1
|
Liu Z, Grigas AT, Sumner J, Knab E, Davis CM, O'Hern CS. Identifying the minimal sets of distance restraints for FRET-assisted protein structural modeling. Protein Sci 2024; 33:e5219. [PMID: 39548730 PMCID: PMC11568256 DOI: 10.1002/pro.5219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
Proteins naturally occur in crowded cellular environments and interact with other proteins, nucleic acids, and organelles. Since most previous experimental protein structure determination techniques require that proteins occur in idealized, non-physiological environments, the effects of realistic cellular environments on protein structure are largely unexplored. Recently, Förster resonance energy transfer (FRET) has been shown to be an effective experimental method for investigating protein structure in vivo. Inter-residue distances measured in vivo can be incorporated as restraints in molecular dynamics (MD) simulations to model protein structural dynamics in vivo. Since most FRET studies only obtain inter-residue separations for a small number of amino acid pairs, it is important to determine the minimum number of restraints in the MD simulations that are required to achieve a given root-mean-square deviation (RMSD) from the experimental structural ensemble. Further, what is the optimal method for selecting these inter-residue restraints? Here, we implement several methods for selecting the most important FRET pairs and determine the number of pairsN r $$ {N}_r $$ that are needed to induce conformational changes in proteins between two experimentally determined structures. We find that enforcing only a small fraction of restraints,N r / N ≲ 0.08 $$ {N}_r/N\lesssim 0.08 $$ , whereN $$ N $$ is the number of amino acids, can induce the conformational changes. These results establish the efficacy of FRET-assisted MD simulations for atomic scale structural modeling of proteins in vivo.
Collapse
Affiliation(s)
- Zhuoyi Liu
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
| | - Alex T. Grigas
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
| | - Jacob Sumner
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
| | - Edward Knab
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | | | - Corey S. O'Hern
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
- Department of PhysicsYale UniversityNew HavenConnecticutUSA
- Department of Applied PhysicsYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
2
|
Iebed D, Gökler T, van Ingen H, Conibear AC. Phosphorylation of the HMGN1 Nucleosome Binding Domain Decreases Helicity and Interactions with the Acidic Patch. Chembiochem 2024; 25:e202400589. [PMID: 39186607 DOI: 10.1002/cbic.202400589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Intrinsically disordered proteins are abundant in the nucleus and are prime sites for posttranslational modifications that modulate transcriptional regulation. Lacking a defined three-dimensional structure, intrinsically disordered proteins populate an ensemble of several conformational states, which are dynamic and often altered by posttranslational modifications, or by binding to interaction partners. Although there is growing appreciation for the role that intrinsically disordered regions have in regulating protein-protein interactions, we still have a poor understanding of how to determine conformational population shifts, their causes under various conditions, and how to represent and model conformational ensembles. Here, we study the effects of serine phosphorylation in the nucleosome-binding domain of an intrinsically disordered protein - HMGN1 - using NMR spectroscopy, circular dichroism and modelling of protein complexes. We show that phosphorylation induces local conformational changes in the peptide backbone and decreases the helical propensity of the nucleosome binding domain. Modelling studies using AlphaFold3 suggest that phosphorylation disrupts the interface between HMGN1 and the nucleosome acidic patch, but that the models over-predict helicity in comparison to experimental data. These studies help us to build a picture of how posttranslational modifications might shift the conformational populations of disordered regions, alter access to histones, and regulate chromatin compaction.
Collapse
Affiliation(s)
- Dina Iebed
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Tobias Gökler
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Anne C Conibear
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| |
Collapse
|
3
|
Liu Z, Grigas AT, Sumner J, Knab E, Davis CM, O'Hern CS. Identifying the minimal sets of distance restraints for FRET-assisted protein structural modeling. ARXIV 2024:arXiv:2405.07983v2. [PMID: 38800659 PMCID: PMC11118665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteins naturally occur in crowded cellular environments and interact with other proteins, nucleic acids, and organelles. Since most previous experimental protein structure determination techniques require that proteins occur in idealized, non-physiological environments, the effects of realistic cellular environments on protein structure are largely unexplored. Recently, Förster resonance energy transfer (FRET) has been shown to be an effective experimental method for investigating protein structure in vivo. Inter-residue distances measured in vivo can be incorporated as restraints in molecular dynamics (MD) simulations to model protein structural dynamics in vivo. Since most FRET studies only obtain inter-residue separations for a small number of amino acid pairs, it is important to determine the minimum number of restraints in the MD simulations that are required to achieve a given root-mean-square deviation (RMSD) from the experimental structural ensemble. Further, what is the optimal method for selecting these inter-residue restraints? Here, we implement several methods for selecting the most important FRET pairs and determine the number of pairsN r that are needed to induce conformational changes in proteins between two experimentally determined structures. We find that enforcing only a small fraction of restraints,N r / N ≲ 0.08 , where N is the number of amino acids, can induce the conformational changes. These results establish the efficacy of FRET-assisted MD simulations for atomic scale structural modeling of proteins in vivo.
