1
|
Peng Z, Li Z, Meng Q, Zhao B, Kurgan L. CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using co-evolutionary information. Brief Bioinform 2023; 24:6858950. [PMID: 36458437 DOI: 10.1093/bib/bbac502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 12/04/2022] Open
Abstract
One of key features of intrinsically disordered regions (IDRs) is facilitation of protein-protein and protein-nucleic acids interactions. These disordered binding regions include molecular recognition features (MoRFs), short linear motifs (SLiMs) and longer binding domains. Vast majority of current predictors of disordered binding regions target MoRFs, with a handful of methods that predict SLiMs and disordered protein-binding domains. A new and broader class of disordered binding regions, linear interacting peptides (LIPs), was introduced recently and applied in the MobiDB resource. LIPs are segments in protein sequences that undergo disorder-to-order transition upon binding to a protein or a nucleic acid, and they cover MoRFs, SLiMs and disordered protein-binding domains. Although current predictors of MoRFs and disordered protein-binding regions could be used to identify some LIPs, there are no dedicated sequence-based predictors of LIPs. To this end, we introduce CLIP, a new predictor of LIPs that utilizes robust logistic regression model to combine three complementary types of inputs: co-evolutionary information derived from multiple sequence alignments, physicochemical profiles and disorder predictions. Ablation analysis suggests that the co-evolutionary information is particularly useful for this prediction and that combining the three inputs provides substantial improvements when compared to using these inputs individually. Comparative empirical assessments using low-similarity test datasets reveal that CLIP secures area under receiver operating characteristic curve (AUC) of 0.8 and substantially improves over the results produced by the closest current tools that predict MoRFs and disordered protein-binding regions. The webserver of CLIP is freely available at http://biomine.cs.vcu.edu/servers/CLIP/ and the standalone code can be downloaded from http://yanglab.qd.sdu.edu.cn/download/CLIP/.
Collapse
Affiliation(s)
- Zhenling Peng
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China.,Frontier Science Center for Nonlinear Expectations, Ministry of Education, Qingdao, 266237, China
| | - Zixia Li
- Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China
| | - Qiaozhen Meng
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
2
|
Roterman I, Stapor K, Fabian P, Konieczny L. New insights into disordered proteins and regions according to the FOD-M model. PLoS One 2022; 17:e0275300. [PMID: 36215254 PMCID: PMC9550084 DOI: 10.1371/journal.pone.0275300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
A collection of intrinsically disordered proteins (IDPs) having regions with the status of intrinsically disordered (IDR) according to the Disprot database was analyzed from the point of view of the structure of hydrophobic core in the structural unit (chain / domain). The analysis includes all the Homo Sapiens as well as Mus Musculus proteins present in the DisProt database for which the structure is available. In the analysis, the fuzzy oil drop modified model (FOD-M) was used, taking into account the external force field, modified by the presence of other factors apart from polar water, influencing protein structuring. The paper presents an alternative to secondary-structure-based classification of intrinsically disordered regions (IDR). The basis of our classification is the ordering of hydrophobic core as calculated by the FOD-M model resulting in FOD-ordered or FOD-unordered IDRs.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Kraków, Poland
| | - Katarzyna Stapor
- Faculty of Automatic, Department of Applied Informatics, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Piotr Fabian
- Faculty of Automatic, Electronics and Computer Science, Department of Algorithmics and Software, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
3
|
Compositional Bias of Intrinsically Disordered Proteins and Regions and Their Predictions. Biomolecules 2022; 12:biom12070888. [PMID: 35883444 PMCID: PMC9313023 DOI: 10.3390/biom12070888] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Intrinsically disordered regions (IDRs) carry out many cellular functions and vary in length and placement in protein sequences. This diversity leads to variations in the underlying compositional biases, which were demonstrated for the short vs. long IDRs. We analyze compositional biases across four classes of disorder: fully disordered proteins; short IDRs; long IDRs; and binding IDRs. We identify three distinct biases: for the fully disordered proteins, the short IDRs and the long and binding IDRs combined. We also investigate compositional bias for putative disorder produced by leading disorder predictors and find that it is similar to the bias of the native disorder. Interestingly, the accuracy of disorder predictions across different methods is correlated with the correctness of the compositional bias of their predictions highlighting the importance of the compositional bias. The predictive quality is relatively low for the disorder classes with compositional bias that is the most different from the “generic” disorder bias, while being much higher for the classes with the most similar bias. We discover that different predictors perform best across different classes of disorder. This suggests that no single predictor is universally best and motivates the development of new architectures that combine models that target specific disorder classes.
