1
|
Zhang Y, Yu Y, Zhou H, Zhao M, Pan X. A novel function by cathepsin D in degradation of nucleic acids. Biochem Biophys Res Commun 2023; 682:250-258. [PMID: 37826948 DOI: 10.1016/j.bbrc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Cathepsin D (CTSD) is an aspartic endopeptidase, however, we found that it was also capable of enzymatic digestion of nucleic acids (NAs). The purpose of this study was to investigate the basic properties of CTSD enzymatic activity on NAs, and explore the degradation mechanism. The results showed that NAs were efficiently digested between pH 3.0 and 5.0, and the optimum pH was 3.5. CTSD exhibited optimum activity at the temperature of 50°C. The degradation rate was improved with an increased CTSD concentration, and NAs were digested to an enzyme concentration of 0.001%, at which point, NAs were no longer digested. Ca2+ and Mg2+ at low concentrations of 5 mM promoted the digestion remarkably. As the protein substrate for CTSD, both Hb and BSA had no effect on DNA degradation, even when the molar ratio of protein:DNA was 104:1. Kinetic parameters of Km and kcat/Km value were (42 ± 1) μM and (1.62 ± 0.1) × 10-2 s-1mM-1 respectively, using real-time quantitative PCR (RT-PCR). Specially, pepstatin A which is the specific aspartic protease inhibitor exhibited inhibitory effect on NA digestion by CTSD as well, suggesting that the catalytic active site of CTSD for NAs might be the same as protein. A brief degradation mechanism is discussed. The present study may change the cognition of CTSD specificity for substrate and contribute greatly to enzymology of CTSD.
Collapse
Affiliation(s)
- Yanfang Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong, China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai, Shandong, China; Institute of Bionanotechnology, Ludong University, Yantai, Shandong, China.
| | - Yingying Yu
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Haoran Zhou
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Mingyue Zhao
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Xiaoming Pan
- School of Food Engineering, Ludong University, Yantai, Shandong, China.
| |
Collapse
|
2
|
Rodriguez-Rios M, McHugh BJ, Liang Z, Megia-Fernandez A, Lilienkampf A, Dockrell D, Bradley M. A fluorogenic, peptide-based probe for the detection of Cathepsin D in macrophages. Commun Chem 2023; 6:237. [PMID: 37919467 PMCID: PMC10622513 DOI: 10.1038/s42004-023-01035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
Cathepsin D is a protease that is an effector in the immune response of macrophages, yet to date, only a limited number of probes have been developed for its detection. Herein, we report a water soluble, highly sensitive, pH insensitive fluorescent probe for the detection of Cathepsin D activity that provides a strong OFF/ON signal upon activation and with bright emission at 515 nm. The probe was synthesised using a combination of solid and solution-phase chemistries, with probe optimisation to increase its water solubility and activation kinetics by addition of a long PEG chain (5 kDa) at the C-terminus. A BODIPY fluorophore allowed detection of Cathepsin D across a wide pH range, important as the protease is active both at the low pH found in lysosomes and also in higher pH phagolysosomes, and in the cytosol. The probe was successfully used to detect Cathepsin D activity in macrophages challenged by exposure to bacteria.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Brian J McHugh
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
| | - Zhengqi Liang
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Alicia Megia-Fernandez
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
- Organic Chemistry Department, Faculty of Sciences, University of Granada, Avda. Fuente Nueva S/N, Granada, 18071, Spain
| | - Annamaria Lilienkampf
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - David Dockrell
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, 67-75 New Road, London, E1 1HH, UK.
| |
Collapse
|
3
|
Oda K, Dunn BM, Wlodawer A. Serine-Carboxyl Peptidases, Sedolisins: From Discovery to Evolution. Biochemistry 2022; 61:1643-1664. [PMID: 35862020 DOI: 10.1021/acs.biochem.2c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sedolisin is a proteolytic enzyme, listed in the peptidase database MEROPS as a founding member of clan SB, family S53. This enzyme, although active at low pH, was originally shown not to be inhibited by an aspartic peptidase specific inhibitor, S-PI (pepstatin Ac). In this Perspective, the S53 family is described from the moment of original identification to evolution. The representative enzymes of the family are sedolisin, kumamolisin, and TPP-1. They exhibit the following unique features. (1) The fold of the molecule is similar to that of subtilisin, but the catalytic residues consist of a triad, Ser/Glu/Asp, that is unlike the Ser/His/Asp triad of subtilisin. (2) The molecule is expressed as a pro-form composed of the amino-terminal prosegment and the active domain. Additionally, some members of this family have an additional, carboxy-terminal prosegment. (3) Their optimum pH for activity is in the acidic region, not in the neutral to alkaline region where subtilisin is active. (4) Their distribution in nature is very broad across the three kingdoms of life. (5) Some of these enzymes from fungi and bacteria are pathogens to plants. (6) Some of them have significant potential applications for industry. (7) The lack of a TPP-1 gene in human brain is the cause of incurable juvenile neuronal ceroid lipofuscinosis (Batten's disease).