Collapse
Affiliation(s)
- Zhuoyi Liu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
| | - Alex T Grigas
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06520, USA
| | - Jacob Sumner
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06520, USA
| | - Edward Knab
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA
| | - Caitlin M Davis
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
4
|
Unnikrishnan M, Wang Y, Gruebele M, Murphy CJ. Nanoparticle-assisted tubulin assembly is environment dependent. Proc Natl Acad Sci U S A 2024; 121:e2403034121. [PMID: 38954547 PMCID: PMC11252952 DOI: 10.1073/pnas.2403034121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Nanomaterials acquire a biomolecular corona upon introduction to biological media, leading to biological transformations such as changes in protein function, unmasking of epitopes, and protein fibrilization. Ex vivo studies to investigate the effect of nanoparticles on protein-protein interactions are typically performed in buffer and are rarely measured quantitatively in live cells. Here, we measure the differential effect of silica nanoparticles on protein association in vitro vs. in mammalian cells. BtubA and BtubB are a pair of bacterial tubulin proteins identified in Prosthecobacter strains that self-assemble like eukaryotic tubulin, first into dimers and then into microtubules in vitro or in vivo. Förster resonance energy transfer labeling of each of the Btub monomers with a donor (mEGFP) and acceptor (mRuby3) fluorescent protein provides a quantitative tool to measure their binding interactions in the presence of unfunctionalized silica nanoparticles in buffer and in cells using fluorescence spectroscopy and microscopy. We show that silica nanoparticles enhance BtubAB dimerization in buffer due to protein corona formation. However, these nanoparticles have little effect on bacterial tubulin self-assembly in the complex mammalian cellular environment. Thus, the effect of nanomaterials on protein-protein interactions may not be readily translated from the test tube to the cell in the absence of particle surface functionalization that can enable targeted protein-nanoparticle interactions to withstand competitive binding in the nanoparticle corona from other biomolecules.
Collapse
Affiliation(s)
- Mahima Unnikrishnan
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
5
|
Wang Y, Unnikrishnan M, Ramsey B, El Andlosy D, Keeley AT, Murphy CJ, Gruebele M. In-Cell Association of a Bioorthogonal Tubulin. Biomacromolecules 2024; 25:1282-1290. [PMID: 38251876 DOI: 10.1021/acs.biomac.3c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Studies of proteins from one organism in another organism's cells have shown that such exogenous proteins stick more, pointing toward coevolution of the cytoplasm and protein surface to minimize stickiness. Here we flip this question around by asking whether exogenous proteins can assemble efficiently into their target complexes in a non-native cytoplasm. We use as our model system the assembly of BtubA and BtubB from Prosthecobacter hosted in human U-2 OS cells. BtubA and B evolved from eukaryotic tubulins after horizontal gene transfer, but they have low surface sequence identity with the homologous human tubulins and do not respond to tubulin drugs such as nocodazole. In U-2 OS cells, BtubA and B assemble efficiently into dimers compared to in vitro, and the wild-type BtubA and B proteins subsequently are able to form microtubules as well. We find that generic crowding effects (Ficoll 70 in vitro) contribute significantly to efficient dimer assembly when compared to sticking interactions (U-2 OS cell lysate in vitro), consistent with the notion that a generic mechanism such as crowding can be effective at driving assembly of exogenous proteins, even when protein-cytoplasm quinary structure and sticking have been modified in a non-native cytoplasm. A simple Monte Carlo model of in vitro and in-cell interactions, treating BtubA and B as sticky dipoles in a matrix of sticky or nonsticky crowders, rationalizes all the experimental trends with two adjustable parameters and reveals nucleation as the likely mechanism for the time-scale separation between dimer- and tubule formation in-cell and in vitro.