Collapse
|
4
|
Zhao B, Katuwawala A, Uversky VN, Kurgan L. IDPology of the living cell: intrinsic disorder in the subcellular compartments of the human cell. Cell Mol Life Sci 2021; 78:2371-2385. [PMID: 32997198 PMCID: PMC11071772 DOI: 10.1007/s00018-020-03654-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Intrinsic disorder can be found in all proteomes of all kingdoms of life and in viruses, being particularly prevalent in the eukaryotes. We conduct a comprehensive analysis of the intrinsic disorder in the human proteins while mapping them into 24 compartments of the human cell. In agreement with previous studies, we show that human proteins are significantly enriched in disorder relative to a generic protein set that represents the protein universe. In fact, the fraction of proteins with long disordered regions and the average protein-level disorder content in the human proteome are about 3 times higher than in the protein universe. Furthermore, levels of intrinsic disorder in the majority of human subcellular compartments significantly exceed the average disorder content in the protein universe. Relative to the overall amount of disorder in the human proteome, proteins localized in the nucleus and cytoskeleton have significantly increased amounts of disorder, measured by both high disorder content and presence of multiple long intrinsically disordered regions. We empirically demonstrate that, on average, human proteins are assigned to 2.3 subcellular compartments, with proteins localized to few subcellular compartments being more disordered than the proteins that are localized to many compartments. Functionally, the disordered proteins localized in the most disorder-enriched subcellular compartments are primarily responsible for interactions with nucleic acids and protein partners. This is the first-time disorder is comprehensively mapped into the human cell. Our observations add a missing piece to the puzzle of functional disorder and its organization inside the cell.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, VA, 23284, USA
| | - Akila Katuwawala
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, VA, 23284, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, VA, 23284, USA.
| |
Collapse
|
5
|
Zhang F, Shi W, Zhang J, Zeng M, Li M, Kurgan L. PROBselect: accurate prediction of protein-binding residues from proteins sequences via dynamic predictor selection. Bioinformatics 2020; 36:i735-i744. [DOI: 10.1093/bioinformatics/btaa806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Motivation
Knowledge of protein-binding residues (PBRs) improves our understanding of protein−protein interactions, contributes to the prediction of protein functions and facilitates protein−protein docking calculations. While many sequence-based predictors of PBRs were published, they offer modest levels of predictive performance and most of them cross-predict residues that interact with other partners. One unexplored option to improve the predictive quality is to design consensus predictors that combine results produced by multiple methods.
Results
We empirically investigate predictive performance of a representative set of nine predictors of PBRs. We report substantial differences in predictive quality when these methods are used to predict individual proteins, which contrast with the dataset-level benchmarks that are currently used to assess and compare these methods. Our analysis provides new insights for the cross-prediction concern, dissects complementarity between predictors and demonstrates that predictive performance of the top methods depends on unique characteristics of the input protein sequence. Using these insights, we developed PROBselect, first-of-its-kind consensus predictor of PBRs. Our design is based on the dynamic predictor selection at the protein level, where the selection relies on regression-based models that accurately estimate predictive performance of selected predictors directly from the sequence. Empirical assessment using a low-similarity test dataset shows that PROBselect provides significantly improved predictive quality when compared with the current predictors and conventional consensuses that combine residue-level predictions. Moreover, PROBselect informs the users about the expected predictive quality for the prediction generated from a given input protein.
Availability and implementation
PROBselect is available at http://bioinformatics.csu.edu.cn/PROBselect/home/index.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fuhao Zhang
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Wenbo Shi
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Min Zeng
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
6
|
Katuwawala A, Kurgan L. Comparative Assessment of Intrinsic Disorder Predictions with a Focus on Protein and Nucleic Acid-Binding Proteins. Biomolecules 2020; 10:E1636. [PMID: 33291838 PMCID: PMC7762010 DOI: 10.3390/biom10121636] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 01/18/2023] Open
Abstract
With over 60 disorder predictors, users need help navigating the predictor selection task. We review 28 surveys of disorder predictors, showing that only 11 include assessment of predictive performance. We identify and address a few drawbacks of these past surveys. To this end, we release a novel benchmark dataset with reduced similarity to the training sets of the considered predictors. We use this dataset to perform a first-of-its-kind comparative analysis that targets two large functional families of disordered proteins that interact with proteins and with nucleic acids. We show that limiting sequence similarity between the benchmark and the training datasets has a substantial impact on predictive performance. We also demonstrate that predictive quality is sensitive to the use of the well-annotated order and inclusion of the fully structured proteins in the benchmark datasets, both of which should be considered in future assessments. We identify three predictors that provide favorable results using the new benchmark set. While we find that VSL2B offers the most accurate and robust results overall, ESpritz-DisProt and SPOT-Disorder perform particularly well for disordered proteins. Moreover, we find that predictions for the disordered protein-binding proteins suffer low predictive quality compared to generic disordered proteins and the disordered nucleic acids-binding proteins. This can be explained by the high disorder content of the disordered protein-binding proteins, which makes it difficult for the current methods to accurately identify ordered regions in these proteins. This finding motivates the development of a new generation of methods that would target these difficult-to-predict disordered proteins. We also discuss resources that support users in collecting and identifying high-quality disorder predictions.