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ben M Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610-0245, United States
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
4
|
Francisco CC, Luis CLJ, Marina EBJ, Javier CMF, Alexis LZA, Del Carmen SOH, Alfredo REI. Effect of Temperature and pH on the Secondary Structure and Denaturation Process of Jumbo Squid Hepatopancreas Cathepsin D. Protein Pept Lett 2019; 26:532-541. [PMID: 30950340 DOI: 10.2174/0929866526666190405124353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy. OBJECTIVE In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions. METHODS Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software. RESULTS It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified. CONCLUSION In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.
Collapse
Affiliation(s)
- Cadena-Cadena Francisco
- Departamento de Investigacion y Posgrado de Alimentos, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Cárdenas-López José Luis
- Departamento de Investigacion y Posgrado de Alimentos, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | | | | | | | | | | |
Collapse
|
5
|
Bhattacharya M, Sarkhel S, Peltoniemi J, Broadbridge R, Tuomainen M, Auriola S, Urtti A. Differentially cleaving peptides as a strategy for controlled drug release in human retinal pigment epithelial cells. J Control Release 2017; 251:37-48. [DOI: 10.1016/j.jconrel.2017.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/21/2022]
|
6
|
Vezenkov LL, Sanchez CA, Bellet V, Martin V, Maynadier M, Bettache N, Lisowski V, Martinez J, Garcia M, Amblard M, Hernandez JF. Structure-Activity Relationships of JMV4463, a Vectorized Cathepsin D Inhibitor with Antiproliferative Properties: The Unique Role of the AMPA-Based Vector. ChemMedChem 2015; 11:302-8. [DOI: 10.1002/cmdc.201500457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/19/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Lubomir L. Vezenkov
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Clément A. Sanchez
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Virginie Bellet
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Vincent Martin
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Marie Maynadier
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron (IBMM); UMR5247 CNRS; Université de Montpellier; ENSCM, Faculté de Pharmacie; 15 avenue Charles Flahault 34093 Montpellier Cedex 5 France
| |
Collapse
|
7
|
Liu P, Robbins AH, Marzahn MR, McClung SH, Yowell CA, Stevens SM, Dame JB, Dunn BM. Enzymatic Characterization of Recombinant Food Vacuole Plasmepsin 4 from the Rodent Malaria Parasite Plasmodium berghei. PLoS One 2015; 10:e0141758. [PMID: 26510189 PMCID: PMC4624963 DOI: 10.1371/journal.pone.0141758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/12/2015] [Indexed: 01/17/2023] Open
Abstract
The rodent malaria parasite Plasmodium berghei is a practical model organism for experimental studies of human malaria. Plasmepsins are a class of aspartic proteinase isoforms that exert multiple pathological effects in malaria parasites. Plasmepsins residing in the food vacuole (FV) of the parasite hydrolyze hemoglobin in red blood cells. In this study, we cloned PbPM4, the FV plasmepsin gene of P. berghei that encoded an N-terminally truncated pro-segment and the mature enzyme from genomic DNA. We over-expressed this PbPM4 zymogen as inclusion bodies (IB) in Escherichia coli, and purified the protein following in vitro IB refolding. Auto-maturation of the PbPM4 zymogen to mature enzyme was carried out at pH 4.5, 5.0, and 5.5. Interestingly, we found that the PbPM4 zymogen exhibited catalytic activity regardless of the presence of the pro-segment. We determined the optimal catalytic conditions for PbPM4 and studied enzyme kinetics on substrates and inhibitors of aspartic proteinases. Using combinatorial chemistry-based peptide libraries, we studied the active site preferences of PbPM4 at subsites S1, S2, S3, S1’, S2’ and S3’. Based on these results, we designed and synthesized a selective peptidomimetic compound and tested its inhibition of PbPM4, seven FV plasmepsins from human malaria parasites, and human cathepsin D (hcatD). We showed that this compound exhibited a >10-fold selectivity to PbPM4 and human malaria parasite plasmepsin 4 orthologs versus hcatD. Data from this study furthesr our understanding of enzymatic characteristics of the plasmepsin family and provides leads for anti-malarial drug design.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- * E-mail: (PL); (BMD)
| | - Arthur H. Robbins
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Melissa R. Marzahn
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Scott H. McClung
- Protein Core, Interdisciplinary Center for Biotechnology Research, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Charles A. Yowell
- Department of Infectious Diseases and Pathology, University of Florida, College of Veterinary Medicine, Gainesville, Florida, United States of America
| | - Stanley M. Stevens
- Protein Core, Interdisciplinary Center for Biotechnology Research, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - John B. Dame
- Department of Infectious Diseases and Pathology, University of Florida, College of Veterinary Medicine, Gainesville, Florida, United States of America
| | - Ben M. Dunn
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- * E-mail: (PL); (BMD)
| |
Collapse
|
8
|
Maynadier M, Vezenkov LL, Amblard M, Martin V, Gandreuil C, Vaillant O, Gary-Bobo M, Basile I, Hernandez JF, Garcia M, Martinez J. Dipeptide mimic oligomer transporter mediates intracellular delivery of Cathepsin D inhibitors: a potential target for cancer therapy. J Control Release 2013; 171:251-7. [PMID: 23899821 DOI: 10.1016/j.jconrel.2013.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/09/2013] [Accepted: 07/19/2013] [Indexed: 01/13/2023]
Abstract
Implication of the intracellular proteolytic activity of Cathepsin D (CathD), a lysosomal aspartyl-protease overexpressed in numerous solid tumors, has been evidenced on tumor growth. Its intracellular inhibition by potent inhibitors such as pepstatin constitutes a relevant but challenging molecular target. Indeed the potential of pepstatin as a therapeutic molecule is hampered by its too low intracellular penetration. We addressed this limitation by designing and developing a bioconjugate combining a pepstatin derivative with a new vector of cell penetration (CPNP) specifically targeting the endolysosomal compartment. We showed that this pepstatin conjugate (JMV4463) exhibited high anti-proliferative effect on tumor cell cultures via intracellular CathD inhibition and altered cell cycle associated with apoptotic events in vitro. When tested in mice xenografted with breast cancer cells, JMV4463 delayed tumor emergence and growth.