Collapse
Affiliation(s)
- Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mahima Unnikrishnan
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brooke Ramsey
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Driss El Andlosy
- Computer Science and Technologies Department, Parkland Community College, Champaign, Illinois 61821, United States
| | - Alex T Keeley
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Sarfraz N, Shafik LK, Stickelman ZR, Shankar U, Moscoso E, Braselmann E. Evaluating Riboglow-FLIM probes for RNA sensing. RSC Chem Biol 2024; 5:109-116. [PMID: 38333191 PMCID: PMC10849122 DOI: 10.1039/d3cb00197k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
We recently developed Riboglow-FLIM, where we genetically tag and track RNA molecules in live cells through measuring the fluorescence lifetime of a small molecule probe that binds the RNA tag. Here, we systematically and quantitatively evaluated key elements of Riboglow-FLIM that may serve as the foundation for Riboglow-FLIM applications and further tool development efforts. Our investigation focused on measuring changes in fluorescence lifetime of representative Riboglow-FLIM probes with different linkers and fluorophores in different environments. In vitro measurements revealed distinct lifetime differences among the probe variants as a result of different linker designs and fluorophore selections. To expand on the platform's versatility, probes in a wide variety of mammalian cell types were examined using fluorescence lifetime imaging microscopy (FLIM), and possible effects on cell physiology were evaluated by metabolomics. The results demonstrated that variations in lifetime were dependent on both probe and cell type. Interestingly, distinct differences in lifetime values were observed between cell lines, while no overall change in cell health was measured. These findings underscore the importance of probe selection and cellular environment when employing Riboglow-FLIM for RNA detection, serving as a foundation for future tool development and applications across diverse fields and biological systems.
Collapse
Affiliation(s)
- Nadia Sarfraz
- Department of Chemistry, Georgetown University Washington District of Columbia USA
| | - Luke K Shafik
- Department of Chemistry, Georgetown University Washington District of Columbia USA
| | - Zachary R Stickelman
- Department of Chemistry, Georgetown University Washington District of Columbia USA
| | - Uma Shankar
- Department of Chemistry, Georgetown University Washington District of Columbia USA
| | - Emilia Moscoso
- Department of Chemistry, Georgetown University Washington District of Columbia USA
| | - Esther Braselmann
- Department of Chemistry, Georgetown University Washington District of Columbia USA
| |
Collapse
|
7
|
Samuel Russell PP, Alaeen S, Pogorelov TV. In-Cell Dynamics: The Next Focus of All-Atom Simulations. J Phys Chem B 2023; 127:9863-9872. [PMID: 37793083 PMCID: PMC10874638 DOI: 10.1021/acs.jpcb.3c05166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The cell is a crowded space where large biomolecules and metabolites are in continuous motion. Great strides have been made in in vitro studies of protein dynamics, folding, and protein-protein interactions, and much new data are emerging of how they differ in the cell. In this Perspective, we highlight the current progress in atomistic modeling of in-cell environments, both bacteria and mammals, with emphasis on classical all-atom molecular dynamics simulations. These simulations have been recently used to capture and characterize functional and non-functional protein-protein interactions, protein folding dynamics of small proteins with varied topologies, and dynamics of metabolites. We further discuss the challenges and efforts for updating modern force fields critical to the progress of cellular environment simulations. We also briefly summarize developments in relevant state-of-the-art experimental techniques. As computational and experimental methodologies continue to progress and produce more directly comparable data, we are poised to capture the complex atomistic picture of the cell.
