1
|
Liu M, Ma L, Tang Y, Yang W, Yang Y, Xi J, Wang X, Zhu W, Xue J, Zhang X, Xu S. Maize Autophagy-Related Protein ZmATG3 Confers Tolerance to Multiple Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1637. [PMID: 38931070 PMCID: PMC11207562 DOI: 10.3390/plants13121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Abiotic stresses pose a major increasing problem for the cultivation of maize. Autophagy plays a vital role in recycling and re-utilizing nutrients and adapting to stress. However, the role of autophagy in the response to abiotic stress in maize has not yet been investigated. Here, ZmATG3, which is essential for ATG8-PE conjugation, was isolated from the maize inbred line B73. The ATG3 sequence was conserved, including the C-terminal domains with HPC and FLKF motifs and the catalytic domain in different species. The promoter of the ZmATG3 gene contained a number of elements involved in responses to environmental stresses or hormones. Heterologous expression of ZmATG3 in yeast promoted the growth of strain under salt, mannitol, and low-nitrogen stress. The expression of ZmATG3 could be altered by various types of abiotic stress (200 mM NaCl, 200 mM mannitol, low N) and exogenous hormones (500 µM ABA). GUS staining analysis of ZmATG3-GUS transgenic Arabidopsis revealed that GUS gene activity increased after abiotic treatment. ZmATG3-overexpressing Arabidopsis plants had higher osmotic and salinity stress tolerance than wild-type plants. Overexpression of ZmATG3 up-regulated the expression of other AtATGs (AtATG3, AtATG5, and AtATG8b) under NaCl, mannitol and LN stress. These findings demonstrate that overexpression of ZmATG3 can improve tolerance to multiple abiotic stresses.
Collapse
Affiliation(s)
- Mengli Liu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Li Ma
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Yao Tang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Wangjing Yang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Yuying Yang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Jing Xi
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Xuan Wang
- Yangling Qinfeng Seed-Industry Co., Ltd., Yangling 712100, China;
| | - Wanchao Zhu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Xinghua Zhang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (M.L.); (L.M.); (Y.T.); (W.Y.); (Y.Y.); (J.X.); (W.Z.); (J.X.)
| |
Collapse
|
2
|
Li J, Qin X, Xu W, Zhang H, Huang S, Yang Y, Qin M, Mi Z, Zhong X. Herb pair of Rhubarb-Astragalus mitigates renal interstitial fibrosis through downregulation of autophagy via p38-MAPK/TGF-β1 and p38-MAPK/smad2/3 pathways. Int J Biochem Cell Biol 2024; 169:106549. [PMID: 38340950 DOI: 10.1016/j.biocel.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) has a high incidence and poor prognosis; however, no effective treatment is currently available. Our previous study found that the improvement effect of the herb pair of Rhubarb-Astragalus on CKD is likely related to the inhibition of the TGF-β1/p38-MAPK pathway. In the present study, a p38-MAPK inhibitor was used to further investigate the inhibitory effect of Rhubarb-Astragalus on the TGF-β1/p38-MAPK pathway and its relationship with autophagy. METHODS A rat model of unilateral ureteral obstruction (UUO) was established, and a subgroup of rats was administered Rhubarb-Astragalus. Renal function and renal interstitial fibrosis (RIF) were assessed 21 d after UUO induction. In vitro, HK-2 cells were treated with TGF-β1 and a subset of cells were treated with Rhubarb-Astragalus or p38-MAPK inhibitor. Western blotting, immunohistochemistry, and qRT-PCR analyses were used to detect the relevant protein and mRNA levels. Transmission electron microscopy was used to observe autophagosomes. RESULTS Rhubarb-Astragalus treatment markedly decreased the elevated levels of blood urea nitrogen, serum creatinine, and urinary N-acetyl-β-D-glucosaminidase; attenuated renal damage and RIF induced by UUO; and reduced the number of autophagosomes and lysosomes in UUO-induced renal tissues. Additionally, Rhubarb-Astragalus reduced the protein and mRNA levels of α-SMA, collagen I, LC3, Atg3, TGF-β1, p38-MAPK, smad2/3, and TAK1 in renal tissues of UUO rats. Rhubarb-Astragalus also reduced protein and mRNA levels of these indicators in vitro. Importantly, the effect of the p38-MAPK inhibitor was similar to that of Rhubarb-Astragalus. CONCLUSIONS Rhubarb-Astragalus improves CKD possibly by downregulating autophagy via the p38-MAPK/TGF-β1 and p38-MAPK/smad2/3 pathways.
