1
|
Jaiswal M, Tran TT, Guo J, Zhou M, Kundu S, Guo Z, Fanucci GE. Spin-labeling Insights into How Chemical Fixation Impacts Glycan Organization on Cells. APPLIED MAGNETIC RESONANCE 2024; 55:317-333. [PMID: 38469359 PMCID: PMC10927023 DOI: 10.1007/s00723-023-01624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 03/13/2024]
Abstract
As new methods to interrogate glycan organization on cells develop, it is important to have a molecular level understanding of how chemical fixation can impact results and interpretations. Site-directed spin labeling technologies are well suited to study how the spin label mobility is impacted by local environmental conditions, such as those imposed by cross-linking effects of paraformaldehyde cell fixation methods. Here, we utilize three different azide-containing sugars for metabolic glycan engineering with HeLa cells to incorporate azido glycans that are modified with a DBCO-based nitroxide moiety via click reaction. Continuous wave X-band electron paramagnetic resonance spectroscopy is employed to characterize how the chronological sequence of chemical fixation and spin labeling impacts the local mobility and accessibility of the nitroxide-labeled glycans in the glycocalyx of HeLa cells. Results demonstrate that chemical fixation with paraformaldehyde can alter local glycan mobility and care should be taken in the analysis of data in any study where chemical fixation and cellular labeling occur.
Collapse
Affiliation(s)
- Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Trang T Tran
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Jiatong Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Mingwei Zhou
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Sayan Kundu
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Martinho M, Allegro D, Etienne E, Lohberger C, Bonucci A, Belle V, Barbier P. Structural Flexibility of Tau in Its Interaction with Microtubules as Viewed by Site-Directed Spin Labeling EPR Spectroscopy. Methods Mol Biol 2024; 2754:55-75. [PMID: 38512660 DOI: 10.1007/978-1-0716-3629-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tau is a microtubule-associated protein that belongs to the Intrinsically Disordered Proteins (IDPs) family. IDPs or Intrinsically Disordered Regions (IDRs) play key roles in protein interaction networks and their dysfunctions are often related to severe diseases. Defined by their lack of stable secondary and tertiary structures in physiological conditions while being functional, these proteins use their inherent structural flexibility to adapt to and interact with various binding partners. Knowledges on the structural dynamics of IDPs and their different conformers are crucial to finely decipher fundamental biological processes controlled by mechanisms such as conformational adaptations or switches, induced fit, or conformational selection events. Different mechanisms of binding have been proposed: among them, the so-called folding-upon-binding in which the IDP adopts a certain conformation upon interacting with a partner protein, or the formation of a "fuzzy" complex in which the IDP partly keeps its dynamical character at the surface of its partner. The dynamical nature and physicochemical properties of unbound as well as bound IDPs make this class of proteins particularly difficult to characterize by classical bio-structural techniques and require specific approaches for the fine description of their inherent dynamics.Among other techniques, Site-Directed Spin Labeling combined with Electron Paramagnetic Resonance (SDSL-EPR) spectroscopy has gained much interest in this last decade for the study of IDPs. SDSL-EPR consists in grafting a paramagnetic label (mainly a nitroxide radical) at selected site(s) of the macromolecule under interest followed by its observation using and/or combining different EPR strategies. These nitroxide spin labels detected by continuous wave (cw) EPR spectroscopy are used as perfect reporters or "spy spins" of their local environment, being able to reveal structural transitions, folding/unfolding events, etc. Another approach is based on the measurement of inter-label distance distributions in the 1.5-8.0 nm range using pulsed dipolar EPR experiments, such as Double Electron-Electron Resonance (DEER) spectroscopy. The technique is then particularly well suited to study the behavior of Tau in its interaction with its physiological partner: microtubules (MTs). In this chapter we provide a detailed experimental protocol for the labeling of Tau protein and its EPR study while interacting with preformed (Paclitaxel-stabilized) MTs, or using Tau as MT inducer. We show how the choice of nitroxide label can be crucial to obtain functional information on Tau/tubulin complexes.
Collapse
Affiliation(s)
| | - Diane Allegro
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | - Cynthia Lohberger
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | | | - Pascale Barbier
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| |
Collapse
|
3
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
4
|
Dunleavy KM, Li T, Milshteyn E, Jaufer AM, Walker SA, Fanucci GE. Charge Distribution Patterns of IA 3 Impact Conformational Expansion and Hydration Diffusivity of the Disordered Ensemble. J Phys Chem B 2023; 127:9734-9746. [PMID: 37936402 DOI: 10.1021/acs.jpcb.3c06170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
IA3 is a 68 amino acid natural peptide/protein inhibitor of yeast aspartic proteinase A (YPRA) that is intrinsically disordered in solution with induced N-terminal helicity when in the protein complex with YPRA. Based on the intrinsically disordered protein (IDP) parameters of fractional net charge (FNC), net charge density per residue (NCPR), and charge patterning (κ), the two domains of IA3 are defined to occupy different domains within conformationally based subclasses of IDPs, thus making IA3 a bimodal domain IDP. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and low-field Overhauser dynamic nuclear polarization (ODNP) spectroscopy results show that these two domains possess different degrees of compaction and hydration diffusivity behavior. This work suggests that SDSL EPR line shapes, analyzed in terms of their local tumbling volume (VL), provide insights into the compaction of the unstructured IDP ensemble in solution and that protein sequence and net charge distribution patterns within a conformational subclass can impact bound water hydration dynamics, thus possibly offering an alternative thermodynamic property that can encode conformational binding and behavior of IDPs and liquid-liquid phase separations.
