1
|
Duran C, Kinateder T, Hiefinger C, Sterner R, Osuna S. Altering Active-Site Loop Dynamics Enhances Standalone Activity of the Tryptophan Synthase Alpha Subunit. ACS Catal 2024; 14:16986-16995. [PMID: 39569152 PMCID: PMC11574760 DOI: 10.1021/acscatal.4c04587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 11/22/2024]
Abstract
The α-subunit (TrpA) of the allosterically regulated bifunctional tryptophan synthase αββα enzyme catalyzes the retro-aldol cleavage of indole-glycerol phosphate (IGP) to d-glyceraldehyde 3-phosphate (G3P) and indole. The activity of the enzyme is highly dependent on the β-subunit (TrpB), which allosterically regulates and activates TrpA for enhanced function. This contrasts with the homologous BX1 enzyme from Zea mays that can catalyze the same reaction as TrpA without requiring the presence of any additional binding partner. In this study, we computationally evaluated and compared the conformational landscapes of the homologous ZmBX1 and ZmTrpA enzymes. Our results indicate that enhanced TrpA standalone activity requires the modulation of the conformational dynamics of two relevant active-site loops, loop 6 and 2, that need to be synchronized for accessing the catalytically activated closed state for IGP cleavage, as well as open states for favoring indole/G3P release. Taking as inspiration the evolutionary blueprint ZmBX1 and using our developed correlation-based tool shortest path map focused on the rate-determining conformational transition leading to the catalytically activated closed state, we computationally designed a variant named ZmTrpASPM4-L6BX1, which displays a 163-fold improvement in catalytic efficiency for the retro-aldol cleavage of IGP. This study showcases the importance of fine-tuning the conformational dynamics of active-site loops for altering and improving function, especially in those cases in which a conformational change is rate determining.
Collapse
Affiliation(s)
- Cristina Duran
- Institut de Química Computacional i Catàlisi and Departament de Química, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Caroline Hiefinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
2
|
Reitano JR, Coers J. Restriction and evasion: a review of IFNγ-mediated cell-autonomous defense pathways during genital Chlamydia infection. Pathog Dis 2024; 82:ftae019. [PMID: 39210512 PMCID: PMC11407441 DOI: 10.1093/femspd/ftae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection (STI) in the USA. As an STI, C. trachomatis infections can cause inflammatory damage to the female reproductive tract and downstream sequelae including infertility. No vaccine currently exists to C. trachomatis, which evades sterilizing immune responses in its human host. A better understanding of this evasion will greatly benefit the production of anti-Chlamydia therapeutics and vaccination strategies. This minireview will discuss a single branch of the immune system, which activates in response to genital Chlamydia infection: so-called "cell-autonomous immunity" activated by the cytokine interferon-gamma. We will also discuss the mechanisms by which human and mouse-adapted Chlamydia species evade cell-autonomous immune responses in their native hosts. This minireview will examine five pathways of host defense and their evasion: (i) depletion of tryptophan and other nutrients, (ii) immunity-related GTPase-mediated defense, (iii) production of nitric oxide, (iv) IFNγ-induced cell death, and (v) RNF213-mediated destruction of inclusions.
Collapse
Affiliation(s)
- Jeffrey R Reitano
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical School, 213 Research Dr. Box 3054, Durham, NC 27710, United States
| |
Collapse
|
3
|
Wang L, Hou Y, Yuan H, Chen H. The role of tryptophan in Chlamydia trachomatis persistence. Front Cell Infect Microbiol 2022; 12:931653. [PMID: 35982780 PMCID: PMC9378776 DOI: 10.3389/fcimb.2022.931653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) is the most common etiological agent of bacterial sexually transmitted infections (STIs) and a worldwide public health issue. The natural course with C. trachomatis infection varies widely between individuals. Some infections clear spontaneously, others can last for several months or some individuals can become reinfected, leading to severe pathological damage. Importantly, the underlying mechanisms of C. trachomatis infection are not fully understood. C. trachomatis has the ability to adapt to immune response and persist within host epithelial cells. Indoleamine-2,3-dioxygenase (IDO) induced by interferon-gamma (IFN-γ) degrades the intracellular tryptophan pool, to which C. trachomatis can respond by converting to a non-replicating but viable state. C. trachomatis expresses and encodes for the tryptophan synthase (TS) genes (trpA and trpB) and tryptophan repressor gene (trpR). Multiple genes interact to regulate tryptophan synthesis from exogenous indole, and persistent C. trachomatis can recover its infectivity by converting indole into tryptophan. In this review, we discuss the characteristics of chlamydial infections, biosynthesis and regulation of tryptophan, the relationship between tryptophan and C. trachomatis, and finally, the links between the tryptophan/IFN-γ axis and C. trachomatis persistence.
Collapse
Affiliation(s)
- Li Wang
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - YingLan Hou
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - HongXia Yuan
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - Hongliang Chen
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
- *Correspondence: Hongliang Chen,
| |
Collapse
|
4
|
First-Void Urine Microbiome in Women with Chlamydia trachomatis Infection. Int J Mol Sci 2022; 23:ijms23105625. [PMID: 35628436 PMCID: PMC9143427 DOI: 10.3390/ijms23105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Chlamydia trachomatis (CT) is the agent of the most common bacterial sexually transmitted infection worldwide. Until now, little information is available about the microbial composition of urine samples during CT urethritis. Therefore, in this study, we characterized the microbiome and metabolome profiles of first-void urines in a cohort of women with CT urethral infection attending an STI clinic. Methods: Based on CT positivity by nucleic acid amplification techniques on urine samples, the enrolled women were divided into two groups, i.e., “CT-negative” (n = 21) and “CT-positive” (n = 11). Urine samples were employed for (i) the microbiome profile analysis by means of 16s rRNA gene sequencing and (ii) the metabolome analysis by 1H-NMR. Results: Irrespective of CT infection, the microbiome of first-void urines was mainly dominated by Lactobacillus, L. iners and L. crispatus being the most represented species. CT-positive samples were characterized by reduced microbial biodiversity compared to the controls. Moreover, a significant reduction of the Mycoplasmataceae family—in particular, of the Ureaplasma parvum species—was observed during CT infection. The Chlamydia genus was positively correlated with urine hippurate and lactulose. Conclusions: These data can help elucidate the pathogenesis of chlamydial urogenital infections, as well as to set up innovative diagnostic and therapeutic approaches.