Collapse
Affiliation(s)
- Marie Maynadier
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS Universités Montpellier 1 et 2, 15 Avenue Charles Flahault, 34000 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Proteolytic specificity of cathepsin D on bovine F-actin. Meat Sci 2012; 56:165-72. [PMID: 22061905 DOI: 10.1016/s0309-1740(00)00036-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/1999] [Revised: 03/03/2000] [Accepted: 03/12/2000] [Indexed: 11/22/2022]
Abstract
Proteolysis of bovine F-actin by cathepsin D (E.C. 3.4.23.5) in 50 mM Na acetate buffer, pH 5.5, at 37°C was investigated using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and reverse-phase high performance liquid chromatography (RP-HPLC). Actin was hydrolyzed by cathepsin D during incubation to peptides detectable by RP-HPLC, although no degradation products were detected by SDS-PAGE. Peptides (2% trichloroacetic acid-soluble) from the hydrolyzate were isolated by RP-HPLC on a C(18) column using an acetonitrile/water gradient and identified from their N-terminal sequence and mass. Cathepsin D cleavage sites were identified at Cys(12)-Asp(13), Gly(22)-Phe(23), Arg(30)-Ala(31), Thr(79)-Asn(80), Ile(87)-Trp(88), Thr(91)-Phe(92), Phe(92)-Tyr(93), Arg(97)-Val(98), His(103)-Pro(104), Leu(107)-Thr(108), Thr(108)-Glu(109), Lys(120)-Met(121), Leu(144)-Tyr(145), Ile(153)-Val(154), Leu(155)-Asp(156), Ile(167)-Tyr(168), Leu(180)-Asp(181), Met(192)-Lys(193), Leu(195)-Thr(196), Arg(208)-Glu(209), Arg(212)-Asp(213), Leu(223)-Asp(224), Lys(240)-Ser(241), Thr(262)-Leu(263), Trp(342)-Ile(343), Arg(349)-Ser(350), Trp(358)-Ile(359), and Lys(375)-Cys(376). In general, cathepsin D preferentially cleaved bonds containing at least one hydrophobic amino acid residue. The results of this study showed that actin was degraded extensively by cathepsin D with peptides released from numerous locations in the protein molecule.
Collapse
|
10
|
Abd-Elgaliel WR, Cruz-Monserrate Z, Logsdon CD, Tung CH. Molecular imaging of Cathepsin E-positive tumors in mice using a novel protease-activatable fluorescent probe. MOLECULAR BIOSYSTEMS 2011; 7:3207-3213. [PMID: 21935563 DOI: 10.1039/c1mb05215b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
UNLABELLED The purpose of this study is to demonstrate the ability of imaging Cathepsin E (Cath E) positive tumors in living animals through selective targeting of Cath E proteolytic activity using a sensitive molecular imaging agent. METHODS A peptide-based Cath E imaging probe and a control probe were synthesized for this study. Human Cath E-positive cancer cells (MPanc96-E) were implanted subcutaneously in nude mice. Tumor-bearing mice were examined in vivo with near-infrared fluorescence (NIRF) imaging at various time points after intravenous injection of the Cath E sensing imaging probe. Excised organs and tissues of interest were further imaged ex vivo. RESULTS Upon specific Cath E proteolytic activation, the NIRF signal of the imaging probe a was converted from an optically quenched initial state to a highly fluorescent active state. Imaging probe a was able to highlight the Cath E-positive tumors as early as 24 h post injection. Fluorescent signal in tumor was 3-fold higher than background. The confined specificity of imaging probe a to tumor associated Cath E was verified by using control imaging probe b. Both in vivo and ex vivo imaging results confirmed the superior selectivity and sensitivity of imaging probe a in Cath E imaging. CONCLUSIONS The small animal studies demonstrated the capability of probe a for imaging Cath E-positive tumors. The developed optical probe could be applied in early diagnostic imaging and guiding subsequent surgical procedure.