Collapse
Affiliation(s)
- Premila P Samuel Russell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sepehr Alaeen
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taras V Pogorelov
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Biswas S, Hecht AL, Noble SA, Huang Q, Gillilan RE, Xu AY. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein-Polymer Complex Coacervates. Biomacromolecules 2023; 24:4771-4782. [PMID: 37815312 PMCID: PMC10646951 DOI: 10.1021/acs.biomac.3c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Complex coacervation refers to the liquid-liquid phase separation (LLPS) process occurring between charged macromolecules. The study of complex coacervation is of great interest due to its implications in the formation of membraneless organelles (MLOs) in living cells. However, the impacts of the crowded intracellular environment on the behavior and interactions of biomolecules involved in MLO formation are not fully understood. To address this knowledge gap, we investigated the effects of crowding on a model protein-polymer complex coacervate system. Specifically, we examined the influence of sucrose as a molecular crowder and polyethylene glycol (PEG) as a macromolecular crowder. Our results reveal that the presence of crowders led to the formation of larger coacervate droplets that remained stable over a 25-day period. While sucrose had a minimal effect on the physical properties of the coacervates, PEG led to the formation of coacervates with distinct characteristics, including higher density, increased protein and polymer content, and a more compact internal structure. These differences in coacervate properties can be attributed to the effects of crowders on individual macromolecules, such as the conformation of model polymers, and nonspecific interactions among model protein molecules. Moreover, our results show that sucrose and PEG have different partition behaviors: sucrose was present in both the coacervate and dilute phases, while PEG was observed to be excluded from the coacervate phase. Collectively, our findings provide insights into the understanding of crowding effects on complex coacervation, shedding light on the formation and properties of coacervates in the context of MLOs.
Collapse
Affiliation(s)
- Shanta Biswas
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alison L Hecht
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sadie A Noble
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Amy Y Xu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
Knab E, Davis CM. Chemical interactions modulate λ 6-85 stability in cells. Protein Sci 2023; 32:e4698. [PMID: 37313657 PMCID: PMC10288553 DOI: 10.1002/pro.4698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Because steric crowding is most effective when the crowding agent is similar in size to the molecule that it acts upon and the average macromolecule inside cells is much larger than a small protein or peptide, steric crowding is not predicted to affect their folding inside cells. On the other hand, chemical interactions should perturb in-cell structure and stability because they arise from interactions between the surface of the small protein or peptide and its environment. Indeed, previous in vitro measurements of the λ-repressor fragment, λ6-85 , in crowding matrices comprised of Ficoll or protein crowders support these predictions. Here, we directly quantify the in-cell stability of λ6-85 and distinguish the contribution of steric crowding and chemical interactions to its stability. Using a FRET-labeled λ6-85 construct, we find that the fragment is stabilized by 5°C in-cells compared to in vitro. We demonstrate that this stabilization cannot be explained by steric crowding because, as anticipated, Ficoll has no effect on λ6-85 stability. We find that the in-cell stabilization arises from chemical interactions, mimicked in vitro by mammalian protein extraction reagent (M-PER™). Comparison between FRET values in-cell and in Ficoll confirms that U-2 OS cytosolic crowding is reproduced at macromolecule concentrations of 15% w/v. Our measurements validate the cytomimetic of 15% Ficoll and 20% M-PER™ that we previously developed for protein and RNA folding studies. However, because the in-cell stability of λ6-85 is reproduced by 20% v/v M-PER™ alone, we predict that this simplified mixture could be a useful tool to predict the in-cell behaviors of other small proteins and peptides.
Collapse
Affiliation(s)
- Edward Knab
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | | |
Collapse
|
10
|
Li J, Shang Z, Chen JH, Gu W, Yao L, Yang X, Sun X, Wang L, Wang T, Liu S, Li J, Hou T, Xing D, Gill DL, Li J, Wang SQ, Hou L, Zhou Y, Tang AH, Zhang X, Wang Y. Engineering of NEMO as calcium indicators with large dynamics and high sensitivity. Nat Methods 2023:10.1038/s41592-023-01852-9. [PMID: 37081094 DOI: 10.1038/s41592-023-01852-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
Genetically encoded calcium indicators (GECIs) are indispensable tools for real-time monitoring of intracellular calcium signals and cellular activities in living organisms. Current GECIs face the challenge of suboptimal peak signal-to-baseline ratio (SBR) with limited resolution for reporting subtle calcium transients. We report herein the development of a suite of calcium sensors, designated NEMO, with fast kinetics and wide dynamic ranges (>100-fold). NEMO indicators report Ca2+ transients with peak SBRs around 20-fold larger than the top-of-the-range GCaMP6 series. NEMO sensors further enable the quantification of absolution calcium concentration with ratiometric or photochromic imaging. Compared with GCaMP6s, NEMOs could detect single action potentials in neurons with a peak SBR two times higher and a median peak SBR four times larger in vivo, thereby outperforming most existing state-of-the-art GECIs. Given their high sensitivity and resolution to report intracellular Ca2+ signals, NEMO sensors may find broad applications in monitoring neuronal activities and other Ca2+-modulated physiological processes in both mammals and plants.