Collapse
Affiliation(s)
- Jinxiu Li
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiping Qin
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weimin Xu
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongliang Zhang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Songqing Huang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufang Yang
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Mengyuan Qin
- Student Affairs Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengcheng Mi
- Pharmacy Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaobin Zhong
- Regenerative Medicine Research Center of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Chen Y, Tan X, Zhang W, Li Y, Deng X, Zeng J, Huang L, Ma X. Natural products targeting macroautophagy signaling in hepatocellular carcinoma therapy: Recent evidence and perspectives. Phytother Res 2024; 38:1623-1650. [PMID: 38302697 DOI: 10.1002/ptr.8103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
Hepatocellular carcinoma (HCC), presently the second leading cause of global cancer-related mortality, continues to pose significant challenges in the realm of medical oncology, impacting both clinical drug selection and mechanistic research. Recent investigations have unveiled autophagy-related signaling as a promising avenue for HCC treatment. A growing body of research has highlighted the pivotal role of autophagy-modulating natural products in inhibiting HCC progression. In this context, we provide a concise overview of the fundamental autophagy mechanism and delineate the involvement of autophagic signaling pathways in HCC development. Additionally, we review pertinent studies demonstrating how natural products regulate autophagy to mitigate HCC. Our findings indicate that natural products exhibit cytotoxic effects through the induction of excessive autophagy, simultaneously impeding HCC cell proliferation by autophagy inhibition, thereby depriving HCC cells of essential energy. These effects have been associated with various signaling pathways, including PI3K/AKT, MAPK, AMPK, Wnt/β-catenin, Beclin-1, and ferroautophagy. These results underscore the considerable therapeutic potential of natural products in HCC treatment. However, it is important to note that the present study did not establish definitive thresholds for autophagy induction or inhibition by natural products. Further research in this domain is imperative to gain comprehensive insights into the dual role of autophagy, equipping us with a better understanding of this double-edged sword in HCC management.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Nishimura T, Lazzeri G, Mizushima N, Covino R, Tooze SA. Unique amphipathic α helix drives membrane insertion and enzymatic activity of ATG3. SCIENCE ADVANCES 2023; 9:eadh1281. [PMID: 37352354 PMCID: PMC10289646 DOI: 10.1126/sciadv.adh1281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
Autophagosome biogenesis requires a localized perturbation of lipid membrane dynamics and a unique protein-lipid conjugate. Autophagy-related (ATG) proteins catalyze this biogenesis on cellular membranes, but the underlying molecular mechanism remains unclear. Focusing on the final step of the protein-lipid conjugation reaction, the ATG8/LC3 lipidation, we show how the membrane association of the conjugation machinery is organized and fine-tuned at the atomistic level. Amphipathic α helices in ATG3 proteins (AHATG3) have low hydrophobicity and contain less bulky residues. Molecular dynamics simulations reveal that AHATG3 regulates the dynamics and accessibility of the thioester bond of the ATG3~LC3 conjugate to lipids, enabling the covalent lipidation of LC3. Live-cell imaging shows that the transient membrane association of ATG3 with autophagic membranes is governed by the less bulky-hydrophobic feature of AHATG3. The unique properties of AHATG3 facilitate protein-lipid bilayer association, leading to the remodeling of the lipid bilayer required for the formation of autophagosomes.