Collapse
Affiliation(s)
- Wael R Abd-Elgaliel
- Department of Radiology, The Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, B5-009, Houston, TX 77030, USA
| | - Zobeida Cruz-Monserrate
- Department of Cancer Biology, University of Texas, M. D. Anderson Cancer Center, Houston, TX, USA
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas, M. D. Anderson Cancer Center, Houston, TX, USA.,Department of GI Medical Oncology, University of Texas, M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ching-Hsuan Tung
- Department of Radiology, The Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, B5-009, Houston, TX 77030, USA
| |
Collapse
|
11
|
Selective detection of Cathepsin E proteolytic activity. Biochim Biophys Acta Gen Subj 2010; 1800:1002-8. [PMID: 20600629 DOI: 10.1016/j.bbagen.2010.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/03/2010] [Accepted: 06/11/2010] [Indexed: 11/21/2022]
Abstract
BACKGROUND Aspartic proteases Cathepsin (Cath) E and D are two different proteases, but they share many common characteristics, including molecular weight, catalytic mechanism, substrate preferences, proteolytic conditions and inhibition susceptibility. To define the biological roles of these proteases, it is necessary to elucidate their substrate specificity. In the present study, we report a new peptide-substrate that is only sensitive to Cath E but not Cath D. METHODS Substrate e, Mca-Ala-Gly-Phe-Ser-Leu-Pro-Ala-Lys(Dnp)-DArg-CONH₂, designed in such a way that due to the close proximity of a Mca-donor and a Dnp-acceptor, near complete intramolecular quenching effect was achieved in its intact state. After the proteolytic cleavage of the hydrophobic motif of peptide substrate, both Mca and Dnp would be further apart, resulting in bright fluorescence. RESULTS Substrate e showed a 265 fold difference in the net fluorescence signals between Cath E and D. This Cath E selectivity was established by having -Leu**Pro- residues at the scissile peptide bond. The confined cleavage site of substrate e was confirmed by LC-MS. The catalytic efficiency (K(cat)/K(M)) of Cath E for substrate e was 16.7 μM⁻¹S⁻¹. No measurable catalytic efficiency was observed using Cath D and no detectable fluorescent changes when incubated with Cath S and Cath B. CONCLUSIONS This study demonstrated the promise of using the developed fluorogenic substrate e as a selective probe for Cath E proteolytic activity measurement. GENERAL SIGNIFICANCE This study forms the foundation of Cath E specific inhibitor development in further studies.
Collapse
|
12
|
Blais DR, Brûlotte M, Qian Y, Bélanger S, Yao SQ, Pezacki JP. Activity-based proteome profiling of hepatoma cells during hepatitis C virus replication using protease substrate probes. J Proteome Res 2010; 9:912-23. [PMID: 19954226 DOI: 10.1021/pr900788a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activity-based protein profiling (ABPP) offers direct insight into changes in catalytic activity of enzyme classes in complex proteomes, rather than protein or transcript abundance. Here, ABPP was performed in Huh7 hepatoma cell lines with a group of ABPP probes composed of an N-acetylated amino acid, that mimic the P(1) position in protease peptide substrates. Five different probes bearing distinct amino acids (Ser, Thr, Phe, Glu and His) labeled 54 differentially active proteins, including proteases, other hydrolases, oxidoreductases and isomerases. Four of the six protease families were targeted based on their P(1) substrate preferences. The broader specificity of the labeling observed could be explained by the substrate-based targeting nature and the electrophilic properties of the ABPP probes. When applied to Huh7 cells stably replicating hepatitis C virus (HCV) subgenomic replicon RNA, four proteins showed reduced activity, while three proteins had increased activity during HCV replication. These differentially active hits included carboxylesterase 1, cathepsin D, HSP105, protein disulfide isomerase 1 and A6, chaperonin containing TCP1 and isochorismatase domain containing 1, which demonstrated substrate preferences by being labeled by specific substrate probes. This illustrates the broader activity-based profiling capabilities of these substrate-based probes to reveal novel enzyme candidates and their potential roles during HCV replication.
Collapse
Affiliation(s)
- David R Blais
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Quantitative determination and localization of cathepsin D and its inhibitors. Folia Histochem Cytobiol 2010; 47:153-77. [PMID: 19995700 DOI: 10.2478/v10042-009-0073-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A literature survey was performed of the methods of quantitative assessment of the activity and concentration of cathepsin D and its inhibitors. Usefulness of non-modified and modified proteins and synthetic peptides as measurement substrates was evaluated. The survey includes also chemical and immunochemical methods used to determine the distribution of cathepsin D and its inhibitors in cells and tissues.