Collapse
Affiliation(s)
- Jia Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ziwei Shang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jia-Hui Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, and Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjia Gu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Yang
- Exercise Physiology and Neurobiology Laboratory, College of PE and Sports, Beijing Normal University, Beijing, China
| | - Xiaowen Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tianlu Wang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Siyao Liu
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jiajing Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology College of Life Sciences, Peking University, Beijing, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology College of Life Sciences, Peking University, Beijing, China
| | - Lijuan Hou
- Exercise Physiology and Neurobiology Laboratory, College of PE and Sports, Beijing Normal University, Beijing, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
| | - Ai-Hui Tang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, and Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
11
|
Yoo H, Davis CM. An in vitro cytomimetic of in-cell RNA folding. Chembiochem 2022; 23:e202200406. [PMID: 35999178 DOI: 10.1002/cbic.202200406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Indexed: 11/07/2022]
Abstract
To discover the cytomimetic that accounts for cytoplasmic crowding and sticking on RNA stability, we conducted a two-dimensional scan of mixtures of artificial crowding and sticking agents, PEG10k and M-PERTM. As our model RNA, we investigate the fourU RNA thermometer motif of Salmonella, a hairpin-structured RNA that regulates translation by unfolding and exposing its RBS in response to temperature perturbations. We found that the addition of artificial crowding and sticking agents leads to a stabilization and destabilization of RNA folding, respectively, through the excluded volume effect and surface interactions. FRET-labels were added to the fourU RNA and Fast Relaxation Imaging (FReI), fluorescence microscopy coupled to temperature-jump spectroscopy, probed differences between folding stability of RNA inside single living cells and in vitro. Our results suggest that the cytoplasmic environment affecting RNA folding is comparable to a combination of 20% v/v M-PERTM and 150 g/L PEG10k.
Collapse
Affiliation(s)
- Hyejin Yoo
- Yale University, Chemistry, 225 Prospect St, 06511, New Haven, UNITED STATES
| | - Caitlin M Davis
- Yale University, Chemistry, 225 Prospect St., 06511, New Haven, UNITED STATES
| |
Collapse
|
12
|
Irukuvajjula SS, Reddy JG, Vadrevu R. Crowding by Poly(ethylene glycol) Destabilizes Chemotaxis Protein Y (CheY). Biochemistry 2022; 61:1431-1443. [PMID: 35796609 DOI: 10.1021/acs.biochem.2c00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prevailing understanding of various aspects of biochemical processes, including folding, stability, intermolecular interactions, and the binding of metals, substrates, and inhibitors, is derived from studies carried out under dilute and homogeneous conditions devoid of a crowding-related environment. The effect of crowding-induced modulation on the structure and stability of native and magnesium-dependent Chemotaxis Y (CheY), a bacterial signaling protein, was probed in the presence and absence of poly(ethylene glycol) (PEG). A combined analysis from circular dichroism, intrinsic and extrinsic fluorescence, and tryptophan fluorescence lifetime changes indicates that PEG perturbs the structure but leaves the thermal stability largely unchanged. Intriguingly, while the stability of the protein is enhanced in the presence of magnesium under dilute buffer conditions, PEG-induced crowding leads to reduced thermal stability in the presence of magnesium. Nuclear magnetic resonance (NMR) chemical shift perturbations and resonance broadening for a subset of residues indicate that PEG interacts specifically with a subset of hydrophilic and hydrophobic residues found predominantly in α helices, β strands, and in the vicinity of the metal-binding region. Thus, PEG prompted conformational perturbation, presumably provides a different situation for magnesium interaction, thereby perturbing the magnesium-prompted stability. In summary, our results highlight the dominance of enthalpic contributions between PEG and CheY via both hydrophilic and hydrophobic interactions, which can subtly affect the conformation, modulating the metal-protein interaction and stability, implying that in the context of cellular situation, structure, stability, and magnesium binding thermodynamics of CheY may be different from those measured in dilute solution.