Collapse
Affiliation(s)
- Taki Nishimura
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gianmarco Lazzeri
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, Frankfurt am Main 60438, Germany
- Goethe University, Frankfurt am Main 60438, Germany
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, Frankfurt am Main 60438, Germany
- Goethe University, Frankfurt am Main 60438, Germany
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
5
|
Sengupta S, Pick E. The Ubiquitin-like Proteins of Saccharomyces cerevisiae. Biomolecules 2023; 13:biom13050734. [PMID: 37238603 DOI: 10.3390/biom13050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In this review, we present a comprehensive list of the ubiquitin-like modifiers (Ubls) of Saccharomyces cerevisiae, a common model organism used to study fundamental cellular processes that are conserved in complex multicellular organisms, such as humans. Ubls are a family of proteins that share structural relationships with ubiquitin, and which modify target proteins and lipids. These modifiers are processed, activated and conjugated to substrates by cognate enzymatic cascades. The attachment of substrates to Ubls alters the various properties of these substrates, such as function, interaction with the environment or turnover, and accordingly regulate key cellular processes, including DNA damage, cell cycle progression, metabolism, stress response, cellular differentiation, and protein homeostasis. Thus, it is not surprising that Ubls serve as tools to study the underlying mechanism involved in cellular health. We summarize current knowledge on the activity and mechanism of action of the S. cerevisiae Rub1, Smt3, Atg8, Atg12, Urm1 and Hub1 modifiers, all of which are highly conserved in organisms from yeast to humans.
Collapse
Affiliation(s)
- Swarnab Sengupta
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa Mount Carmel, Haifa 3498838, Israel
| | - Elah Pick
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa Mount Carmel, Haifa 3498838, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 3600600, Israel
| |
Collapse
|
6
|
Huang W, Ma D, Xia L, Zhang E, Wang P, Wang M, Guo F, Wang Y, Ni D, Zhao H. Overexpression of CsATG3a improves tolerance to nitrogen deficiency and increases nitrogen use efficiency in arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:328-338. [PMID: 36739840 DOI: 10.1016/j.plaphy.2023.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is a major nutrition element for tea plant. However, application of high levels of N negatively causes environmental problems. Therefore, improved N use efficiency (NUE) of tea plant will be highly desirable and crucial for sustainable tea cultivation. Autophagy plays a central role in N recycling and holds potential to improve N utilization, and many AuTophaGy-related genes (ATGs) are involved in the autophagy process. Here, CsATG3a was identified from Camellia sinensis, and the functions involved in N utilization was characterized in arabidopsis (Arabidopsis thaliana). The transcript level of CsATG3a in tea leaves increases with their maturity. Relative to the wild type (WT) arabidopsis, two CsATG3a-overexpressing (CsATG3a-OE) lines exhibited improved vegetative growth, delayed reproductive stage, and upregulated expression of AtATGs (AtATG3, AtATG5 and AtATG8b) in a low N (LN) hydroponic condition. The expression levels of AtNRT1.1, AtNRT2.1, AtNRT2.2, AtAMT1.1 and AtAMT1.3 for N uptake and transport in roots were all significantly higher in CsATG3a-OE lines compared with those in the WT under LN. Meanwhile, the overexpression of CsATG3a in arabidopsis also increased N and dry matter allocation into both rosette leaves and roots under LN. Additionally, compared with WT, improved HI (harvest index), NHI (N harvest index), NUtE (N utilization efficiency) and NUE (N use efficiency) of CsATG3a-OE lines were further confirmed in a low-N soil cultured experiment. Together, these results concluded that CsATG3a is involved in N recycling and enhances tolerance to LN, indicating that CsATG3a holds potential promise to improve NUE in tea plant.
