1
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Zhou Y, Zhang C, Xiao W, Herzog RW, Han R. Systemic delivery of full-length dystrophin in Duchenne muscular dystrophy mice. Nat Commun 2024; 15:6141. [PMID: 39034316 PMCID: PMC11271493 DOI: 10.1038/s41467-024-50569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Current gene therapy for Duchenne muscular dystrophy (DMD) utilizes adeno-associated virus (AAV) to deliver micro-dystrophin (µDys), which does not provide full protection for striated muscles as it lacks many important functional domains of full-length (FL) dystrophin. Here we develop a triple vector system to deliver FL-dystrophin into skeletal and cardiac muscles. We split FL-dystrophin into three fragments linked to two orthogonal pairs of split intein, allowing efficient assembly of FL-dystrophin. The three fragments packaged in myotropic AAV (MyoAAV4A) restore FL-dystrophin expression in both skeletal and cardiac muscles in male mdx4cv mice. Dystrophin-glycoprotein complex components are also restored at the sarcolemma of dystrophic muscles. MyoAAV4A-delivered FL-dystrophin significantly improves muscle histopathology, contractility, and overall strength comparable to µDys, but unlike µDys, it also restores defective cavin 4 localization and associated signaling in mdx4cv heart. Therefore, our data support the feasibility of a mutation-independent FL-dystrophin gene therapy for DMD, warranting further clinical development.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chen Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
3
|
Anastassov S, Filo M, Khammash M. Inteins: A Swiss army knife for synthetic biology. Biotechnol Adv 2024; 73:108349. [PMID: 38552727 DOI: 10.1016/j.biotechadv.2024.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
Inteins are proteins found in nature that execute protein splicing. Among them, split inteins stand out for their versatility and adaptability, presenting creative solutions for addressing intricate challenges in various biological applications. Their exquisite attributes, including compactness, reliability, orthogonality, low toxicity, and irreversibility, make them of interest to various fields including synthetic biology, biotechnology and biomedicine. In this review, we delve into the inherent challenges of using inteins, present approaches for overcoming these challenges, and detail their reliable use for specific cellular tasks. We will discuss the use of conditional inteins in areas like cancer therapy, drug screening, patterning, infection treatment, diagnostics and biocontainment. Additionally, we will underscore the potential of inteins in executing basic logical operations with practical implications. We conclude by showcasing their potential in crafting complex genetic circuits for performing computations and feedback control that achieves robust perfect adaptation.
Collapse
Affiliation(s)
- Stanislav Anastassov
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland
| | - Maurice Filo
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4056, Switzerland.
| |
Collapse
|
4
|
Hua Y, Tay NES, Ye X, Owen JA, Liu H, Thompson RE, Muir TW. Protein Editing using a Concerted Transposition Reaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597171. [PMID: 38895383 PMCID: PMC11185735 DOI: 10.1101/2024.06.03.597171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Protein engineering through the chemical or enzymatic ligation of polypeptide fragments has proven enormously powerful for studying countless biochemical processes in vitro. In general, this strategy necessitates a protein folding step following ligation of the unstructured fragments, a requirement that constrains the types of systems amenable to the approach. Here, we report an in vitro strategy that allows internal regions of target proteins to be replaced in a single operation. Conceptually, our system is analogous to a DNA transposition reaction, but employs orthogonal pairs of split inteins to swap out a designated region of a host protein with an exogenous molecular cassette. We show using isotopic labeling experiments that this 'protein transposition' reaction is concerted when the kinetics for the embedded intein pairs are suitably matched. Critically, this feature allows for efficient manipulation of protein primary structure in the context of a native fold. The utility of this method is illustrated using several protein systems including the multisubunit chromatin remodeling complex, ACF, where we also show protein transposition can occur in situ within the cell nucleus. By carrying out a molecular 'cut and paste' on a protein or protein complex under native folding conditions, our approach dramatically expands the scope of protein semisynthesis.