Collapse
Affiliation(s)
- Shivkumar Sharma Irukuvajjula
- Department of Biological Sciences, Birla Institute of Technology & Science─Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad 500078, India
| | - Jithender G Reddy
- NMR Division, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Ministry of Science and Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology & Science─Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
13
|
Rivas G, Minton A. Influence of Nonspecific Interactions on Protein Associations: Implications for Biochemistry In Vivo. Annu Rev Biochem 2022; 91:321-351. [PMID: 35287477 DOI: 10.1146/annurev-biochem-040320-104151] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular interior is composed of a variety of microenvironments defined by distinct local compositions and composition-dependent intermolecular interactions. We review the various types of nonspecific interactions between proteins and between proteins and other macromolecules and supramolecular structures that influence the state of association and functional properties of a given protein existing within a particular microenvironment at a particular point in time. The present state of knowledge is summarized, and suggestions for fruitful directions of research are offered. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Germán Rivas
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain;
| | - Allen Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
14
|
Lecinski S, Shepherd JW, Frame L, Hayton I, MacDonald C, Leake MC. Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET. CURRENT TOPICS IN MEMBRANES 2021; 88:75-118. [PMID: 34862033 PMCID: PMC7612257 DOI: 10.1016/bs.ctm.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a Förster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding while simultaneously imaging a third color, which can be used as a marker that labels organelle membranes. Our approaches can be combined with synchronized cell populations to increase experimental throughput and correlate molecular crowding information with different stages in the cell cycle.
Collapse
Affiliation(s)
- Sarah Lecinski
- Department of Physics, University of York, York, United Kingdom
| | - Jack W Shepherd
- Department of Physics, University of York, York, United Kingdom; Department of Biology, University of York, York, United Kingdom
| | - Lewis Frame
- School of Natural Sciences, University of York, York, United Kingdom
| | - Imogen Hayton
- Department of Biology, University of York, York, United Kingdom
| | - Chris MacDonald
- Department of Biology, University of York, York, United Kingdom
| | - Mark C Leake
- Department of Physics, University of York, York, United Kingdom; Department of Biology, University of York, York, United Kingdom.
| |
Collapse
|
15
|
Yoshida S, Kisley L. Super-resolution fluorescence imaging of extracellular environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119767. [PMID: 33862370 DOI: 10.1016/j.saa.2021.119767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The extracellular matrix (ECM) is an important biophysical environment that plays a role in a number of physiological processes. The ECM is highly dynamic, with changes occurring as local, nanoscale, physicochemical variations in physical confinement and chemistry from the perspective of biological molecules. The length and time scale of ECM dynamics are challenging to measure with current spectroscopic techniques. Super-resolution fluorescence microscopy has the potential to probe local, nanoscale, physicochemical variations in the ECM. Here, we review super-resolution imaging and analysis methods and their application to study model nanoparticles and biomolecules within synthetic ECM hydrogels and the brain extracellular space (ECS). We provide a perspective of future directions for the field that can move super-resolution imaging of the ECM towards more biomedically-relevant samples. Overall, super-resolution imaging is a powerful tool that can increase our understanding of extracellular environments at new spatiotemporal scales to reveal ECM processes at the molecular-level.
Collapse
Affiliation(s)
- Shawn Yoshida
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
16
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
17
|
Davis CM, Gruebele M. Cellular Sticking Can Strongly Reduce Complex Binding by Speeding Dissociation. J Phys Chem B 2021; 125:3815-3823. [PMID: 33826329 DOI: 10.1021/acs.jpcb.1c00950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While extensive studies have been carried out to determine protein-RNA binding affinities, mechanisms, and dynamics in vitro, such studies do not take into consideration the effect of the many weak nonspecific interactions in a cell filled with potential binding partners. Here we experimentally tested the role of the cellular environment on affinity and binding dynamics between a protein and RNA in living U-2 OS cells. Our model system is the spliceosomal protein U1A and its binding partner SL2 of the U1 snRNA. The binding equilibrium was perturbed by a laser-induced temperature jump and monitored by Förster resonance energy transfer. The apparent binding affinity in live cells was reduced by up to 2 orders of magnitude compared to in vitro. The measured in-cell dissociation rate coefficients were up to 2 orders of magnitude larger, whereas no change in the measured association rate coefficient was observed. The latter is not what would be anticipated due to macromolecular crowding or nonspecific sticking of the uncomplexed U1A and SL2 in the cell. A quantitative model fits our experimental results, with the major cellular effect being that U1A and SL2 sticking to cellular components are capable of binding, just not as strongly as the free complex. This observation suggests that high binding affinities measured or designed in vitro are necessary for proper binding in vivo, where competition with many nonspecific interactions exists, especially for strongly interacting species with high charge or large hydrophobic surface areas.
Collapse
|
18
|
Gopan G, Gruebele M, Rickard M. In-cell protein landscapes: making the match between theory, simulation and experiment. Curr Opin Struct Biol 2020; 66:163-169. [PMID: 33254078 DOI: 10.1016/j.sbi.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/10/2020] [Indexed: 11/26/2022]
Abstract
Theory, computation and experiment have matched up for the folding of small proteins in vitro, a difficult feat because folding energy landscapes are fairly smooth and free energy differences between states are small. Smoothness means that protein structure and folding are susceptible to the local environment inside living cells. Theory, computation and experiment are now exploring cellular modulation of energy landscapes. Interesting concepts have emerged, such as co-evolution of protein surfaces with their cellular environment to reduce detrimental interactions. Here we look at very recent work beginning to bring together theory, simulations and experiments in the area of protein landscape modulation, to see what problems might be solved in the near future by combining these approaches.
Collapse
Affiliation(s)
- Gopika Gopan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Meredith Rickard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Calabrase W, Bishop LDC, Dutta C, Misiura A, Landes CF, Kisley L. Transforming Separation Science with Single-Molecule Methods. Anal Chem 2020; 92:13622-13629. [PMID: 32936608 DOI: 10.1021/acs.analchem.0c02572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Empirical optimization of the multiscale parameters underlying chromatographic and membrane separations leads to enormous resource waste and production costs. A bottom-up approach to understand the physical phenomena underlying challenges in separations is possible with single-molecule observations of solute-stationary phase interactions. We outline single-molecule fluorescence techniques that can identify key interactions under ambient conditions. Next, we describe how studying increasingly complex samples heightens the relevance of single-molecule results to industrial applications. Finally, we illustrate how separation methods that have not been studied at the single-molecule scale can be advanced, using chiral chromatography as an example case. We hope new research directions based on a molecular approach to separations will emerge based on the ideas, technologies, and open scientific questions presented in this Perspective.
Collapse
Affiliation(s)
- William Calabrase
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Logan D C Bishop
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Chayan Dutta
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anastasiia Misiura
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, Texas 77251, United States.,Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251, United States.,Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
20
|
Davis CM, Deutsch J, Gruebele M. An in vitro mimic of in-cell solvation for protein folding studies. Protein Sci 2020; 29:1060-1068. [PMID: 31994240 DOI: 10.1002/pro.3833] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
Abstract
Ficoll, an inert macromolecule, is a common in vitro crowder, but by itself it does not reproduce in-cell stability or kinetic trends for protein folding. Lysis buffer, which contains ions, glycerol as a simple kosmotrope, and mimics small crowders with hydrophilic/hydrophobic patches, can reproduce sticking trends observed in cells but not the crowding. We previously suggested that the proper combination of Ficoll and lysis buffer could reproduce the opposite in-cell folding stability trend of two proteins: variable major protein-like sequence expressed (VlsE) is destabilized in eukaryotic cells and phosphoglycerate kinase (PGK) is stabilized. Here, to discover a well-characterized solvation environment that mimics in-cell stabilities for these two very differently behaved proteins, we conduct a two-dimensional scan of Ficoll (0-250 mg/ml) and lysis buffer (0-75%) mixtures. Contrary to our previous expectation, we show that mixtures of Ficoll and lysis buffer have a significant nonadditive effect on the folding stability. Lysis buffer enhances the stabilizing effect of Ficoll on PGK and inhibits the stabilizing effect of Ficoll on VlsE. We demonstrate that a combination of 150 mg/ml Ficoll and 60% lysis buffer can be used as an in vitro mimic to account for both crowding and non-steric effects on PGK and VlsE stability and folding kinetics in the cell. Our results also suggest that this mixture is close to the point where phase separation will occur. The simple mixture proposed here, based on commercially available reagents, could be a useful tool to study a variety of cytoplasmic protein interactions, such as folding, binding and assembly, and enzymatic reactions. SIGNIFICANCE STATEMENT: The complexity of the in-cell environment is difficult to reproduce in the test tube. Here we validate a mimic of cellular crowding and sticking interactions in a test tube using two proteins that are differently impacted by the cell: one is stabilized and the other is destabilized. This mimic is a starting point to reproduce cellular effects on a variety of protein and biomolecular interactions, such as folding and binding.
Collapse
Affiliation(s)
- Caitlin M Davis
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jonathan Deutsch
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Martin Gruebele
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|