Collapse
Affiliation(s)
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
7
|
Wang K, Hu G, Wu Z, Su H, Yang J, Kurgan L. Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type. Int J Mol Sci 2020; 21:E6879. [PMID: 32961749 PMCID: PMC7554811 DOI: 10.3390/ijms21186879] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
With close to 30 sequence-based predictors of RNA-binding residues (RBRs), this comparative survey aims to help with understanding and selection of the appropriate tools. We discuss past reviews on this topic, survey a comprehensive collection of predictors, and comparatively assess six representative methods. We provide a novel and well-designed benchmark dataset and we are the first to report and compare protein-level and datasets-level results, and to contextualize performance to specific types of RNAs. The methods considered here are well-cited and rely on machine learning algorithms on occasion combined with homology-based prediction. Empirical tests reveal that they provide relatively accurate predictions. Virtually all methods perform well for the proteins that interact with rRNAs, some generate accurate predictions for mRNAs, snRNA, SRP and IRES, while proteins that bind tRNAs are predicted poorly. Moreover, except for DRNApred, they confuse DNA and RNA-binding residues. None of the six methods consistently outperforms the others when tested on individual proteins. This variable and complementary protein-level performance suggests that users should not rely on applying just the single best dataset-level predictor. We recommend that future work should focus on the development of approaches that facilitate protein-level selection of accurate predictors and the consensus-based prediction of RBRs.
Collapse
Affiliation(s)
- Kui Wang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China;
| | - Zhonghua Wu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Hong Su
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Jianyi Yang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
8
|
de Brevern AG. Analysis of Protein Disorder Predictions in the Light of a Protein Structural Alphabet. Biomolecules 2020; 10:biom10071080. [PMID: 32698546 PMCID: PMC7408373 DOI: 10.3390/biom10071080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022] Open
Abstract
Intrinsically-disordered protein (IDP) characterization was an amazing change of paradigm in our classical sequence-structure-function theory. Moreover, IDPs are over-represented in major disease pathways and are now often targeted using small molecules for therapeutic purposes. This has had created a complex continuum from order-that encompasses rigid and flexible regions-to disorder regions; the latter being not accessible through classical crystallographic methodologies. In X-ray structures, the notion of order is dictated by access to resolved atom positions, providing rigidity and flexibility information with low and high experimental B-factors, while disorder is associated with the missing (non-resolved) residues. Nonetheless, some rigid regions can be found in disorder regions. Using ensembles of IDPs, their local conformations were analyzed in the light of a structural alphabet. An entropy index derived from this structural alphabet allowed us to propose a continuum of states from rigidity to flexibility and finally disorder. In this study, the analysis was extended to comparing these results to disorder predictions, underlying a limited correlation, and so opening new ideas to characterize and predict disorder.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- INSERM, UMR_S 1134, DSIMB, Univ Paris, INTS, Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
9
|
Katuwawala A, Oldfield CJ, Kurgan L. DISOselect: Disorder predictor selection at the protein level. Protein Sci 2020; 29:184-200. [PMID: 31642118 PMCID: PMC6933862 DOI: 10.1002/pro.3756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/27/2022]
Abstract
The intense interest in the intrinsically disordered proteins in the life science community, together with the remarkable advancements in predictive technologies, have given rise to the development of a large number of computational predictors of intrinsic disorder from protein sequence. While the growing number of predictors is a positive trend, we have observed a considerable difference in predictive quality among predictors for individual proteins. Furthermore, variable predictor performance is often inconsistent between predictors for different proteins, and the predictor that shows the best predictive performance depends on the unique properties of each protein sequence. We propose a computational approach, DISOselect, to estimate the predictive performance of 12 selected predictors for individual proteins based on their unique sequence-derived properties. This estimation informs the users about the expected predictive quality for a selected disorder predictor and can be used to recommend methods that are likely to provide the best quality predictions. Our solution does not depend on the results of any disorder predictor; the estimations are made based solely on the protein sequence. Our solution significantly improves predictive performance, as judged with a test set of 1,000 proteins, when compared to other alternatives. We have empirically shown that by using the recommended methods the overall predictive performance for a given set of proteins can be improved by a statistically significant margin. DISOselect is freely available for non-commercial users through the webserver at http://biomine.cs.vcu.edu/servers/DISOselect/.
Collapse
Affiliation(s)
- Akila Katuwawala
- Department of Computer ScienceVirginia Commonwealth UniversityRichmondVirginia
| | | | - Lukasz Kurgan
- Department of Computer ScienceVirginia Commonwealth UniversityRichmondVirginia
| |
Collapse
|