Collapse
|
14
|
Robert F, Bierau H, Rossi M, Agugiaro D, Soranzo T, Broly H, Mitchell-Logean C. Degradation of an Fc-fusion recombinant protein by host cell proteases: Identification of a CHO cathepsin D protease. Biotechnol Bioeng 2010; 104:1132-41. [PMID: 19655395 DOI: 10.1002/bit.22494] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A host-cell-related proteolytic activity was identified in a recombinant Fc-fusion protein production process. This report describes the strategy applied to characterize and isolate the enzyme responsible for this degradation by combining cell culture investigation and dedicated analytical tools. After isolation and sequencing of the clipped fragment generated in post-capture material, enzymatic activity was traced in different culture conditions, allowing identification of viable CHO cells as the source of protease. Inhibitors and pH screenings showed that the enzyme belongs to an aspartic protease family and is preferably active at acidic pH. The protease was isolated by purification on a pepstatin A column and characterized as a protein related to cathepsin D. An additional metallo-protease inhibited by EDTA was identified with an optimum activity at neutral pH. This study is an example of how quality and stability of therapeutic recombinant molecules are strongly influenced by cell culture parameters.
Collapse
Affiliation(s)
- Flavie Robert
- Merck Serono Biotech Center, Merck Serono SA Corsier-sur-Vevey, CH-Fenil-sur-Corsier, Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
Protease cleavage sites in HIV-1 gp120 recognized by antigen processing enzymes are conserved and located at receptor binding sites. J Virol 2009; 84:1513-26. [PMID: 19939935 DOI: 10.1128/jvi.01765-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification of vaccine immunogens able to elicit broadly neutralizing antibodies (bNAbs) is a major goal in HIV vaccine research. Although it has been possible to produce recombinant envelope glycoproteins able to adsorb bNAbs from HIV-positive sera, immunization with these proteins has failed to elicit antibody responses effective against clinical isolates of HIV-1. Thus, the epitopes recognized by bNAbs are present on recombinant proteins, but they are not immunogenic. These results led us to consider the possibility that changes in the pattern of antigen processing might alter the immune response to the envelope glycoprotein to better elicit protective immunity. In these studies, we have defined protease cleavage sites on HIV gp120 recognized by three major human proteases (cathepsins L, S, and D) important for antigen processing and presentation. Remarkably, six of the eight sites identified in gp120 were highly conserved and clustered in regions of the molecule associated with receptor binding and/or the binding of neutralizing antibodies. These results suggested that HIV may have evolved to take advantage of major histocompatibility complex (MHC) class II antigen processing enzymes in order to evade or direct the antiviral immune response.
Collapse
|
16
|
Liu P, Marzahn MR, Robbins AH, Gutiérrez-de-Terán H, Rodríguez D, McClung SH, Stevens SM, Yowell CA, Dame JB, McKenna R, Dunn BM. Recombinant plasmepsin 1 from the human malaria parasite plasmodium falciparum: enzymatic characterization, active site inhibitor design, and structural analysis. Biochemistry 2009; 48:4086-99. [PMID: 19271776 DOI: 10.1021/bi802059r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mutated form of truncated proplasmepsin 1 (proPfPM1) from the human malaria parasite Plasmodium falciparum, proPfPM1 K110pN, was generated and overexpressed in Escherichia coli. The automaturation process was carried out at pH 4.0 and 4.5, and the optimal catalytic pH of the resulting mature PfPM1 was determined to be pH 5.5. This mature PfPM1 showed comparable binding affinity to peptide substrates and inhibitors with the naturally occurring form isolated from parasites. The S3-S3' subsite preferences of the recombinant mature PfPM1 were explored using combinatorial chemistry based peptide libraries. On the basis of the results, a peptidomimetic inhibitor (compound 1) was designed and yielded 5-fold selectivity for binding to PfPM1 versus the homologous human cathepsin D (hcatD). The 2.8 A structure of the PfPM2-compound 1 complex is reported. Modeling studies were conducted using a series of peptidomimetic inhibitors (compounds 1-6, Table 3) and three plasmepsins: the crystal structure of PfPM2, and homology derived models of PfPM1 and PfPM4.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida 32610-0245, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zaidi N, Maurer A, Nieke S, Kalbacher H. Cathepsin D: a cellular roadmap. Biochem Biophys Res Commun 2008; 376:5-9. [PMID: 18762174 DOI: 10.1016/j.bbrc.2008.08.099] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 01/01/2023]
Abstract
Cathepsin D is a normal and major component of lysosomes, it is found in almost all cells and tissues of mammals. Present review describes different events in cellular life of cathepsin D mainly its biosynthesis, co-translational and posttranslational modifications, targeting to lysosomes and proteolytic processing and maturation within lysosomes.