Collapse
Affiliation(s)
- Wei Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Danni Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Li Xia
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - E Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Pu Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mingle Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Fei Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yu Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hua Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
7
|
Huang X, Yao J, Liu L, Luo Y, Yang A. Atg8-PE protein-based in vitro biochemical approaches to autophagy studies. Autophagy 2022; 18:2020-2035. [PMID: 35072587 PMCID: PMC9397461 DOI: 10.1080/15548627.2022.2025572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved intracellular degradation pathway that maintains cellular homeostasis. Over the past two decades, a series of scientific breakthroughs have helped explain autophagy-related molecular mechanisms and physiological functions. This tremendous progress continues to depend largely on powerful research methods, specifically, various autophagy marker Atg8-PE protein-based methods for studying membrane dynamics and monitoring autophagic activity. Recently, several biochemical approaches have been successfully developed to produce the lipidated protein Atg8-PE or its mimics in vitro, including enzyme-mediated reconstitution systems, chemically defined reconstitution systems, cell-free lipidation systems and protein chemical synthesis. These approaches have contributed important insights into the mechanisms underlying Atg8-mediated membrane dynamics and protein-protein interactions, creating a new perspective in autophagy studies. In this review, we comprehensively summarize Atg8-PE protein-based in vitro biochemical approaches and recent advances to facilitate a better understanding of autophagy mechanisms. In addition, we highlight the advantages and disadvantages of various Atg8-PE protein-based approaches to provide general guidance for their use in studying autophagy.Abbreviations: ATG: autophagy related; ATP: adenosine triphosphate; COPII: coat protein complex II; DGS-NTA: 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt); DPPE: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine; DSPE: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; E. coli: Escherichia coli; EPL: expressed protein ligation; ERGIC: ER-Golgi intermediate compartment; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; GUVs: giant unilamellar vesicles; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MBP: maltose binding protein; MEFs: mouse embryonic fibroblasts; MESNa: 2-mercaptoethanesulfonic acid sodium salt; NCL: native chemical ligation; NTA: nitrilotriacetic acid; PE: phosphatidylethanolamine; PS: phosphatidylserine; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; SPPS: solid-phase peptide synthesis; TEV: tobacco etch virus; WT: wild-type.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yu Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China,CONTACT Aimin Yang School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Baker F, Polat IH, Abou-El-Ardat K, Alshamleh I, Thoelken M, Hymon D, Gubas A, Koschade SE, Vischedyk JB, Kaulich M, Schwalbe H, Shaid S, Brandts CH. Metabolic Rewiring Is Essential for AML Cell Survival to Overcome Autophagy Inhibition by Loss of ATG3. Cancers (Basel) 2021; 13:6142. [PMID: 34885250 PMCID: PMC8657081 DOI: 10.3390/cancers13236142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Autophagy is an important survival mechanism that allows recycling of nutrients and removal of damaged organelles and has been shown to contribute to the proliferation of acute myeloid leukemia (AML) cells. However, little is known about the mechanism by which autophagy- dependent AML cells can overcome dysfunctional autophagy. In our study we identified autophagy related protein 3 (ATG3) as a crucial autophagy gene for AML cell proliferation by conducting a CRISPR/Cas9 dropout screen with a library targeting around 200 autophagy-related genes. shRNA-mediated loss of ATG3 impaired autophagy function in AML cells and increased their mitochondrial activity and energy metabolism, as shown by elevated mitochondrial ROS generation and mitochondrial respiration. Using tracer-based NMR metabolomics analysis we further demonstrate that the loss of ATG3 resulted in an upregulation of glycolysis, lactate production, and oxidative phosphorylation. Additionally, loss of ATG3 strongly sensitized AML cells to the inhibition of mitochondrial metabolism. These findings highlight the metabolic vulnerabilities that AML cells acquire from autophagy inhibition and support further exploration of combination therapies targeting autophagy and mitochondrial metabolism in AML.
Collapse
Affiliation(s)
- Fatima Baker
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
| | - Ibrahim H. Polat
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
| | - Khalil Abou-El-Ardat
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
| | - Islam Alshamleh
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Marlyn Thoelken
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
| | - Daniel Hymon
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Andrea Gubas
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Sebastian E. Koschade
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Jonas B. Vischedyk
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
| | - Manuel Kaulich
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, 60590 Frankfurt am Main, Germany;
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Harald Schwalbe
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Shabnam Shaid
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| | - Christian H. Brandts
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt am Main, Germany; (F.B.); (I.H.P.); (K.A.-E.-A.); (M.T.); (S.E.K.); (J.B.V.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (D.H.); (H.S.)
