows represents the rate of the corresponding processes.
Collapse
Affiliation(s)
- Debanjana Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai, 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai, 400005, India.
| |
Collapse
|
3
|
Das D, Yadav P, Mitra S, Ainavarapu SRK. Metal-binding and circular permutation-dependent thermodynamic and kinetic stability of azurin. Proteins 2023; 91:634-648. [PMID: 36511110 DOI: 10.1002/prot.26454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Native topology is known to determine the folding kinetics and the energy landscape of proteins. Furthermore, the circular permutation (CP) of proteins alters the order of the secondary structure connectivity while retaining the three-dimensional structure, making it an elegant and powerful approach to altering native topology. Previous studies elucidated the influence of CP in proteins with different folds such as Greek key β-barrel, β-sandwich, β-α-β, and all α-Greek key. CP mainly affects the protein stability and unfolding kinetics, while folding kinetics remains mostly unaltered. However, the effect of CP on metalloproteins is yet to be elaborately studied. The active site of metalloproteins poses an additional complexity in studying protein folding. Here, we investigate a CP variant (cpN42) of azurin-in both metal-free and metal-bound (holo) forms. As observed earlier in other proteins, apo-forms of wild-type (WT) and cpN42 fold with similar rates. In contrast, zinc-binding accelerates the folding of WT but decelerates the folding of cpN42. On zinc-binding, the spontaneous folding rate of WT increases by >250 times that of cpN42, which is unprecedented and the highest for any CP to date. On the other hand, zinc-binding reduces the spontaneous unfolding rate of cpN42 by ~100 times, making the WT and CP azurins unfold at similar rates. Our study demonstrates metal binding as a novel way to modulate the unfolding and folding rates of CPs compared to their WT counterparts. We hope our study increases the understanding of the effect of CP on the folding mechanism and energy landscape of metalloproteins.
Collapse
Affiliation(s)
- Debanjana Das
- Department of Chemical Sciences, Dr. Homi Bhabha Road, Colaba, Tata Institute of Fundamental Research, Mumbai, India
| | - Priya Yadav
- Department of Chemical Sciences, Dr. Homi Bhabha Road, Colaba, Tata Institute of Fundamental Research, Mumbai, India
| | - Soumyajit Mitra
- Department of Chemical Sciences, Dr. Homi Bhabha Road, Colaba, Tata Institute of Fundamental Research, Mumbai, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Dr. Homi Bhabha Road, Colaba, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
4
|
Guo Z, Parakra RD, Xiong Y, Johnston WA, Walden P, Edwardraja S, Moradi SV, Ungerer JPJ, Ai HW, Phillips JJ, Alexandrov K. Engineering and exploiting synthetic allostery of NanoLuc luciferase. Nat Commun 2022; 13:789. [PMID: 35145068 PMCID: PMC8831504 DOI: 10.1038/s41467-022-28425-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Allostery enables proteins to interconvert different biochemical signals and form complex metabolic and signaling networks. We hypothesize that circular permutation of proteins increases the probability of functional coupling of new N- and C- termini with the protein's active center through increased local structural disorder. To test this we construct a synthetically allosteric version of circular permutated NanoLuc luciferase that can be activated through ligand-induced intramolecular non-covalent cyclisation. This switch module is tolerant of the structure of binding domains and their ligands, and can be used to create biosensors of proteins and small molecules. The developed biosensors covers a range of emission wavelengths and displays sensitivity as low as 50pM and dynamic range as high as 16-fold and could quantify their cognate ligand in human fluids. We apply hydrogen exchange kinetic mass spectroscopy to analyze time resolved structural changes in the developed biosensors and observe ligand-mediated folding of newly created termini.
Collapse
Affiliation(s)
- Zhong Guo
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Rinky D Parakra
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Ying Xiong
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Wayne A Johnston
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Patricia Walden
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shayli Varasteh Moradi
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Jacobus P J Ungerer
- Department of Chemical Pathology, Pathology Queensland, Brisbane, QLD, 4001, Australia
- Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Jonathan J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
- Alan Turing Institute, British Library 96, Euston road, London, NW1 2DB, UK.
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
5
|
Investigating the Effect of Chain Connectivity on the Folding of a Beta-Sheet Protein On and Off the Ribosome. J Mol Biol 2018; 430:5207-5216. [PMID: 30365950 PMCID: PMC6288478 DOI: 10.1016/j.jmb.2018.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/11/2018] [Accepted: 10/16/2018] [Indexed: 11/21/2022]
Abstract
Determining the relationship between protein folding pathways on and off the ribosome remains an important area of investigation in biology. Studies on isolated domains have shown that alteration of the separation of residues in a polypeptide chain, while maintaining their spatial contacts, may affect protein stability and folding pathway. Due to the vectorial emergence of the polypeptide chain from the ribosome, chain connectivity may have an important influence upon cotranslational folding. Using MATH, an all β-sandwich domain, we investigate whether the connectivity of residues and secondary structure elements is a key determinant of when cotranslational folding can occur on the ribosome. From Φ-value analysis, we show that the most structured region of the transition state for folding in MATH includes the N and C terminal strands, which are located adjacent to each other in the structure. However, arrest peptide force-profile assays show that wild-type MATH is able to fold cotranslationally, while some C-terminal residues remain sequestered in the ribosome, even when destabilized by 2–3 kcal mol−1. We show that, while this pattern of Φ-values is retained in two circular permutants in our studies of the isolated domains, one of these permutants can fold only when fully emerged from the ribosome. We propose that in the case of MATH, onset of cotranslational folding is determined by the ability to form a sufficiently stable folding nucleus involving both β-sheets, rather than by the location of the terminal strands in the ribosome tunnel. Adjacent N and C terminal strands are most structured region in the transition state. Two circular permutants retain the same folding pathway as wild-type MATH. On the ribosome, early emergence of terminal strands does not promote earlier folding. Formation of both β-sheets is energetically critical for folding on the ribosome. Folding pathway minimizes formation of partly structured states prone to mis-folding.
Collapse
|