Collapse
Affiliation(s)
- Katie M Dunleavy
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Tianyan Li
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Eugene Milshteyn
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Afnan M Jaufer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Shamon A Walker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
Zanotti LC, Malizia F, Cesatti Laluce N, Avila A, Mamberto M, Anselmino LE, Menacho-Márquez M. Synuclein Proteins in Cancer Development and Progression. Biomolecules 2023; 13:980. [PMID: 37371560 PMCID: PMC10296229 DOI: 10.3390/biom13060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Synucleins are a family of small, soluble proteins mainly expressed in neural tissue and in certain tumors. Since their discovery, tens of thousands of scientific reports have been published about this family of proteins as they are associated with severe human diseases. Although the physiological function of these proteins is still elusive, their relationship with neurodegeneration and cancer has been clearly described over the years. In this review, we summarize data connecting synucleins and cancer, going from the structural description of these molecules to their involvement in tumor-related processes, and discuss the putative use of these proteins as cancer molecular biomarkers.
Collapse
Affiliation(s)
- Lucía C. Zanotti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Florencia Malizia
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Nahuel Cesatti Laluce
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Aylén Avila
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Macarena Mamberto
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Luciano E. Anselmino
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| | - Mauricio Menacho-Márquez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 3100, Argentina
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina
- Centro de Investigación del Cáncer de Rosario, Red de Investigación del Cáncer de Rosario (RICaR), 37007 Salamanca, Spain
| |
Collapse
|
6
|
Dunleavy KM, Oi C, Li T, Secunda A, Jaufer AM, Zhu Y, Friedman L, Kim A, Fanucci GE. Hydrogen Bonding Compensation on the Convex Solvent-Exposed Helical Face of IA 3, an Intrinsically Disordered Protein. Biochemistry 2023. [PMID: 37198000 DOI: 10.1021/acs.biochem.3c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Saccharomyces cerevisiae IA3 is a 68 amino acid peptide inhibitor of yeast proteinase A (YPRA) characterized as a random coil when in solution, folding into an N-terminal amphipathic alpha helix for residues 2-32 when bound to YPRA, with residues 33-68 unresolved in the crystal complex. Circular dichroism (CD) spectroscopy results show that amino acid substitutions that remove hydrogen-bonding interactions observed within the hydrophilic face of the N-terminal domain (NTD) of IA3-YPRA crystal complex reduce the 2,2,2-trifluoroethanol (TFE)-induced helical transition in solution. Although nearly all substitutions decreased TFE-induced helicity compared to wild-type (WT), each construct did retain helical character in the presence of 30% (v/v) TFE and retained disorder in the absence of TFE. The NTDs of 8 different Saccharomyces species have nearly identical amino acid sequences, indicating that the NTD of IA3 may be highly evolved to adopt a helical fold when bound to YPRA and in the presence of TFE but remain unstructured in solution. Only one natural amino acid substitution explored within the solvent-exposed face of the NTD of IA3 induced TFE-helicity greater than the WT sequence. However, chemical modification of a cysteine by a nitroxide spin label that contains an acetamide side chain did enhance TFE-induced helicity. This finding suggests that non-natural amino acids that can increase hydrogen bonding or alter hydration through side-chain interactions may be important to consider when rationally designing intrinsically disordered proteins (IDPs) with varied biotechnological applications.
Collapse
Affiliation(s)
- Katie M Dunleavy
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Collin Oi
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Tianyan Li
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Andrew Secunda
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Afnan M Jaufer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Yinlu Zhu
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Lee Friedman
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Alexander Kim
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Saikia N, Yanez-Orozco IS, Qiu R, Hao P, Milikisiyants S, Ou E, Hamilton GL, Weninger KR, Smirnova TI, Sanabria H, Ding F. Integrative structural dynamics probing of the conformational heterogeneity in synaptosomal-associated protein 25. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100616. [PMID: 34888535 PMCID: PMC8654206 DOI: 10.1016/j.xcrp.2021.100616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
SNAP-25 (synaptosomal-associated protein of 25 kDa) is a prototypical intrinsically disordered protein (IDP) that is unstructured by itself but forms coiled-coil helices in the SNARE complex. With high conformational heterogeneity, detailed structural dynamics of unbound SNAP-25 remain elusive. Here, we report an integrative method to probe the structural dynamics of SNAP-25 by combining replica-exchange discrete molecular dynamics (rxDMD) simulations and label-based experiments at ensemble and single-molecule levels. The rxDMD simulations systematically characterize the coil-to-molten globular transition and reconstruct structural ensemble consistent with prior ensemble experiments. Label-based experiments using Förster resonance energy transfer and double electron-electron resonance further probe the conformational dynamics of SNAP-25. Agreements between simulations and experiments under both ensemble and single-molecule conditions allow us to assign specific helix-coil transitions in SNAP-25 that occur in submillisecond timescales and potentially play a vital role in forming the SNARE complex. We expect that this integrative approach may help further our understanding of IDPs.
Collapse
Affiliation(s)
- Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Chemistry, Navajo Technical University, Chinle, AZ 86503, USA
| | | | - Ruoyi Qiu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Pengyu Hao
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Erkang Ou
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - George L. Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Keith R. Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Tatyana I. Smirnova
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Lead contact
| |
Collapse
|
8
|
Argudo PG, Giner-Casares JJ. Folding and self-assembly of short intrinsically disordered peptides and protein regions. NANOSCALE ADVANCES 2021; 3:1789-1812. [PMID: 36133101 PMCID: PMC9417027 DOI: 10.1039/d0na00941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/17/2021] [Indexed: 05/15/2023]
Abstract
Proteins and peptide fragments are highly relevant building blocks in self-assembly for nanostructures with plenty of applications. Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are defined by the absence of a well-defined secondary structure, yet IDPs/IDRs show a significant biological activity. Experimental techniques and computational modelling procedures for the characterization of IDPs/IDRs are discussed. Directed self-assembly of IDPs/IDRs allows reaching a large variety of nanostructures. Hybrid materials based on the derivatives of IDPs/IDRs show a promising performance as alternative biocides and nanodrugs. Cell mimicking, in vivo compartmentalization, and bone regeneration are demonstrated for IDPs/IDRs in biotechnological applications. The exciting possibilities of IDPs/IDRs in nanotechnology with relevant biological applications are shown.