Collapse
Affiliation(s)
- Nousheen Zaidi
- Medical and Natural Sciences Research Centre, University of Tubingen, Ob dem Himmerlreich 7, 72074 Tubingen, Germany
| | | | | | | |
Collapse
|
18
|
Penugonda S, Kumar A, Agarwal HK, Parang K, Mehvar R. Synthesis and in vitro characterization of novel dextran-methylprednisolone conjugates with peptide linkers: effects of linker length on hydrolytic and enzymatic release of methylprednisolone and its peptidyl intermediates. J Pharm Sci 2008; 97:2649-64. [PMID: 17853426 PMCID: PMC2435384 DOI: 10.1002/jps.21161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To control the rate of release of methylprednisolone (MP) in lysosomes, new dextran-MP conjugates with peptide linkers were synthesized and characterized. Methylprednisolone succinate (MPS) was attached to dextran 25 kDa using linkers with 1-5 Gly residues. The release characteristics of the conjugates in pH 4.0 and 7.4 buffers, blood, liver lysosomes, and various lysosomal proteinases were determined using a size-exclusion and/or a newly developed reversed-phase HPLC method capable of simultaneous quantitation of MP, MPS, and all five possible MPS-peptidyl intermediates. We synthesized conjugates with >or=90% purity and 6.9-9.5% (w/w) degree of MP substitution. The conjugates were stable at pH 4.0, but released MP and intact MPS-peptidyl intermediates in the pH 7.4 buffer and rat blood, with faster degradation rates for longer linkers. Rat lysosomal fractions degraded the conjugates to MP and all the possible intermediates also at a rate directly proportional to the length of the peptide. Whereas the degradation of the conjugates by cysteine peptidases (papain or cathepsin B) was relatively substantial, no degradation was observed in the presence of aspartic (cathepsin D) or serine (trypsin) proteinases, which do not cleave peptide bonds with Gly. These newly developed dextran conjugates of MP show promise for controlled delivery of MP in lysosomes.
Collapse
Affiliation(s)
- Suman Penugonda
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Anil Kumar
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Hitesh K. Agarwal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Reza Mehvar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| |
Collapse
|
19
|
Li H, Chien PC, Tuen M, Visciano ML, Cohen S, Blais S, Xu CF, Zhang HT, Hioe CE. Identification of an N-linked glycosylation in the C4 region of HIV-1 envelope gp120 that is critical for recognition of neighboring CD4 T cell epitopes. THE JOURNAL OF IMMUNOLOGY 2008; 180:4011-21. [PMID: 18322210 DOI: 10.4049/jimmunol.180.6.4011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The heavy glycosylation of HIV-1 envelope gp120 shields this important Ag from recognition by neutralizing Abs and cytolytic CD8 T cells. However, very little work has been done to understand the influence of glycosylation on the generation of gp120 epitopes and their recognition by MHC class II-restricted CD4 T cells. In this study, three conserved glycans (linked to N406, N448, and N463) flanking the C4 region of gp120 that contains many known CD4 T cell epitopes were disrupted individually or in combination by asparagine-to-glutamine substitutions. The mutant proteins lacking the N448 glycan did not effectively stimulate CD4 T cells specific for the nearby C4 epitopes, although the same mutants were recognized well by CD4 T cells specific for epitopes located in the distant C1 and C2 regions. The loss of recognition was not due to amino acid substitutions introduced to the mutant proteins. Data from trypsin digestion and mass spectrometry analyses demonstrated that the N448 glycan removal impeded the proteolytic cleavage of the nearby C4 region, without affecting more distant sites. Importantly, this inhibitory effect was observed only in the digestion of the native nondenatured protein and not in that of the denatured protein. These data indicate that the loss of the N448 glycan induces structural changes in the C4 region of gp120 that make this specific region more resistant to proteolytic processing, thereby restricting the generation of CD4 T cell epitopes from this region. Hence, N-linked glycans are critical determinants that can profoundly influence CD4 T cell recognition of HIV-1 gp120.
Collapse
Affiliation(s)
- Hualin Li
- Department of Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Valiente PA, Batista PR, Pupo A, Pons T, Valencia A, Pascutti PG. Predicting functional residues in Plasmodium falciparum plasmepsins by combining sequence and structural analysis with molecular dynamics simulations. Proteins 2008; 73:440-57. [DOI: 10.1002/prot.22068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Abstract
A literature survey was performed of human cathepsin D gene, cathepsin D biosynthesis, posttranslatory modifications, transport within the cell, substrate specificity and catalytic effect. Methods used to determine the activity and level of this proteinase as well as its role in the biochemistry and pathobiochemistry of cells, tissues and organs were considered.
Collapse
|
22
|
Dalsgaard TK, Nielsen JH, Larsen LB. Proteolysis of milk proteins lactosylated in model systems. Mol Nutr Food Res 2007; 51:404-14. [PMID: 17357984 DOI: 10.1002/mnfr.200600112] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Five different milk proteins (alpha-casein, beta-casein, kappa-casein, beta-lactoglobulin, and lactoferrin) and a peptide substrate were applied as substrates for the investigation of how lactosylation affected proteolysis by different proteases. After a lactosylation period of 4 days in aqueous solution, at 65 degrees C and pH 6.8 in a protein: lactose ratio of 1000 the proteins were enzymatically hydrolyzed by the three milk relevant proteases plasmin, cathepsin D, and chymosin. Lactosylation of all substrates affected hydrolysis by plasmin negatively, with the largest effect on the globular proteins. This could be explained by modification of lysine residues, being the preferred cleavage site for plasmin, but also the residue generally preferred for lactosylation. Lactosylation of the caseins and of beta-lactoglobulin did not affect subsequent cleavage by cathepsin D and chymosin significantly, but for beta-lactoglobulin, both the secondary as well as the tertiary structure were affected by lactosylation. In contrast, decreased hydrolysis by cathepsin D and chymosin was observed for lactoferrin after lactosylation. Decreased hydrolysis may be caused by a more compact tertiary structure induced by lactosylation of lactoferrin, as indicated by fluorescence spectroscopy measurements.