Collapse
|
5
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
6
|
Raimondi S, Candeliere F, Amaretti A, Foschi C, Morselli S, Gaspari V, Rossi M, Marangoni A. Vaginal and Anal Microbiome during Chlamydia trachomatis Infections. Pathogens 2021; 10:1347. [PMID: 34684295 PMCID: PMC8539191 DOI: 10.3390/pathogens10101347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Background.Chlamydia trachomatis (CT) is the agent of the most common bacterial sexually transmitted infection worldwide, with a significant impact on women's health. Despite the increasing number of studies about the vaginal microbiome in women with CT infections, information about the composition of the anal microbiome is still lacking. Here, we assessed the bacterial community profiles of vaginal and anal ecosystems associated or not with CT infection in a cohort of Caucasian young women. Methods. A total of 26 women, including 10 with a contemporary vaginal and ano-rectal CT infection, were enrolled. Composition of vaginal and anal microbiome was studied by 16S rRNA gene profiling. Co-occurrence networks of bacterial communities and metagenome metabolic functions were determined. Results. In case of CT infection, both vaginal and anal environments were characterized by a degree of dysbiosis. Indeed, the vaginal microbiome of CT-positive women were depleted in lactobacilli, with a significant increase in dysbiosis-associated bacteria (e.g., Sneathia, Parvimonas, Megasphaera), whereas the anal microbiota of CT-infected women was characterized by higher levels of Parvimonas and Pseudomonas and lower levels of Escherichia. Interestingly, the microbiome of anus and vagina had numerous bacterial taxa in common, reflecting a significant microbial 'sharing' between the two sites. In the vaginal environment, CT positively correlated with Ezakiella spp. while Gardnerella vaginalis co-occurred with several dysbiosis-related microbes, regardless of CT vaginal infection. The vaginal microbiome of CT-positive females exhibited a higher involvement of chorismate and aromatic amino acid biosynthesis, as well as an increase in mixed acid fermentation. Conclusions. These data could be useful to set up new diagnostic/prognostic tools, offering new perspectives for the control of chlamydial infections.
Collapse
Affiliation(s)
- Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.R.); (F.C.); (A.A.); (M.R.)
| | - Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.R.); (F.C.); (A.A.); (M.R.)
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.R.); (F.C.); (A.A.); (M.R.)
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (S.M.); (A.M.)
| | - Sara Morselli
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (S.M.); (A.M.)
| | - Valeria Gaspari
- Dermatology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), St. Orsola Malpighi University Hospital, 40138 Bologna, Italy;
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (S.R.); (F.C.); (A.A.); (M.R.)
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (S.M.); (A.M.)
| |
Collapse
|
7
|
Michalska K, Wellington S, Maltseva N, Jedrzejczak R, Selem-Mojica N, Rosas-Becerra LR, Barona-Gómez F, Hung DT, Joachimiak A. Catalytically impaired TrpA subunit of tryptophan synthase from Chlamydia trachomatis is an allosteric regulator of TrpB. Protein Sci 2021; 30:1904-1918. [PMID: 34107106 PMCID: PMC8376405 DOI: 10.1002/pro.4143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/10/2022]
Abstract
Intracellular growth and pathogenesis of Chlamydia species is controlled by the availability of tryptophan, yet the complete biosynthetic pathway for l‐Trp is absent among members of the genus. Some representatives, however, preserve genes encoding tryptophan synthase, TrpAB – a bifunctional enzyme catalyzing the last two steps in l‐Trp synthesis. TrpA (subunit α) converts indole‐3‐glycerol phosphate into indole and glyceraldehyde‐3‐phosphate (α reaction). The former compound is subsequently used by TrpB (subunit β) to produce l‐Trp in the presence of l‐Ser and a pyridoxal 5′‐phosphate cofactor (β reaction). Previous studies have indicated that in Chlamydia, TrpA has lost its catalytic activity yet remains associated with TrpB to support the β reaction. Here, we provide detailed analysis of the TrpAB from C. trachomatis D/UW‐3/CX, confirming that accumulation of mutations in the active site of TrpA renders it enzymatically inactive, despite the conservation of the catalytic residues. We also show that TrpA remains a functional component of the TrpAB complex, increasing the activity of TrpB by four‐fold. The side chain of non‐conserved βArg267 functions as cation effector, potentially rendering the enzyme less susceptible to the solvent ion composition. The observed structural and functional changes detected herein were placed in a broader evolutionary and genomic context, allowing identification of these mutations in relation to their trp gene contexts in which they occur. Moreover, in agreement with the in vitro data, partial relaxation of purifying selection for TrpA, but not for TrpB, was detected, reinforcing a partial loss of TrpA functions during the course of evolution. PDB Code(s): 6V82;
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Samantha Wellington
- Department of Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, Illinois, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, Illinois, USA
| | - Nelly Selem-Mojica
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Mexico
| | - L Rodrigo Rosas-Becerra
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Mexico
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Mexico
| | - Deborah T Hung
- Department of Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, Illinois, USA.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|