Collapse
Affiliation(s)
- Pablo G Argudo
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO 16 Avenue Pey-Berland 33600 Pessac France
| | - Juan J Giner-Casares
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO) Campus de Rabanales, Ed. Marie Curie E-14071 Córdoba Spain
| |
Collapse
|
9
|
Jaiswal M, Tran TT, Li Q, Yan X, Zhou M, Kundu K, Fanucci GE, Guo Z. A metabolically engineered spin-labeling approach for studying glycans on cells. Chem Sci 2020; 11:12522-12532. [PMID: 34094453 PMCID: PMC8162880 DOI: 10.1039/d0sc03874a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022] Open
Abstract
Metabolic glycan engineering (MGE) coupled with nitroxide spin-labeling (SL) was utilized to investigate the heterogeneous environment of cell surface glycans in select cancer and normal cells. This approach exploited the incorporation of azides into cell surface glycans followed by a click reaction with a new nitroxide spin label. Both sialic acid and N-acetylglucosamine (GlcNAc) were targeted for spin labelling. Although each of these moieties experiences a diverse and heterogeneous glycan environment, their EPR spectra and hence mobility are both characterized as a linear combination of two distinct spectra where one component reflects a highly mobile or uncrowded micro-environment with the second component reflecting more restricted motion, reflective of increased crowding and packing within the glycocalyx. What differs among the spectra of the targeted glycans is the relative percentage of each component, with sialic acid moieties experiencing on average an ∼80% less crowded environment, where conversely GlcNAc/GalNAz labeled sites reported on average a ∼50% more crowded environment. These distinct environments are consistent with the organization of sugar moieties within cellular glycans where some residues occur close to the cell membrane/protein backbone (i.e. more restricted) and others are more terminal in the glycan (i.e. more mobile). Strikingly, different cell lines displayed varied relative populations of these two components, suggesting distinctive glycan packing, organization, and composition of different cells. This work demonstrates the capability of SDSL EPR to be a broadly useful tool for studying glycans on cells, and interpretation of the results provides insights for distinguishing the differences and changes in the local organization and heterogeneity of the cellular glycocalyx.
Collapse
Affiliation(s)
- Mohit Jaiswal
- Department of Chemistry, University of Florida 214 Leigh Hall Gainesville FL 32611 USA
| | - Trang T Tran
- Department of Chemistry, University of Florida 214 Leigh Hall Gainesville FL 32611 USA
| | - Qingjiang Li
- Department of Chemistry, University of Florida 214 Leigh Hall Gainesville FL 32611 USA
| | - Xin Yan
- Department of Chemistry, University of Florida 214 Leigh Hall Gainesville FL 32611 USA
| | - Mingwei Zhou
- Department of Chemistry, University of Florida 214 Leigh Hall Gainesville FL 32611 USA
| | - Krishnendu Kundu
- National High Magnetic Field Laboratory, Florida State University Tallahassee Florida 32310 USA
| | - Gail E Fanucci
- Department of Chemistry, University of Florida 214 Leigh Hall Gainesville FL 32611 USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida 214 Leigh Hall Gainesville FL 32611 USA
| |
Collapse
|
10
|
Chow GK, Chavan AG, Heisler JC, Chang YG, LiWang A, Britt RD. Monitoring Protein-Protein Interactions in the Cyanobacterial Circadian Clock in Real Time via Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2020; 59:2387-2400. [PMID: 32453554 PMCID: PMC7346098 DOI: 10.1021/acs.biochem.0c00279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The cyanobacterial circadian clock
in Synechococcus elongatus consists of three proteins,
KaiA, KaiB, and KaiC. KaiA and KaiB
rhythmically interact with KaiC to generate stable oscillations of
KaiC phosphorylation with a period of 24 h. The observation of stable
circadian oscillations when the three clock proteins are reconstituted
and combined in vitro makes it an ideal system for understanding its
underlying molecular mechanisms and circadian clocks in general. These
oscillations were historically monitored in vitro by gel electrophoresis
of reaction mixtures based on the differing electrophoretic mobilities
between various phosphostates of KaiC. As the KaiC phospho-distribution
represents only one facet of the oscillations, orthogonal tools are
necessary to explore other interactions to generate a full description
of the system. However, previous biochemical assays are discontinuous
or qualitative. To circumvent these limitations, we developed a spin-labeled
KaiB mutant that can differentiate KaiC-bound KaiB from free KaiB
using continuous-wave electron paramagnetic resonance spectroscopy
that is minimally sensitive to KaiA. Similar to wild-type (WT-KaiB),
this labeled mutant, in combination with KaiA, sustains robust circadian
rhythms of KaiC phosphorylation. This labeled mutant is hence a functional
surrogate of WT-KaiB and thus participates in and reports on autonomous
macroscopic circadian rhythms generated by mixtures that include KaiA,
KaiC, and ATP. Quantitative kinetics could be extracted with improved
precision and time resolution. We describe design principles, data
analysis, and limitations of this quantitative binding assay and discuss
future research necessary to overcome these challenges.
Collapse
Affiliation(s)
- Gary K Chow
- Department of Chemistry, University of California, Davis, California 95616, United States
| | | | | | | | - Andy LiWang
- Center for Circadian Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
11
|
Izmailov SA, Rabdano SO, Hasanbasri Z, Podkorytov IS, Saxena S, Skrynnikov NR. Structural and dynamic origins of ESR lineshapes in spin-labeled GB1 domain: the insights from spin dynamics simulations based on long MD trajectories. Sci Rep 2020; 10:957. [PMID: 31969574 PMCID: PMC6976580 DOI: 10.1038/s41598-019-56750-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/06/2019] [Indexed: 12/04/2022] Open
Abstract
Site-directed spin labeling (SDSL) ESR is a valuable tool to probe protein systems that are not amenable to characterization by x-ray crystallography, NMR or EM. While general principles that govern the shape of SDSL ESR spectra are known, its precise relationship with protein structure and dynamics is still not fully understood. To address this problem, we designed seven variants of GB1 domain bearing R1 spin label and recorded the corresponding MD trajectories (combined length 180 μs). The MD data were subsequently used to calculate time evolution of the relevant spin density matrix and thus predict the ESR spectra. The simulated spectra proved to be in good agreement with the experiment. Further analysis confirmed that the spectral shape primarily reflects the degree of steric confinement of the R1 tag and, for the well-folded protein such as GB1, offers little information on local backbone dynamics. The rotameric preferences of R1 side chain are determined by the type of the secondary structure at the attachment site. The rotameric jumps involving dihedral angles χ1 and χ2 are sufficiently fast to directly influence the ESR lineshapes. However, the jumps involving multiple dihedral angles tend to occur in (anti)correlated manner, causing smaller-than-expected movements of the R1 proxyl ring. Of interest, ESR spectra of GB1 domain with solvent-exposed spin label can be accurately reproduced by means of Redfield theory. In particular, the asymmetric character of the spectra is attributable to Redfield-type cross-correlations. We envisage that the current MD-based, experimentally validated approach should lead to a more definitive, accurate picture of SDSL ESR experiments.
Collapse
Affiliation(s)
- Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Sevastyan O Rabdano
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Ivan S Podkorytov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Le Breton N, Longhi S, Rockenbauer A, Guigliarelli B, Marque SRA, Belle V, Martinho M. Probing the dynamic properties of two sites simultaneously in a protein–protein interaction process: a SDSL-EPR study. Phys Chem Chem Phys 2019; 21:22584-22588. [DOI: 10.1039/c9cp04660g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Probing two sites simultaneously in a protein–protein interaction process combining spin labels of different EPR signatures.
Collapse
Affiliation(s)
| | - S. Longhi
- Aix Marseille Univ
- CNRS
- AFMB
- Marseille
- France
| | - A. Rockenbauer
- Research Center of Natural Sciences
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | | | | | - V. Belle
- Aix Marseille Univ., CNRS, BIP
- Marseille
- France
| | - M. Martinho
- Aix Marseille Univ., CNRS, BIP
- Marseille
- France
| |
Collapse
|
13
|
Hines JP, Dent MR, Stevens DJ, Burstyn JN. Site-directed spin label electron paramagnetic resonance spectroscopy as a probe of conformational dynamics in the Fe(III) "locked-off" state of the CO-sensing transcription factor CooA. Protein Sci 2018; 27:1670-1679. [PMID: 30168206 PMCID: PMC6194275 DOI: 10.1002/pro.3449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 01/30/2023]
Abstract
The transcriptional activator CooA belongs to the CRP/FNR (cAMP receptor protein/fumarate and nitrate reductase) superfamily of transcriptional regulators and uses heme to sense carbon monoxide (CO). Effector-driven allosteric activation is well understood in CRP, a CooA homologue. A structural allosteric activation model for CooA exists which parallels that of CRP; however, the role of protein dynamics, which is crucial in CRP, is not well understood in CooA. We employed site-directed spin labeling electron paramagnetic resonance spectroscopy to probe CooA motions on the μs-ms timescale. We created a series of Cys substitution variants, each with a cysteine residue introduced into a key functional region of the protein: K26C, E60C, F132C, D134C, and S175C. The heme environment and DNA binding affinity of each variant were comparable to those of wild-type CooA, with the exception of F132C, which displayed reduced DNA binding affinity. This observation confirms a previously hypothesized role for Phe132 in transmitting the allosteric CO binding signal. Osmolyte perturbation studies of Fe(III) "locked-off" CooA variants labeled with either MTSL or MAL-6 nitroxide spin labels revealed that multicomponent EPR spectra report on conformational flexibility on the μs-ms timescale. Multiple dynamic populations exist at every site examined in the structurally uncharacterized Fe(III) "locked-off" CooA. This observation suggests that, in direct contrast to effector-free CRP, Fe(III) "locked-off" CooA undergoes conformational exchange on the μs-ms timescale. Importantly, we establish MAL-6 as a spin label with a redox-stable linkage that may be utilized to compare conformational dynamics between functional states of CooA.
Collapse
Affiliation(s)
- Judy P. Hines
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWisconsin
| | - Matthew R. Dent
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWisconsin
| | - Daniel J. Stevens
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWisconsin
| | - Judith N. Burstyn
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWisconsin
| |
Collapse
|
14
|
M. Dunleavy K, Milshteyn E, Sorrentino Z, L. Pirman N, Liu Z, B. Chandler M, W. D’Amore P, E. Fanucci G. Spin-label scanning reveals conformational sensitivity of the bound helical interfaces of IA<sub>3</sub>. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Liu Y, Yang M, Cheng H, Sun N, Liu S, Li S, Wang Y, Zheng Y, Uversky VN. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:1291-1303. [PMID: 28867216 DOI: 10.1016/j.bbapap.2017.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/08/2017] [Accepted: 08/27/2017] [Indexed: 12/29/2022]
Abstract
Enzymatically driven post-translated modifications (PTMs) usually happen within the intrinsically disordered regions of a target protein and can modulate variety of protein functions. Late embryogenesis abundant (LEA) proteins are a family of the plant intrinsically disordered proteins (IDPs). Despite their important roles in plant stress response, there is currently limited knowledge on the presence and functional and structural effects of phosphorylation on LEA proteins. In this study, we identified three phosphorylation sites (Ser90, Tyr136, and Thr266) in the soybean PM18 protein that belongs to the group-3 LEA proteins. In yeast expression system, PM18 protein increased the salt tolerance of yeast, and the phosphorylation of this protein further enhanced its protective function. Further analysis revealed that Ser90 and Tyr136 are more important than Thr266, and these two sites might work cooperatively in regulating the salt resistance function of PM18. The circular dichroism analysis showed that PM18 protein was disordered in aqueous media, and phosphorylation did not affect the disordered status of this protein. However, phosphorylation promoted formation of more helical structure in the presence of sodium dodecyl sulfate (SDS) or trifluoroethanol (TFE). Furthermore, in dedicated in vitro experiments, phosphorylated PM18 protein was able to better protect lactate dehydrogenase (LDH) from the inactivation induced by the freeze-thaw cycles than its un- or dephosphorylated forms. All these data indicate that phosphorylation may have regulatory effects on the stress-tolerance-related function of LEA proteins. Therefore, further studies are needed to shed more light on functional and structural roles of phosphorylation in LEA proteins.