Collapse
Affiliation(s)
- Trine Kastrup Dalsgaard
- Department of Food Science, Research Centre Foulum, Faculty of Agricultural Sciences, University of Aarhus, Denmark
| | | | | |
Collapse
|
23
|
Rosa-Bauzá YT, Berst F, Ellman JA. Straightforward Preparation and Assay of Aspartyl Protease Substrates with an Internal Thioester Linkage. Chembiochem 2007; 8:981-4. [PMID: 17492698 DOI: 10.1002/cbic.200700008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yazmín T Rosa-Bauzá
- Department of Chemistry, University of California, Berkeley, Berkley, CA 94720, USA
| | | | | |
Collapse
|
24
|
Kumar A, Rao M. Biochemical characterization of a low molecular weight aspartic protease inhibitor from thermo-tolerant Bacillus licheniformis: Kinetic interactions with Pepsin. Biochim Biophys Acta Gen Subj 2006; 1760:1845-56. [PMID: 16982155 DOI: 10.1016/j.bbagen.2006.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 08/04/2006] [Accepted: 08/07/2006] [Indexed: 11/17/2022]
Abstract
The present article reports a low molecular weight aspartic protease inhibitor, API, from a newly isolated thermo-tolerant Bacillus licheniformis. The inhibitor was purified to homogeneity as shown by rp-HPLC and SDS-PAGE. API is found to be stable over a broad pH range of 2-11 and at temperature 90 degrees C for 2 1/2h. It has a Mr (relative molecular mass) of 1363 Da as shown by MALDI-TOF spectra and 1358 Da as analyzed by SDS-PAGE . The amino acid analysis of the peptide shows the presence of 12 amino acid residues having Mr of 1425 Da. The secondary structure of API as analyzed by the CD spectra showed 7% alpha-helix, 49% beta-sheet and 44% aperiodic structure. The Kinetic studies of Pepsin-API interactions reveal that API is a slow-tight binding competitive inhibitor with the IC(50) and Ki values 4.0 nM and (3.83 nM-5.31 nM) respectively. The overall inhibition constant Ki* value is 0.107+/-0.015 nM. The progress curves are time-dependent and consistent with slow-tight binding inhibition: E+I -->/<-- (k(4), k(5)) EI -->/<-- (k(6), k(7)) EI*. Rate constant k(6)=2.73+/-0.32 s(-1) reveals a fast isomerization of enzyme-inhibitor complex and very slow dissociation as proved by k(7)=0.068+/-0.009 s(-1). The Rate constants from the intrinsic tryptophanyl fluorescence data is in agreement with those obtained from the kinetic analysis; therefore, the induced conformational changes were correlated to the isomerization of EI to EI*.
Collapse
Affiliation(s)
- Ajit Kumar
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | |
Collapse
|
25
|
Moss CX, Villadangos JA, Watts C. Destructive potential of the aspartyl protease cathepsin D in MHC class II-restricted antigen processing. Eur J Immunol 2006; 35:3442-51. [PMID: 16259009 DOI: 10.1002/eji.200535320] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whether specific proteases influence MHC class II antigen presentation is still not clearly defined. Cathepsin D, one of the most abundant lysosomal proteases, is thought to be dispensable for MHC class II antigen presentation, yet in vitro digestions of antigen substrates with endosomes/lysosomes from antigen-presenting cells sometimes reveal a dominant role for pepstatin-sensitive aspartyl proteases of which cathepsin D is the major representative. We tested whether the aspartyl protease substrate myoglobin requires cathepsin D activity for presentation to T cells. Surprisingly, in dendritic cells (DC) lacking cathepsin D, presentation of two different myoglobin T cell epitopes was enhanced rather than hindered. This paradox is resolved by the finding that pepstatin-sensitive myoglobin processing activity persists in lysosomes from cathepsin D-null DC and that this reduced activity, most likely due to cathepsin E, is closer to the optimum level required for myoglobin antigen presentation. Our results indicate redundancy among lysosomal aspartyl proteases and show that while processing activities can be productive for MHC class II T cell epitope generation at one level, they can become destructive above an optimal level.
Collapse
Affiliation(s)
- Catherine X Moss
- Division of Cell Biology & Immunology, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | | | | |
Collapse
|
26
|
Lindsay KB, Skrydstrup T. Formal Total Synthesis of the Potent Renin Inhibitor Aliskiren: Application of a SmI2-Promoted Acyl-like Radical Coupling. J Org Chem 2006; 71:4766-77. [PMID: 16776501 DOI: 10.1021/jo060296c] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A formal total synthesis of the potent renin inhibitor aliskiren is disclosed exploiting an alternative coupling strategy recently developed by this laboratory for the preparation of the hydroxyethylene isostere-based class of protease inhibitors. The thioester derivative of the amino acid representing the C5-C9 fragment of the aliskiren carbon skeleton underwent a carbon chain extension via a SmI2-promoted radical addition to n-butyl acrylate. Introduction of the C3-isopropyl group with the correct relative configuration was accomplished via stereoselective reduction of the obtained ketone with concomitant lactonization, followed by an aldol reaction with acetone. Further functional group and protecting group manipulation culminated in a formal total synthesis of aliskiren in 10 steps from the corresponding fully protected non-natural amino acid.