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany;
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Application of Metabolomics in the Study of Starvation-Induced Autophagy in Saccharomyces cerevisiae: A Scoping Review. J Fungi (Basel) 2021; 7:jof7110987. [PMID: 34829274 PMCID: PMC8619235 DOI: 10.3390/jof7110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
This scoping review is aimed at the application of the metabolomics platform to dissect key metabolites and their intermediates to observe the regulatory mechanisms of starvation-induced autophagy in Saccharomyces cerevisiae. Four research papers were shortlisted in this review following the inclusion and exclusion criteria. We observed a commonly shared pathway undertaken by S. cerevisiae under nutritional stress. Targeted and untargeted metabolomics was applied in either of these studies using varying platforms resulting in the annotation of several different observable metabolites. We saw a commonly shared pathway undertaken by S. cerevisiae under nutritional stress. Following nitrogen starvation, the concentration of cellular nucleosides was altered as a result of autophagic RNA degradation. Additionally, it is also found that autophagy replenishes amino acid pools to sustain macromolecule synthesis. Furthermore, in glucose starvation, nucleosides were broken down into carbonaceous metabolites that are being funneled into the non-oxidative pentose phosphate pathway. The ribose salvage allows for the survival of starved yeast. Moreover, acute glucose starvation showed autophagy to be involved in maintaining ATP/energy levels. We highlighted the practicality of metabolomics as a tool to better understand the underlying mechanisms involved to maintain homeostasis by recycling degradative products to ensure the survival of S. cerevisiae under starvation. The application of metabolomics has extended the scope of autophagy and provided newer intervention targets against cancer as well as neurodegenerative diseases in which autophagy is implicated.
Collapse
|
10
|
Rehman NU, Zeng P, Mo Z, Guo S, Liu Y, Huang Y, Xie Q. Conserved and Diversified Mechanism of Autophagy between Plants and Animals upon Various Stresses. Antioxidants (Basel) 2021; 10:1736. [PMID: 34829607 PMCID: PMC8615172 DOI: 10.3390/antiox10111736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a highly conserved degradation mechanism in eukaryotes, executing the breakdown of unwanted cell components and subsequent recycling of cellular material for stress relief through vacuole-dependence in plants and yeast while it is lysosome-dependent in animal manner. Upon stress, different types of autophagy are stimulated to operate certain biological processes by employing specific selective autophagy receptors (SARs), which hijack the cargo proteins or organelles to the autophagy machinery for subsequent destruction in the vacuole/lysosome. Despite recent advances in autophagy, the conserved and diversified mechanism of autophagy in response to various stresses between plants and animals still remain a mystery. In this review, we intend to summarize and discuss the characterization of the SARs and their corresponding processes, expectantly advancing the scope and perspective of the evolutionary fate of autophagy between plants and animals.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Peichun Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Zulong Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences and Technology, Guangxi University, Nanning 530004, China;
| | - Yifeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310001, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (N.U.R.); (P.Z.); (Z.M.); (S.G.)