Collapse
Affiliation(s)
- Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China.
| | - Meiyan Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Hua Cheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Shuiming Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yong Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yizhi Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia.
| |
Collapse
|
16
|
Etienne E, Le Breton N, Martinho M, Mileo E, Belle V. SimLabel: a graphical user interface to simulate continuous wave EPR spectra from site-directed spin labeling experiments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:714-719. [PMID: 28078740 DOI: 10.1002/mrc.4578] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 05/24/2023]
Abstract
Site-directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL-EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL-EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non-expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL-EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL-EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- E Etienne
- Aix Marseille Univ, CNRS, BIP (UMR 7281), IMM (FR 3479), Marseille, France
| | - N Le Breton
- Aix Marseille Univ, CNRS, BIP (UMR 7281), IMM (FR 3479), Marseille, France
- Queen Mary University of London, School of Biological and Chemical Sciences, UK
| | - M Martinho
- Aix Marseille Univ, CNRS, BIP (UMR 7281), IMM (FR 3479), Marseille, France
| | - E Mileo
- Aix Marseille Univ, CNRS, BIP (UMR 7281), IMM (FR 3479), Marseille, France
| | - V Belle
- Aix Marseille Univ, CNRS, BIP (UMR 7281), IMM (FR 3479), Marseille, France
| |
Collapse
|
17
|
Tiffany H, Sonkar K, Gage MJ. The insertion sequence of the N2A region of titin exists in an extended structure with helical characteristics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:1-10. [PMID: 27742555 DOI: 10.1016/j.bbapap.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
The giant sarcomere protein titin is the third filament in muscle and is integral to maintaining sarcomere integrity as well as contributing to both active and passive tension. Titin is a multi-domain protein that contains regions of repeated structural elements. The N2A region sits at the boundary between the proximal Ig region of titin that is extended under low force and the PEVK region that is extended under high force. Multiple binding interactions have been associated with the N2A region and it has been proposed that this region acts as a mechanical stretch sensor. The focus of this work is a 117 amino acid portion of the N2A region (N2A-IS), which resides between the proximal Ig domains and the PEVK region. Our work has shown that the N2A-IS region is predicted to contain helical structure in the center while both termini are predicted to be disordered. Recombinantly expressed N2A-IS protein contains 13% α-helical structure, as measured via circular dichroism. Additional α-helical structure can be induced with 2,2,2-trifluoroethanol, suggesting that there is transient helical structure that might be stabilized in the context of the entire N2A region. The N2A-IS region does not exhibit any cooperativity in either thermal or chemical denaturation studies while size exclusion chromatography and Fluorescence Resonance Energy Transfer demonstrates that the N2A-IS region has an extended structure. Combined, these results lead to a model of the N2A-IS region having a helical core with extended N- and C-termini.
Collapse
Affiliation(s)
- Holly Tiffany
- Department of Biology, Northern Arizona University, Flagstaff, AZ, United States
| | - Kanchan Sonkar
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, United States
| | - Matthew J Gage
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, United States; Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, United States; Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, United States.
| |
Collapse
|
18
|
Bartelli NL, Hazelbauer GL. Bacterial Chemoreceptor Dynamics: Helical Stability in the Cytoplasmic Domain Varies with Functional Segment and Adaptational Modification. J Mol Biol 2016; 428:3789-804. [PMID: 27318193 PMCID: PMC5193150 DOI: 10.1016/j.jmb.2016.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/28/2022]
Abstract
Dynamics are thought to be important features of structure and signaling in the cytoplasmic domain of bacterial chemoreceptors. However, little is known about which structural features are dynamic. For this largely helical domain, comprising a four-helix bundle and an extended four-helix coiled coil, functionally important structural dynamics likely involves helical mobility and stability. To investigate, we used continuous wave EPR spectroscopy and site-specific spin labels that directly probed, in essentially physiological conditions, the mobility of helical backbones in the cytoplasmic domain of intact chemoreceptor Tar homodimers inserted into lipid bilayers of Nanodiscs. We observed differences among functional regions, between companion helices in helical hairpins of the coiled coil and between receptor conformational states generated by adaptational modification. Increased adaptational modification decreased helical dynamics while preserving dynamics differences among functional regions and between companion helices. In contrast, receptor ligand occupancy did not have a discernable effect on dynamics to which our approach was sensitive, implying that the two sensory inputs alter different chemoreceptor features. Spectral fitting indicated that differences in helical dynamics we observed for ensemble spin-label mobility reflected differences in proportions of a minority receptor population in which the otherwise helical backbone was essentially disordered. We suggest that our measurements provided site-specific snapshots of equilibria between a majority state of well-ordered helix and a minority state of locally disordered polypeptide backbone. Thus, the proportion of polypeptide chain that is locally and presumably transiently disordered is a structural feature of cytoplasmic domain dynamics that varies with functional region and modification-induced signaling state.