Collapse
Affiliation(s)
- Karl B Lindsay
- Center for Insoluble Protein Structures, Department of Chemistry, University of Aarhus, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | |
Collapse
|
27
|
Baechle D, Cansier A, Fischer R, Brandenburg J, Burster T, Driessen C, Kalbacher H. Biotinylated fluorescent peptide substrates for the sensitive and specific determination of cathepsin D activity. J Pept Sci 2005; 11:166-74. [PMID: 15635643 DOI: 10.1002/psc.607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cathepsin D (CatD) is a member of the mammalian aspartic protease family and is involved in cellular protein degradation and in several pathological processes. A sensitive and specific assay for the determination of CatD activity in biological samples was developed. The peptide amide substrates Amca-EDKPILF downward arrowFRLGK(biotin)-CONH2 (I), Amca-EEKPIC(Acm)F downward arrowFRLGK(biotin)-CONH2 (II) and Amca-EEKPISF downward arrowFRLGK(biotin)-CONH2 (III) contain a CatD cleavage site (F downward arrowF) flanked by a N-terminal Amca-fluorophore (7-amino-4-methylcoumarin-3-acetic acid) and a C-terminal biotin moiety. Substrates II and III proved to be specific substrates containing only one cleavage site for CatD. After cleavage of the Phe-Phe bond by CatD all biotin conjugated peptides were removed with streptavidin-coated magnetic beads. The remaining fluorescent peptides in solution represent the amount of digested substrate. The versatility of this CatD digest and pull down assay was demonstrated by measuring the activity of CatD in different subcellular fractions of human EBV-transformed B cells and human monocytes. The described method based on the designed CatD substrates represents a valuable tool for routine assays.
Collapse
Affiliation(s)
- D Baechle
- Medical and Natural Sciences Research Center, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Oyama H, Fujisawa T, Suzuki T, Dunn BM, Wlodawer A, Oda K. Catalytic Residues and Substrate Specificity of Recombinant Human Tripeptidyl Peptidase I (CLN2). ACTA ACUST UNITED AC 2005; 138:127-34. [PMID: 16091586 DOI: 10.1093/jb/mvi110] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tripeptidyl peptidase I (TTP-I), also known as CLN2, a member of the family of serine-carboxyl proteinases (S53), plays a crucial role in lysosomal protein degradation and a deficiency in this enzyme leads to fatal neurodegenerative disease. Recombinant human TPP-I and its mutants were analyzed in order to clarify the biochemical role of TPP-I and its mechanism of activity. Ser280, Glu77, and Asp81 were identified as the catalytic residues based on mutational analyses, inhibition studies, and sequence similarities with other family members. TPP-I hydrolyzed most effectively the peptide Ala-Arg-Phe*Nph-Arg-Leu (*, cleavage site) (k(cat)/K(m) = 2.94 microM(-1).s(-1)). The k(cat)/K(m) value for this substrate was 40 times higher than that for Ala-Ala-Phe-MCA. Coupled with other data, these results strongly suggest that the substrate-binding cleft of TPP-I is composed of only six subsites (S(3)-S(3)'). TPP-I prefers bulky and hydrophobic amino acid residues at the P(1) position and Ala, Arg, or Asp at the P(2) position. Hydrophilic interactions at the S(2) subsite are necessary for TPP-I, and this feature is unique among serine-carboxyl proteinases. TPP-I might have evolved from an ancestral gene in order to cleave, in cooperation with cathepsins, useless proteins in the lysosomal compartment.
Collapse
Affiliation(s)
- Hiroshi Oyama
- Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Plasmepsin II (PM II) is an aspartic protease active in hemoglobin (Hb) degradation in the protozoan parasite Plasmodium falciparum. A fluorescence-quenched octapeptide substrate based on the initial hemoglobin cleavage site is recognized well by PM II. C-terminal extension of this peptide has little effect, but N-terminal extension results in higher maximal velocity and dramatic concentration-dependent substrate inhibition. This inhibition, but not the rate stimulation, depends on the presence of a DABCYL group on the peptide N terminus. Using site-directed mutagenesis, we have identified PM II residues that interact with N-terminal amino acids of peptide substrates. The same residues influence degradation of Hb by PM II. Cathepsin E (CatE), a related mammalian aspartic protease, is also stimulated by N-terminally extended substrates. This suggests that distal substrate interactions as far out as P6 may be a general property of aspartic proteases and may be important in substrate and inhibitor recognition. Although PM II and CatE are similar in their ability to cleave Hb-based peptides and Hb alpha-chains, CatE is not able to degrade native Hb, which is a substrate for PM II. Based on these results, we propose that PM II may have the special feature of being a Hb denaturase.
Collapse
Affiliation(s)
- