1
|
Childers MC, Geeves MA, Regnier M. Interacting myosin head dynamics and their modification by 2'-deoxy-ADP. Biophys J 2024; 123:3997-4008. [PMID: 39444161 PMCID: PMC11617627 DOI: 10.1016/j.bpj.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
The contraction of striated muscle is driven by cycling myosin motor proteins embedded within the thick filaments of sarcomeres. In addition to cross-bridge cycling with actin, these myosin proteins can enter an inactive, sequestered state in which the globular S1 heads rest along the thick filament surface and are inhibited from performing motor activities. Structurally, this state is called the interacting heads motif (IHM) and is a critical conformational state of myosin that regulates muscle contractility and energy expenditure. Structural perturbation of the sequestered state can pathologically disrupt IHM structure and the mechanical performance of muscle tissue. Thus, the IHM state has become a target for therapeutic intervention. An ATP analog called 2'-deoxy-ATP (dATP) is a potent myosin activator that destabilizes the IHM. Here, we use molecular dynamics simulations to study the molecular mechanisms by which dATP modifies the structure and dynamics of myosin in a sequestered state. Simulations of the IHM state containing ADP.Pi in both nucleotide binding pockets revealed dynamic motions of the blocked head-free head interface, light chain binding domain, and S2 in this "inactive" state of myosin. Replacement of ADP.Pi by dADP.Pi triggered a series of structural changes that increased heterogeneity among residue contact pairs at the blocked head-free head interface and a 14% decrease in the interaction energy at the interface. Dynamic changes to this interface were accompanied by dynamics in the light chain binding region. A comparative analysis of these dynamics predicted new structural sites that may affect IHM stability.
Collapse
Affiliation(s)
- Matthew Carter Childers
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Kent, United Kingdom
| | - Michael Regnier
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
2
|
Teitgen AE, Hock MT, McCabe KJ, Childers MC, Huber GA, Marzban B, Beard DA, McCammon JA, Regnier M, McCulloch AD. Multiscale modeling shows how 2'-deoxy-ATP rescues ventricular function in heart failure. Proc Natl Acad Sci U S A 2024; 121:e2322077121. [PMID: 39172779 PMCID: PMC11363293 DOI: 10.1073/pnas.2322077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
2'-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca[Formula: see text] transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca[Formula: see text] dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca[Formula: see text] handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Abigail E. Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Marcus T. Hock
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Research Laboratory, Oslo0164, Norway
| | | | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Bahador Marzban
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Daniel A. Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA98109
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
3
|
Childers MC, Geeves MA, Regnier M. An atomistic model of myosin interacting heads motif dynamics and their modification by 2'-deoxy-ADP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597809. [PMID: 38895221 PMCID: PMC11185614 DOI: 10.1101/2024.06.06.597809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The contraction of striated muscle is driven by cycling myosin motor proteins embedded within the thick filaments of sarcomeres. In addition to cross-bridge cycling with actin, these myosin proteins can enter an inactive, sequestered state in which the globular S1 heads rest along the thick filament surface and are unable to perform motor activities. Structurally, this state is called the interacting heads motif (IHM) and is a critical conformational state of myosin that regulates muscle contractility and energy expenditure. Structural perturbation of the sequestered state via missense mutations can pathologically disrupt the mechanical performance of muscle tissue. Thus, the IHM state has become a target for therapeutic intervention. An ATP analogue called 2'-deoxy-ATP (dATP) is a potent myosin activator which destabilizes the IHM. Here we use molecular dynamics simulations to study the molecular mechanisms by which dATP modifies the structure and dynamics of myosin in a sequestered state. Simulations with IHM containing ADP.Pi in both nucleotide binding pockets revealed residual dynamics in an otherwise 'inactive' and 'sequestered' state of a motor protein. Replacement of ADP.Pi by dADP.Pi triggered a series of structural changes that modify the protein-protein interface that stabilizes the sequestered state, and changes to this interface were accompanied by allosteric changes in remote regions of the protein complex. A comparative analysis of these dynamics predicted new structural sites that may affect IHM stability.
Collapse
|
4
|
Mhatre KN, Murray JD, Flint G, McMillen TS, Weber G, Shakeri M, Tu AY, Steczina S, Weiss R, Marcinek DJ, Murry CE, Raftery D, Tian R, Moussavi-Harami F, Regnier M. dATP elevation induces myocardial metabolic remodeling to support improved cardiac function. J Mol Cell Cardiol 2023; 175:1-12. [PMID: 36470336 PMCID: PMC9974746 DOI: 10.1016/j.yjmcc.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Hallmark features of systolic heart failure are reduced contractility and impaired metabolic flexibility of the myocardium. Cardiomyocytes (CMs) with elevated deoxy ATP (dATP) via overexpression of ribonucleotide reductase (RNR) enzyme robustly improve contractility. However, the effect of dATP elevation on cardiac metabolism is unknown. Here, we developed proteolysis-resistant versions of RNR and demonstrate that elevation of dATP/ATP to ∼1% in CMs in a transgenic mouse (TgRRB) resulted in robust improvement of cardiac function. Pharmacological approaches showed that CMs with elevated dATP have greater basal respiratory rates by shifting myosin states to more active forms, independent of its isoform, in relaxed CMs. Targeted metabolomic profiling revealed a significant reprogramming towards oxidative phosphorylation in TgRRB-CMs. Higher cristae density and activity in the mitochondria of TgRRB-CMs improved respiratory capacity. Our results revealed a critical property of dATP to modulate myosin states to enhance contractility and induce metabolic flexibility to support improved function in CMs.
Collapse
Affiliation(s)
- Ketaki N Mhatre
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jason D Murray
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Galina Flint
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Timothy S McMillen
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA
| | - Gerhard Weber
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Majid Shakeri
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA
| | - An-Yue Tu
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Sonette Steczina
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Robert Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; The Mitochondria and Metabolism Center (MMC), University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA
| | - Rong Tian
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; The Mitochondria and Metabolism Center (MMC), University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA.
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
5
|
Structural OFF/ON transitions of myosin in relaxed porcine myocardium predict calcium-activated force. Proc Natl Acad Sci U S A 2023; 120:e2207615120. [PMID: 36696446 PMCID: PMC9945958 DOI: 10.1073/pnas.2207615120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Contraction in striated muscle is initiated by calcium binding to troponin complexes, but it is now understood that dynamic transition of myosin between resting, ordered OFF states on thick filaments and active, disordered ON states that can bind to thin filaments is critical in regulating muscle contractility. These structural OFF to ON transitions of myosin are widely assumed to correspond to transitions from the biochemically defined, energy-sparing, super-relaxed (SRX) state to the higher ATPase disordered-relaxed (DRX) state. Here we examined the effect of 2'-deoxy-ATP (dATP), a naturally occurring energy substrate for myosin, on the structural OFF to ON transitions of myosin motors in porcine cardiac muscle thick filaments. Small-angle X-ray diffraction revealed that titrating dATP in relaxation solutions progressively moves the myosin heads from ordered OFF states on the thick filament backbone to disordered ON states closer to thin filaments. Importantly, we found that the structural OFF to ON transitions are not equivalent to the biochemically defined SRX to DRX transitions and that the dATP-induced structural OFF to ON transitions of myosin motors in relaxed muscle are strongly correlated with submaximal force augmentation by dATP. These results indicate that structural OFF to ON transitions of myosin in relaxed muscle can predict the level of force attained in calcium-activated cardiac muscle. Computational modeling and stiffness measurements suggest a final step in the OFF to ON transition may involve a subset of DRX myosins that form weakly bound cross-bridges prior to becoming active force-producing cross-bridges.
Collapse
|
6
|
Carraro U, Yablonka-Reuveni Z. Translational research on Myology and Mobility Medicine: 2021 semi-virtual PDM3 from Thermae of Euganean Hills, May 26 - 29, 2021. Eur J Transl Myol 2021; 31:9743. [PMID: 33733717 PMCID: PMC8056169 DOI: 10.4081/ejtm.2021.9743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
On 19-21 November 2020, the meeting of the 30 years of the Padova Muscle Days was virtually held while the SARS-CoV-2 epidemic was hitting the world after a seemingly quiet summer. During the 2020-2021 winter, the epidemic is still active, despite the start of vaccinations. The organizers hope to hold the 2021 Padua Days on Myology and Mobility Medicine in a semi-virtual form (2021 S-V PDM3) from May 26 to May 29 at the Thermae of Euganean Hills, Padova, Italy. Here the program and the Collection of Abstracts are presented. Despite numerous world problems, the number of submitted/selected presentations (lectures and oral presentations) has increased, prompting the organizers to extend the program to four dense days.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences of the University of Padova, Italy; CIR-Myo - Myology Centre, University of Padova, Italy; A-C Mioni-Carraro Foundation for Translational Myology, Padova.
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
7
|
Modulation of post-powerstroke dynamics in myosin II by 2'-deoxy-ADP. Arch Biochem Biophys 2020; 699:108733. [PMID: 33388313 DOI: 10.1016/j.abb.2020.108733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023]
Abstract
Muscle myosins are molecular motors that hydrolyze ATP and generate force through coordinated interactions with actin filaments, known as cross-bridge cycling. During the cross-bridge cycle, functional sites in myosin 'sense' changes in interactions with actin filaments and the nucleotide binding region, resulting in allosteric transmission of information throughout the structure. We investigated whether the dynamics of the post-powerstroke state of the cross-bridge cycle are modulated in a nucleotide-dependent fashion. We compared molecular dynamics simulations of the myosin II motor domain (M) from Dictyostelium discoideum in the presence of ADP (M.ADP) versus 2'-deoxy-ADP bound myosin (M.dADP). We found that dADP was more flexible than ADP and the two nucleotides interacted with myosin in different ways. Replacement of ADP with dADP in the post-powerstroke state also altered the conformation of the actin binding region in myosin heads. Our results provide atomic level insights into allosteric communication networks in myosin that provide insight into the nucleotide-dependent dynamics of the cross-bridge cycle.
Collapse
|
8
|
McCabe KJ, Aboelkassem Y, Teitgen AE, Huber GA, McCammon JA, Regnier M, McCulloch AD. Predicting the effects of dATP on cardiac contraction using multiscale modeling of the sarcomere. Arch Biochem Biophys 2020; 695:108582. [PMID: 32956632 DOI: 10.1016/j.abb.2020.108582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
2'-deoxy-ATP (dATP) is a naturally occurring small molecule that has shown promise as a therapeutic because it significantly increases cardiac myocyte force development even at low dATP/ATP ratios. To investigate mechanisms by which dATP alters myosin crossbridge dynamics, we used Brownian dynamics simulations to calculate association rates between actin and ADP- or dADP-bound myosin. These rates were then directly incorporated in a mechanistic Monte Carlo Markov Chain model of cooperative sarcomere contraction. A unique combination of increased powerstroke and detachment rates was required to match experimental steady-state and kinetic data for dATP force production in rat cardiac myocytes when the myosin attachment rate in the model was constrained by the results of a Brownian dynamics simulation. Nearest-neighbor cooperativity was seen to contribute to, but not fully explain, the steep relationship between dATP/ATP ratio and steady-state force-development observed at lower dATP concentrations. Dynamic twitch simulations performed using measured calcium transients as inputs showed that the effects of dATP on the crossbridge alone were not sufficient to explain experimentally observed enhancement of relaxation kinetics by dATP treatment. Hence, dATP may also affect calcium handling even at low concentrations. By enabling the effects of dATP on sarcomere mechanics to be predicted, this multi-scale modeling framework may elucidate the molecular mechanisms by which dATP can have therapeutic effects on cardiac contractile dysfunction.
Collapse
Affiliation(s)
- Kimberly J McCabe
- Simula Research Laboratory, Department of Computational Physiology, PO Box 134, 1325, Lysaker, Norway.
| | - Yasser Aboelkassem
- San Diego State University, Department of Mechanical Engineering, 5500 Campanile Drive San Diego, CA, 92182, USA
| | - Abigail E Teitgen
- University of California San Diego, Department of Bioengineering, 9500 Gilman Drive MC 0412 La Jolla, CA, 92093, USA
| | - Gary A Huber
- University of California San Diego, Department of Chemistry & Biochemistry, 9500 Gilman Drive, MC 0303 La Jolla, CA, 92093, USA
| | - J Andrew McCammon
- University of California San Diego, Department of Chemistry & Biochemistry, 9500 Gilman Drive, MC 0303 La Jolla, CA, 92093, USA
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Box 355061 Seattle, WA, 98195, USA
| | - Andrew D McCulloch
- University of California San Diego, Department of Bioengineering, 9500 Gilman Drive MC 0412 La Jolla, CA, 92093, USA
| |
Collapse
|
9
|
Powers JD, Yuan CC, McCabe KJ, Murray JD, Childers MC, Flint GV, Moussavi-Harami F, Mohran S, Castillo R, Zuzek C, Ma W, Daggett V, McCulloch AD, Irving TC, Regnier M. Cardiac myosin activation with 2-deoxy-ATP via increased electrostatic interactions with actin. Proc Natl Acad Sci U S A 2019; 116:11502-11507. [PMID: 31110001 PMCID: PMC6561254 DOI: 10.1073/pnas.1905028116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The naturally occurring nucleotide 2-deoxy-adenosine 5'-triphosphate (dATP) can be used by cardiac muscle as an alternative energy substrate for myosin chemomechanical activity. We and others have previously shown that dATP increases contractile force in normal hearts and models of depressed systolic function, but the structural basis of these effects has remained unresolved. In this work, we combine multiple techniques to provide structural and functional information at the angstrom-nanometer and millisecond time scales, demonstrating the ability to make both structural measurements and quantitative kinetic estimates of weak actin-myosin interactions that underpin sarcomere dynamics. Exploiting dATP as a molecular probe, we assess how small changes in myosin structure translate to electrostatic-based changes in sarcomere function to augment contractility in cardiac muscle. Through Brownian dynamics simulation and computational structural analysis, we found that deoxy-hydrolysis products [2-deoxy-adenosine 5'-diphosphate (dADP) and inorganic phosphate (Pi)] bound to prepowerstroke myosin induce an allosteric restructuring of the actin-binding surface on myosin to increase the rate of cross-bridge formation. We then show experimentally that this predicted effect translates into increased electrostatic interactions between actin and cardiac myosin in vitro. Finally, using small-angle X-ray diffraction analysis of sarcomere structure, we demonstrate that the proposed increased electrostatic affinity of myosin for actin causes a disruption of the resting conformation of myosin motors, resulting in their repositioning toward the thin filament before activation. The dATP-mediated structural alterations in myosin reported here may provide insight into an improved criterion for the design or selection of small molecules to be developed as therapeutic agents to treat systolic dysfunction.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, University of Washington, Seattle, WA 98109;
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Chen-Ching Yuan
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Kimberly J McCabe
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Jason D Murray
- Department of Bioengineering, University of Washington, Seattle, WA 98109
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109
| | | | - Galina V Flint
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Saffie Mohran
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Romi Castillo
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Carla Zuzek
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, WA 98109
| | - Andrew D McCulloch
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98109;
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109
| |
Collapse
|
10
|
Brizendine RK, Sheehy GG, Alcala DB, Novenschi SI, Baker JE, Cremo CR. A mixed-kinetic model describes unloaded velocities of smooth, skeletal, and cardiac muscle myosin filaments in vitro. SCIENCE ADVANCES 2017; 3:eaao2267. [PMID: 29255801 PMCID: PMC5733112 DOI: 10.1126/sciadv.aao2267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
In vitro motility assays, where purified myosin and actin move relative to one another, are used to better understand the mechanochemistry of the actomyosin adenosine triphosphatase (ATPase) cycle. We examined the relationship between the relative velocity (V) of actin and myosin and the number of available myosin heads (N) or [ATP] for smooth (SMM), skeletal (SKM), and cardiac (CMM) muscle myosin filaments moving over actin as well as V from actin filaments moving over a bed of monomeric SKM. These data do not fit well to a widely accepted model that predicts that V is limited by myosin detachment from actin (d/ton), where d equals step size and ton equals time a myosin head remains attached to actin. To account for these data, we have developed a mixed-kinetic model where V is influenced by both attachment and detachment kinetics. The relative contributions at a given V vary with the probability that a head will remain attached to actin long enough to reach the end of its flexible S2 tether. Detachment kinetics are affected by L/ton, where L is related to the tether length. We show that L is relatively long for SMM, SKM, and CMM filaments (59 ± 3 nm, 22 ± 9 nm, and 22 ± 2 nm, respectively). In contrast, L is shorter (8 ± 3 nm) when myosin monomers are attached to a surface. This suggests that the behavior of the S2 domain may be an important mechanical feature of myosin filaments that influences unloaded shortening velocities of muscle.
Collapse
|
11
|
Hashem S, Tiberti M, Fornili A. Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil. PLoS Comput Biol 2017; 13:e1005826. [PMID: 29108014 PMCID: PMC5690683 DOI: 10.1371/journal.pcbi.1005826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/16/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023] Open
Abstract
New promising avenues for the pharmacological treatment of skeletal and heart muscle diseases rely on direct sarcomeric modulators, which are molecules that can directly bind to sarcomeric proteins and either inhibit or enhance their activity. A recent breakthrough has been the discovery of the myosin activator omecamtiv mecarbil (OM), which has been shown to increase the power output of the cardiac muscle and is currently in clinical trials for the treatment of heart failure. While the overall effect of OM on the mechano-chemical cycle of myosin is to increase the fraction of myosin molecules in the sarcomere that are strongly bound to actin, the molecular basis of its action is still not completely clear. We present here a Molecular Dynamics study of the motor domain of human cardiac myosin bound to OM, where the effects of the drug on the dynamical properties of the protein are investigated for the first time with atomistic resolution. We found that OM has a double effect on myosin dynamics, inducing a) an increased coupling of the motions of the converter and lever arm subdomains to the rest of the protein and b) a rewiring of the network of dynamic correlations, which produces preferential communication pathways between the OM binding site and distant functional regions. The location of the residues responsible for these effects suggests possible strategies for the future development of improved drugs and the targeting of specific cardiomyopathy-related mutations.
Collapse
Affiliation(s)
- Shaima Hashem
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Matteo Tiberti
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Arianna Fornili
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- The Thomas Young Centre for Theory and Simulation of Materials, London, United Kingdom
- * E-mail:
| |
Collapse
|