Collapse
Affiliation(s)
| | | | - Xuanjia Ye
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Jeremy A. Owen
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Hengyuan Liu
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Tom W. Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| |
Collapse
|
5
|
Han R, Zhou Y, Zhang C, Xiao W, Herzog R. Systemic Delivery of Full-Length Dystrophin in DMD Mice. RESEARCH SQUARE 2024:rs.3.rs-3867299. [PMID: 38746161 PMCID: PMC11092816 DOI: 10.21203/rs.3.rs-3867299/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Current gene therapy for Duchenne muscular dystrophy (DMD) utilizes adeno-associated virus (AAV) to deliver miniaturized dystrophin (micro-dystrophin or µDys), which does not provide full protection for striated muscles as it lacks many important functional domains within full-length (FL) dystrophin. Here we develop a triple vector system to deliver FL-dystrophin into skeletal and cardiac muscles. We rationally split FL-dystrophin into three fragments (N, M, and C) linked to two orthogonal pairs of split intein, allowing efficient, unidirectional assembly of FL-dystrophin. The three fragments packaged in myotropic AAV (MyoAAV4A) restore FL-dystrophin expression in both skeletal and cardiac muscles in male mdx 4cv mice. Dystrophin-glycoprotein complex components are also restored in the sarcolemma of dystrophic muscles. MyoAAV4A-delivered FL-dystrophin significantly improves muscle histopathology, contractility, and overall strength comparable to µDys, but unlike µDys, it also restores defective ERK signaling in heart. The FL-dystrophin gene therapy therefore promises to offer superior protection for DMD.
Collapse
|
6
|
Kordi M, Talkhounche PG, Vahedi H, Farrokhi N, Tabarzad M. Heterologous Production of Antimicrobial Peptides: Notes to Consider. Protein J 2024; 43:129-158. [PMID: 38180586 DOI: 10.1007/s10930-023-10174-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Helia Vahedi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Gu F. Advances in Split Vector Approaches for Adeno-Associated Virus Gene Therapy. Hum Gene Ther 2023; 34:592-593. [PMID: 37462950 DOI: 10.1089/hum.2023.29245.fgu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Affiliation(s)
- Feng Gu
- School of Medicine, Hunan Normal University, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha, China
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| |
Collapse
|
8
|
Lamer T, Vederas JC. Simplified cloning and isolation of peptides from "sandwiched" SUMO-peptide-intein fusion proteins. BMC Biotechnol 2023; 23:11. [PMID: 37020212 PMCID: PMC10074672 DOI: 10.1186/s12896-023-00779-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Some peptides are targets for degradation when heterologously expressed as fusion proteins in E. coli, which can limit yields after isolation and purification. We recently reported that peptide degradation may be prevented by production of a "sandwiched" SUMO-peptide-intein (SPI) fusion protein, which protects the target peptide sequence from truncation and improves yield. This initial system required cloning with two commercially available vectors. It used an N-terminal polyhistidine tagged small ubiquitin-like modifier (SUMO) protein and a C-terminal engineered Mycobacterium xenopii DNA Gyrase A intein with an inserted chitin binding domain (CBD) to create "sandwiched" fusion proteins of the form: His6-SUMO-peptide-intein-CBD. However, the major drawback of this previously reported fusion protein "sandwich" approach is the increased time and number of steps required to complete the cloning and isolation procedures, relative to the simple procedures to produce recombinant peptides in E. coli from a single (non-"sandwiched") fusion protein system. RESULTS In this work we generate the plasmid pSPIH6, which improves upon the previous system by encoding both the SUMO and intein proteins and allows facile construction of a SPI protein in a single cloning step. Additionally, the Mxe GyrA intein encoded in pSPIH6 contains a C-terminal polyhistidine tag, resulting in SPI fusion proteins of the form: His6-SUMO-peptide-intein-CBD-His6. The dual polyhistidine tags greatly simplify isolation procedures compared to the original SPI system, which we have here demonstrated with two linear bacteriocin peptides: leucocin A and lactococcin A. The yields obtained for both peptides after purification were also improved compared to the previous SPI system as a result of this streamlined protocol. CONCLUSIONS This modified SPI system and its simplified cloning and purification procedures described here may be generally useful as a heterologous E. coli expression system to obtain pure peptides in high yield, especially when degradation of the target peptide is an issue.
Collapse
Affiliation(s)
- Tess Lamer
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
9
|
Okuda A, Shimizu M, Inoue R, Urade R, Sugiyama M. Efficient Multiple Domain Ligation for Proteins Using Asparaginyl Endopeptidase by Selection of Appropriate Ligation Sites Based on Steric Hindrance. Angew Chem Int Ed Engl 2023; 62:e202214412. [PMID: 36347766 DOI: 10.1002/anie.202214412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Three domain fragments of a multi-domain protein, ER-60, were ligated in two short linker regions using asparaginyl endopeptidase not involving denaturation. To identify appropriate ligation sites, by selecting several potential ligation sites with fewer mutations around two short linker regions, their ligation efficiencies and the functions of the ligated ER-60s were examined experimentally. To evaluate the dependence of ligation efficiencies on the ligation sites computationally, steric hinderances around the sites for the ligation were calculated through molecular dynamics simulations. Utilizing the steric hindrance, a site-dependent ligation potential index was introduced as reproducing the experimental ligation efficiency. Referring to this index, the reconstruction of ER-60 was succeeded by the ligation of the three domains for the first time. In addition, the new ligation potential index well-worked for application to other domain ligations. Therefore, the index may serve as a more time-effective tool for multi-site ligations.
Collapse
Affiliation(s)
- Aya Okuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
10
|
Allemann RK, Samperio R, Mart R, Luk L, Tsai YH, Jones A, Cruz-Samperio R. Spatio-temporal control of cell death by selective delivery of photo-activatable proteins. Chembiochem 2022; 23:e202200115. [PMID: 35420232 PMCID: PMC9321962 DOI: 10.1002/cbic.202200115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Indexed: 11/24/2022]
Abstract
Protein therapeutics offer exquisite selectivity in targeting cellular processes and behaviors, but are rarely used against non‐cell surface targets due to their poor cellular uptake. While cell‐penetrating peptides can be used to deliver recombinant proteins to the cytosol, it is generally difficult to selectively deliver active proteins to target cells. Here, we report a recombinantly produced, intracellular protein delivery and targeting platform that uses a photocaged intein to regulate the spatio‐temporal activation of protein activity in selected cells upon irradiation with light. The platform was successfully demonstrated for two cytotoxic proteins to selectively kill cancer cells after photoactivation of intein splicing. This platform can generically be applied to any protein whose activity can be disrupted by a fused intein, allowing it to underpin a wide variety of future protein therapeutics.
Collapse
Affiliation(s)
- Rudolf K Allemann
- Cardiff University, School of Chemistry, Main Building, Park Place, CF10 3AT, Cardiff, UNITED KINGDOM
| | - Raquel Samperio
- Cardiff University, Chemistry, SchooCardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UNITED KINGDOM
| | - Robert Mart
- Cardiff University, Chemistry, UNITED KINGDOM
| | - Louis Luk
- Cardiff University, Chemistry, UNITED KINGDOM
| | | | - Arwyn Jones
- Cardiff University, School of Pharmacy and Pharmaceutical Sciences, UNITED KINGDOM
| | - Raquel Cruz-Samperio
- University of Bristol School of Cellular and Molecular Medicine, School of Cellular and Molecular Medicine, UNITED KINGDOM
| |
Collapse
|
11
|
Prabhala SV, Gierach I, Wood DW. The Evolution of Intein-Based Affinity Methods as Reflected in 30 years of Patent History. Front Mol Biosci 2022; 9:857566. [PMID: 35463948 PMCID: PMC9033041 DOI: 10.3389/fmolb.2022.857566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Self-cleaving affinity tags, based on engineered intein protein domains, have been touted as a universal single step purification platform for tagless non-mAb proteins. These approaches provide all of the power and flexibility of tag-based affinity methods, but deliver a tagless target protein suitable for clinical applications without complex process development. This combination of features might accelerate and de-risk biopharmaceutical development by bridging early discovery to full-scale manufacturing under a single platform. Despite this profound promise, intein-based technologies have yet to reach their full potential. This review examines the evolution of intein-based purification methods in the light of several significant intein patents filed over the last 3 decades. Illustrated with actual key figures from each of the relevant patents, key advances are described with a focus on applications in basic research and biopharmaceutical production. Suggestions for extending intein-based purification systems to emerging therapies and non-protein applications are presented as concluding remarks.
Collapse
Affiliation(s)
- Sai Vivek Prabhala
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | | | - David W. Wood
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States,Protein Capture Science, Columbus, OH, United States,*Correspondence: David W. Wood,
| |
Collapse
|
12
|
Ai H, Peng S, Li JB. Chemical methods for studying the crosstalk between histone H2B ubiquitylation and H3 methylation. J Pept Sci 2021; 28:e3381. [PMID: 34811838 DOI: 10.1002/psc.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022]
Abstract
The reversible and dynamic post-translational modifications (PTMs) of histones in eukaryotic chromatin are intimately connected to cell development and gene function, and abnormal regulation of PTMs can result in cancer and neurodegenerative diseases. Specific combinations of these modifications are mediated by a series of chromatin proteins that write, erase, and read the "histone codes," but mechanistic studies of the precise biochemical and structural relationships between different sets of modifications and their effects on chromatin function constitute a unique challenge to canonical biochemical approaches. In the past decade, the development and application of chemical methods for investigating histone PTM crosstalks has received considerable attention in the field of chemical biology. In this review, taking the functional crosstalk between H2B ubiquitylation at Lys120 (H2BK120ub) and H3 methylation at Lys79 (H3K79me) as a typical example, we survey recent developments of different chemical methods, in particular, protein synthetic chemistry and protein-based chemical probes, for studying the mechanism of the functional crosstalks of histone PTMs.
Collapse
Affiliation(s)
- Huasong Ai
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuai Peng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Braun N, Sheikh ZP, Pless SA. The current chemical biology tool box for studying ion channels. J Physiol 2020; 598:4455-4471. [DOI: 10.1113/jp276695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- N. Braun
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - Z. P. Sheikh
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - S. A. Pless
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| |
Collapse
|
14
|
Abstract
Split inteins are privileged molecular scaffolds for the chemical modification of proteins. Though efficient for in vitro applications, these polypeptide ligases have not been utilized for the semisynthesis of proteins in live cells. Here, we biochemically and structurally characterize the naturally split intein VidaL. We show that this split intein, which features the shortest known N-terminal fragment, supports rapid and efficient protein trans-splicing under a range of conditions, enabling semisynthesis of modified proteins both in vitro and in mammalian cells. The utility of this protein engineering system is illustrated through the traceless assembly of multidomain proteins whose biophysical properties render them incompatible with a single expression system, as well as by the semisynthesis of dual posttranslationally modified histone proteins in live cells. We also exploit the domain swapping function of VidaL to effect simultaneous modification and translocation of the nuclear protein HP1α in live cells. Collectively, our studies highlight the VidaL system as a tool for the precise chemical modification of cellular proteins with spatial and temporal control.
Collapse
|
15
|
Lee E, Min K, Chang YT, Kwon Y. Efficient and wash-free labeling of membrane proteins using engineered Npu DnaE split-inteins. Protein Sci 2018; 27:1568-1574. [PMID: 30151847 DOI: 10.1002/pro.3455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023]
Abstract
An efficient and wash-free method to conjugate a fluorescent tag to a target membrane protein is developed, using engineered Npu DnaE split-inteins. This approach allowed fast labeling while avoiding the strenuous synthesis of a long polypeptide. Two different modes of labeling, namely specific binding and covalent conjugation, are observed. The covalent labeling was monitored within 5 min, without background staining.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Kyoungmi Min
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| |
Collapse
|
16
|
Stevens AJ, Sekar G, Gramespacher JA, Cowburn D, Muir TW. An Atypical Mechanism of Split Intein Molecular Recognition and Folding. J Am Chem Soc 2018; 140:11791-11799. [PMID: 30156841 PMCID: PMC7232844 DOI: 10.1021/jacs.8b07334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Split inteins associate to trigger protein splicing in trans, a post-translational modification in which protein sequences fused to the intein pair are ligated together in a traceless manner. Recently, a family of naturally split inteins has been identified that is split at a noncanonical location in the primary sequence. These atypically split inteins show considerable promise in protein engineering applications; however, the mechanism by which they associate is unclear and must be different from that of previously characterized canonically split inteins due to unique topological restrictions. Here, we use a consensus design strategy to generate an atypical split intein pair (Cat) that has greatly improved activity and is amenable to detailed biochemical and biophysical analysis. Guided by the solution structure of Cat, we show that the association of the fragments involves a disorder-to-order structural transition driven by hydrophobic interactions. This molecular recognition mechanism satisfies the topological constraints of the intein fold and, importantly, ensures that premature chemistry does not occur prior to fragment complementation. Our data lead a common blueprint for split intein complementation in which localized structural rearrangements are used to drive folding and regulate protein-splicing activity.
Collapse
Affiliation(s)
- Adam J. Stevens
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Giridhar Sekar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Josef A. Gramespacher
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
17
|
Matern JCJ, Friedel K, Binschik J, Becher KS, Yilmaz Z, Mootz HD. Altered Coordination of Individual Catalytic Steps in Different and Evolved Inteins Reveals Kinetic Plasticity of the Protein Splicing Pathway. J Am Chem Soc 2018; 140:11267-11275. [PMID: 30111090 DOI: 10.1021/jacs.8b04794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein splicing performed by inteins provides powerful opportunities to manipulate protein structure and function, however, detailed mechanistic knowledge of the multistep pathway to help engineering optimized inteins remains scarce. A typical intein has to coordinate three steps to maximize the product yield of ligated exteins. We have revealed a new type of coordination in the Ssp DnaB intein, in which the initial N- S acyl shift appears rate-limiting and acts as an up-regulation switch to dramatically accelerate the last step of succinimide formation, which is thus coupled to the first step. The structure-activity relationship at the N-terminal scissile bond was studied with atomic precision using a semisynthetic split intein. We show that the removal of the extein acyl group from the α-amino moiety of the intein's first residue is strictly required and sufficient for the up-regulation switch. Even an acetyl group as the smallest possible extein moiety completely blocked the switch. Furthermore, we investigated the M86 intein, a mutant with faster splicing kinetics previously obtained by laboratory evolution of the Ssp DnaB intein, and the individual impact of its eight mutations. The succinimide formation was decoupled from the first step in the M86 intein, but the acquired H143R mutation acts as a brake to prevent premature C-terminal cleavage and thereby maximizes splicing yields. Together, these results revealed a high degree of plasticity in the kinetic coordination of the splicing pathway. Furthermore, our study led to the rational design of improved M86 mutants with the highest yielding trans-splicing and fastest trans-cleavage activities.
Collapse
Affiliation(s)
- Julian C J Matern
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Kristina Friedel
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Jens Binschik
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Kira-Sophie Becher
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Zahide Yilmaz
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany
| |
Collapse
|
18
|
Nadal S, Raj R, Mohammed S, Davis BG. Synthetic post-translational modification of histones. Curr Opin Chem Biol 2018; 45:35-47. [DOI: 10.1016/j.cbpa.2018.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/17/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
|