| |
Collapse
|
11
|
Ye C, Feng Y, Yu F, Jiao Q, Wu J, Ye Z, Zhang P, Sun C, Pang K, Hao P, Yu X. RNAi-mediated silencing of the autophagy-related gene NlATG3 inhibits survival and fecundity of the brown planthopper, Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2021; 77:4658-4668. [PMID: 34092014 DOI: 10.1002/ps.6507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/15/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The brown planthopper (BPH), Nilaparvata lugens, is a serious insect pest of rice. Autophagy and its related gene ATG3 play multiple roles in insects. However, information about the functions of ATG3 in BPH (NlATG3) is unavailable, and its potential as a target for pest control remains unclear. RESULTS RT-qPCR results showed a relatively low expression of NlATG3 in 1st-4th-instar nymphs, which increased through 9-day-old adults. The expression of NlATG3 increased continuously in 1-day-old through 5-day-old eggs, whereas it decreased thereafter. The mRNA level of NlATG3 was markedly higher in the ovary (1.16) and head (1.00) compared to the rest body parts of BPH adults. Injecting nymphs with dsNlATG3 at doses from 62.5 to 250 ng per insect had strong lethal effect upon them. For the 5th-instar nymphs, all individuals died within 5 days after receiving the dsNlATG3, and importantly, no individual successfully molted. Transmission electron microscopy revealed the new cuticle of nymphs injected with dsNlATG3 became loose and curved, which is clearly different from that of the control. Correspondingly, the obvious vesicles in epidermal cells disappeared after dsNlATG3-treatment. RNAi of NlATG3 significantly reduced the total number of eggs laid per female as well as the eggs' hatchability, especially in the dsNlATG3♀ × dsGFP♂ group, whose total number of eggs laid per female largely decreased by 80.4%, and whose eggs' hatchability was significantly reduced from 95.7% to zero, when compared with the control (dsGFP♀ × dsGFP♂). CONCLUSION NlATG3 is a promising target for developing RNAi-based insect management strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenglong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yalin Feng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Feifei Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qiqi Jiao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiangen Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Pengjun Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kun Pang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
12
|
Fang D, Xie H, Hu T, Shan H, Li M. Binding Features and Functions of ATG3. Front Cell Dev Biol 2021; 9:685625. [PMID: 34235149 PMCID: PMC8255673 DOI: 10.3389/fcell.2021.685625] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process that is essential for maintaining cellular, tissue, and organismal homeostasis. Autophagy-related (ATG) genes are indispensable for autophagosome formation. ATG3 is one of the key genes involved in autophagy, and its homologs are common in eukaryotes. During autophagy, ATG3 acts as an E2 ubiquitin-like conjugating enzyme in the ATG8 conjugation system, contributing to phagophore elongation. ATG3 has also been found to participate in many physiological and pathological processes in an autophagy-dependent manner, such as tumor occurrence and progression, ischemia-reperfusion injury, clearance of pathogens, and maintenance of organelle homeostasis. Intriguingly, a few studies have recently discovered the autophagy-independent functions of ATG3, including cell differentiation and mitosis. Here, we summarize the current knowledge of ATG3 in autophagosome formation, highlight its binding partners and binding sites, review its autophagy-dependent functions, and provide a brief introduction into its autophagy-independent functions.
Collapse
Affiliation(s)
- Dongmei Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huazhong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Barz S, Kriegenburg F, Sánchez-Martín P, Kraft C. Small but mighty: Atg8s and Rabs in membrane dynamics during autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119064. [PMID: 34048862 PMCID: PMC8261831 DOI: 10.1016/j.bbamcr.2021.119064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Autophagy is a degradative pathway during which autophagosomes are formed that enwrap cytosolic material destined for turnover within the lytic compartment. Autophagosome biogenesis requires controlled lipid and membrane rearrangements to allow the formation of an autophagosomal seed and its subsequent elongation into a fully closed and fusion-competent double membrane vesicle. Different membrane remodeling events are required, which are orchestrated by the distinct autophagy machinery. An important player among these autophagy proteins is the small lipid-modifier Atg8. Atg8 proteins facilitate various aspects of autophagosome formation and serve as a binding platform for autophagy factors. Also Rab GTPases have been implicated in autophagosome biogenesis. As Atg8 proteins interact with several Rab GTPase regulators, they provide a possible link between autophagy progression and Rab GTPase activity. Here, we review central aspects in membrane dynamics during autophagosome biogenesis with a focus on Atg8 proteins and selected Rab GTPases.
Collapse
Affiliation(s)
- Saskia Barz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
14
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
15
|
Wang S, Li Y, Ma C. Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement. Protein Sci 2020; 29:1511-1523. [PMID: 32277540 DOI: 10.1002/pro.3866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Atg3-catalyzed transferring of Atg8 to phosphatidylethanolamine (PE) in the phagophore membrane is essential for autophagy. Previous studies have demonstrated that this process requires Atg3 to interact with the phagophore membrane via its N-terminal amphipathic helix. In this study, by using combined biochemical and biophysical approaches, our data showed that in addition to binding to the membranes, Atg3 attenuates lipid diffusion and enriches lipid molecules with smaller headgroup. Our data suggest that Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|