Collapse
Affiliation(s)
- Nicholas L Bartelli
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA
| | - Gerald L Hazelbauer
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
19
|
Song L, Liu Z, Kaur P, Esquiaqui JM, Hunter RI, Hill S, Smith GM, Fanucci GE. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 265:188-196. [PMID: 26923151 DOI: 10.1016/j.jmr.2016.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W-(∼94 GHz) and D-band (∼140 GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100 ps to 2 ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232 nt RNA. For sample volumes of ∼50 μL, concentration sensitivities of 2-20 μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry.
Collapse
Affiliation(s)
- Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Zhanglong Liu
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Pavanjeet Kaur
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Jackie M Esquiaqui
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Robert I Hunter
- School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, United Kingdom
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA; Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Graham M Smith
- School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, United Kingdom
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA.
| |
Collapse
|
20
|
Le Breton N, Adrianaivomananjaona T, Gerbaud G, Etienne E, Bisetto E, Dautant A, Guigliarelli B, Haraux F, Martinho M, Belle V. Dimerization interface and dynamic properties of yeast IF1 revealed by Site-Directed Spin Labeling EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:89-97. [PMID: 26518384 DOI: 10.1016/j.bbabio.2015.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 11/21/2022]
Abstract
The mitochondrial ATPase inhibitor, IF1, regulates the activity of the mitochondrial ATP synthase. The oligomeric state of IF1 related to pH is crucial for its inhibitory activity. Although extensive structural studies have been performed to characterize the oligomeric states of bovine IF1, only little is known concerning those of yeast IF1. While bovine IF1 can be found as an inhibitory dimer at low pH and a non-inhibitory tetramer at high pH, a monomer/dimer equilibrium has been described for yeast IF1, high pH values favoring the monomeric state. Combining different strategies involving the grafting of nitroxide spin labels combined with Electron Paramagnetic Resonance (EPR) spectroscopy, the present study brings the first structural characterization, at the residue level, of yeast IF1 in its dimeric form. The results show that the dimerization interface involves the central region of the peptide revealing that the dimer corresponds to a non-inhibitory state. Moreover, we demonstrate that the C-terminal region of the peptide is highly dynamic and that this segment is probably folded back onto the central region. Finally, the pH-dependence of the inter-label distance distribution has been observed indicating a conformational change between two structural states in the dimer.
Collapse
Affiliation(s)
- Nolwenn Le Breton
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Tiona Adrianaivomananjaona
- Lifesearch, 72 rue du Fauboug St Honoré, F-75008 Paris, France; CEA, Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France; CEA, CNRS, Université Paris Sud, Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, F-91191 Gif sur Yvette, France
| | - Guillaume Gerbaud
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Emilien Etienne
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Elena Bisetto
- CEA, Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France; Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe 4, I-33100 Udine, Italy
| | - Alain Dautant
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France
| | - Bruno Guigliarelli
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Francis Haraux
- CEA, Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France; CEA, CNRS, Université Paris Sud, Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, F-91191 Gif sur Yvette, France.
| | - Marlène Martinho
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Valérie Belle
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France.
| |
Collapse
|
21
|
Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an “Elephant and Blind Men” Situation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:215-60. [DOI: 10.1007/978-3-319-20164-1_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Bartelli NL, Hazelbauer GL. Differential backbone dynamics of companion helices in the extended helical coiled-coil domain of a bacterial chemoreceptor. Protein Sci 2015; 24:1764-76. [PMID: 26257396 DOI: 10.1002/pro.2767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/25/2022]
Abstract
Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four-helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent-exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin-labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane-distal tight turn (N-helix), and the other carboxyl terminal (C-helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide-spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N- and C-helices. For bilayer-inserted receptors, EPR spectra from sites in the membrane-distal protein-interaction region and throughout the C-helix were typical of well-structured helices. In contrast, for approximately two-thirds of the N-helix, from its origin as the AS-2 helix of the membrane-proximal HAMP domain to the beginning of the membrane-distal protein-interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four-helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.
Collapse
Affiliation(s)
- Nicholas L Bartelli
- Department of Biochemistry, University of Missouri Columbia, 117 Schweitzer Hall, Missouri, 65211
| | - Gerald L Hazelbauer
- Department of Biochemistry, University of Missouri Columbia, 117 Schweitzer Hall, Missouri, 65211
| |
Collapse
|
23
|
Turner AL, Braide O, Mills FD, Fanucci GE, Long JR. Residue specific partitioning of KL4 into phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3212-9. [DOI: 10.1016/j.bbamem.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/24/2014] [Accepted: 09/15/2014] [Indexed: 01/14/2023]
|
24
|
Casey TM, Liu Z, Esquiaqui JM, Pirman NL, Milshteyn E, Fanucci GE. Continuous wave W- and D-band EPR spectroscopy offer "sweet-spots" for characterizing conformational changes and dynamics in intrinsically disordered proteins. Biochem Biophys Res Commun 2014; 450:723-8. [PMID: 24950408 DOI: 10.1016/j.bbrc.2014.06.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 11/28/2022]
Abstract
Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for characterizing conformational sampling and dynamics in biological macromolecules. Here we demonstrate that nitroxide spectra collected at frequencies higher than X-band (∼9.5 GHz) have sensitivity to the timescale of motion sampled by highly dynamic intrinsically disordered proteins (IDPs). The 68 amino acid protein IA3, was spin-labeled at two distinct sites and a comparison of X-band, Q-band (35 GHz) and W-band (95 GHz) spectra are shown for this protein as it undergoes the helical transition chemically induced by tri-fluoroethanol. Experimental spectra at W-band showed pronounced line shape dispersion corresponding to a change in correlation time from ∼0.3 ns (unstructured) to ∼0.6 ns (α-helical) as indicated by comparison with simulations. Experimental and simulated spectra at X- and Q-bands showed minimal dispersion over this range, illustrating the utility of SDSL EPR at higher frequencies for characterizing structural transitions and dynamics in IDPs.
Collapse
Affiliation(s)
- Thomas M Casey
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Zhanglong Liu
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Jackie M Esquiaqui
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Natasha L Pirman
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Eugene Milshteyn
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA.
| |
Collapse
|
25
|
Sára T, Schwarz TC, Kurzbach D, Wunderlich CH, Kreutz C, Konrat R. Magnetic resonance access to transiently formed protein complexes. ChemistryOpen 2014; 3:115-23. [PMID: 25050230 PMCID: PMC4101727 DOI: 10.1002/open.201402008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 12/22/2022] Open
Abstract
Protein-protein interactions are of utmost importance to an understanding of biological phenomena since non-covalent and therefore reversible couplings between basic proteins leads to the formation of complex regulatory and adaptive molecular systems. Such systems are capable of maintaining their integrity and respond to external stimuli, processes intimately related to living organisms. These interactions, however, span a wide range of dissociation constants, from sub-nanomolar affinities in tight complexes to high-micromolar or even millimolar affinities in weak, transiently formed protein complexes. Herein, we demonstrate how novel NMR and EPR techniques can be used for the characterization of weak protein-protein (ligand) complexes. Applications to intrinsically disordered proteins and transiently formed protein complexes illustrate the potential of these novel techniques to study hitherto unobserved (and unobservable) higher-order structures of proteins.
Collapse
Affiliation(s)
- Tomáš Sára
- Department of Structural and Computational Biology Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna (Austria) E-mail:
| | - Thomas C Schwarz
- Department of Structural and Computational Biology Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna (Austria) E-mail:
| | - Dennis Kurzbach
- Department of Structural and Computational Biology Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna (Austria) E-mail:
| | - Christoph H Wunderlich
- Institute of Organic Chemistry and CMBI, University of Innsbruck Innrain 80/82, 6020 Innsbruck (Austria)
| | - Christoph Kreutz
- Institute of Organic Chemistry and CMBI, University of Innsbruck Innrain 80/82, 6020 Innsbruck (Austria)
| | - Robert Konrat
- Department of Structural and Computational Biology Max F. Perutz Laboratories Vienna Biocenter Campus 5, 1030 Vienna (Austria) E-mail:
| |
Collapse
|
26
|
Mileo E, Lorenzi M, Erales J, Lignon S, Puppo C, Le Breton N, Etienne E, Marque SRA, Guigliarelli B, Gontero B, Belle V. Dynamics of the intrinsically disordered protein CP12 in its association with GAPDH in the green alga Chlamydomonas reinhardtii: a fuzzy complex. MOLECULAR BIOSYSTEMS 2014; 9:2869-76. [PMID: 24056937 DOI: 10.1039/c3mb70190e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CP12 is a widespread regulatory protein of oxygenic photosynthetic organisms that contributes to the regulation of the Calvin cycle by forming a supra-molecular complex with at least two enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK). CP12 shares some similarities with intrinsically disordered proteins (IDPs) depending on its redox state. In this study, site-directed spin labeling (SDSL) combined with EPR spectroscopy was used to probe the dynamic behavior of CP12 from Chlamydomonas reinhardtii upon binding to GAPDH, the first step towards ternary complex formation. The two N-terminal cysteine residues were labeled using the classical approach while the tyrosine located at the C-terminal end of CP12 was modified following an original procedure. The results show that the label grafted at the C-terminal extremity is in the vicinity of the interaction site whereas the N-terminal region remains fully disordered upon binding to GAPDH. In conclusion, GAPDH-CP12 is a fuzzy complex, in which the N-terminal region of CP12 keeps a conformational freedom in the bound form. This fuzziness could be one of the keys to facilitate binding of PRK to CP12-GAPDH and to form the ternary supra-molecular complex.
Collapse
Affiliation(s)
- Elisabetta Mileo
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Breton NL, Martinho M, Kabytaev K, Topin J, Mileo E, Blocquel D, Habchi J, Longhi S, Rockenbauer A, Golebiowski J, Guigliarelli B, Marque SRA, Belle V. Diversification of EPR signatures in site directed spin labeling using a β-phosphorylated nitroxide. Phys Chem Chem Phys 2014; 16:4202-9. [DOI: 10.1039/c3cp54816c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Mileo E, Etienne E, Martinho M, Lebrun R, Roubaud V, Tordo P, Gontero B, Guigliarelli B, Marque SRA, Belle V. Enlarging the Panoply of Site-Directed Spin Labeling Electron Paramagnetic Resonance (SDSL-EPR): Sensitive and Selective Spin-Labeling of Tyrosine Using an Isoindoline-Based Nitroxide. Bioconjug Chem 2013; 24:1110-7. [DOI: 10.1021/bc4000542] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elisabetta Mileo
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille Cedex
20, France
| | - Emilien Etienne
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille Cedex
20, France
| | - Marlène Martinho
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille Cedex
20, France
| | - Régine Lebrun
- Aix-Marseille Université, Plate-forme Protéomique
IMM, 31 chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | - Valérie Roubaud
- Aix-Marseille Université, CNRS, ICR UMR 7273, Avenue Escadrille
Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Paul Tordo
- Aix-Marseille Université, CNRS, ICR UMR 7273, Avenue Escadrille
Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Brigitte Gontero
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille Cedex
20, France
| | - Bruno Guigliarelli
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille Cedex
20, France
| | - Sylvain R. A. Marque
- Aix-Marseille Université, CNRS, ICR UMR 7273, Avenue Escadrille
Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Valérie Belle
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille Cedex
20, France
| |
Collapse
|
29
|
Martinho M, Habchi J, El Habre Z, Nesme L, Guigliarelli B, Belle V, Longhi S. Assessing induced folding within the intrinsically disordered C-terminal domain of the Henipavirus nucleoproteins by site-directed spin labeling EPR spectroscopy. J Biomol Struct Dyn 2012; 31:453-71. [PMID: 22881220 DOI: 10.1080/07391102.2012.706068] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This work aims at characterizing structural transitions within the intrinsically disordered C-terminal domain of the nucleoprotein (NTAIL) from the Nipah and Hendra viruses, two recently emerged pathogens gathered within the Henipavirus genus. To this end, we used site-directed spin labeling combined with electron paramagnetic resonance spectroscopy to investigate the α-helical-induced folding that Henipavirus NTAIL domains undergo in the presence of the C-terminal X domain of the phosphoprotein (PXD). For each NTAIL protein, six positions located within four previously proposed molecular recognition elements (MoREs) were targeted for spin labeling, with three of these positions (475, 481, and 487) falling within the MoRE responsible for binding to PXD (Box3). A detailed analysis of the impact of the partner protein on the labeled NTAIL variants revealed a dramatic modification in the environment of the spin labels grafted within Box3, with the observed modifications supporting the formation of an induced α-helix within this region. In the free state, the slightly lower mobility of the spin labels grafted within Box3 as compared to the other positions suggests the existence of a transiently populated α-helix, as already reported for measles virus (MeV) NTAIL. Comparison with the well-characterized MeV NTAIL-PXD system, allowed us to validate the structural models of Henipavirus NTAIL-PXD complexes that we previously proposed. In addition, this study highlighted a few notable differences between the Nipah and Hendra viruses. In particular, the observation of composite spectra for the free form of the Nipah virus NTAIL variants spin labeled in Box3 supports conformational heterogeneity of this partly pre-configured α-helix, with the pre-existence of stable α-helical segments. Altogether these results provide insights into the molecular mechanisms of the Henipavirus NTAIL-PXD binding reaction.
Collapse
Affiliation(s)
- Marlène Martinho
- CNRS, Aix Marseille Université, IMM FR 3479, BIP UMR 7281, 13402 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Habchi J, Martinho M, Gruet A, Guigliarelli B, Longhi S, Belle V. Monitoring structural transitions in IDPs by site-directed spin labeling EPR spectroscopy. Methods Mol Biol 2012; 895:361-386. [PMID: 22760328 DOI: 10.1007/978-1-61779-927-3_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a technique that specifically detects unpaired electrons. EPR sensitive reporter groups (spin labels or spin probes) can be introduced into biological systems via site-directed spin labeling (SDSL). This is usually accomplished by cysteine-substitution mutagenesis followed by covalent modification of the unique sulfhydryl group with a selective nitroxide reagent. SDSL EPR spectroscopy has been shown to be a sensitive and powerful method to study structural transitions within intrinsically disordered proteins (IDPs). In this chapter, we provide a detailed experimental protocol for this approach and present a few examples of EPR spectral shapes illustrative of various mobility regimes of the spin probe, reflecting different protein topologies.
Collapse
Affiliation(s)
- Johnny Habchi
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS and Aix-Marseille Université, Marseille, France
| | | | | | | | | | | |
Collapse
|
31
|
Bartelli NL, Hazelbauer GL. Direct evidence that the carboxyl-terminal sequence of a bacterial chemoreceptor is an unstructured linker and enzyme tether. Protein Sci 2011; 20:1856-66. [PMID: 21858888 PMCID: PMC3267950 DOI: 10.1002/pro.719] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/07/2011] [Accepted: 08/09/2011] [Indexed: 12/21/2022]
Abstract
Sensory adaptation in bacterial chemotaxis involves reversible methylation of specific glutamyl residues on chemoreceptors. The reactions are catalyzed by a dedicated methyltransferase and dedicated methylesterase. In Escherichia coli and related organisms, control of these enzymes includes an evolutionarily recent addition of interaction with a pentapeptide activator located at the carboxyl terminus of the receptor polypeptide chain. Effective enzyme activation requires not only the pentapeptide but also a segment of the receptor polypeptide chain between that sequence and the coiled-coil body of the chemoreceptor. This segment has features consistent with a role as a flexible and presumably unstructured linker and enzyme tether, but there has been no direct information about its structure. We used site-directed spin labeling and electron paramagnetic resonance spectroscopy to characterize structural features of the carboxyl-terminal 40 residues of E. coli chemoreceptor Tar. Beginning ∼ 35 residues from the carboxyl terminus and continuing to the end of the protein, spectra of spin-labeled Tar embedded in native membranes or in reconstituted proteoliposomes, exhibited mobilities characteristic of unstructured, disordered segments. Binding of methyltransferase substantially reduced mobility for positions in or near the pentapeptide but mobility for the linker sequence remained high, being only modestly reduced in a gradient of decreasing effects for 10-15 residues, a pattern consistent with the linker providing a flexible arm that would allow enzyme diffusion within defined limits. Thus, our data identify that the carboxyl-terminal linker between the receptor body and the pentapeptide is an unstructured, disordered segment that can serve as a flexible arm and enzyme tether.
Collapse
Affiliation(s)
| | - Gerald L Hazelbauer
- Department of Biochemistry117 Schweitzer HallUniversity of MissouriColumbia, Missouri 65211
| |
Collapse
|
32
|
Lorenzi M, Puppo C, Lebrun R, Lignon S, Roubaud V, Martinho M, Mileo E, Tordo P, Marque SRA, Gontero B, Guigliarelli B, Belle V. Tyrosine-targeted spin labeling and EPR spectroscopy: an alternative strategy for studying structural transitions in proteins. Angew Chem Int Ed Engl 2011; 50:9108-11. [PMID: 21919142 DOI: 10.1002/anie.201102539] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/03/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Magali Lorenzi
- Bioénergétique et Ingénierie des Protéines UPR 9036, CNRS, Aix-Marseille Université, Institut de Microbiologie de la Méditérranée, 31 chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lorenzi M, Puppo C, Lebrun R, Lignon S, Roubaud V, Martinho M, Mileo E, Tordo P, Marque SRA, Gontero B, Guigliarelli B, Belle V. Tyrosine-Targeted Spin Labeling and EPR Spectroscopy: An Alternative Strategy for Studying Structural Transitions in Proteins. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|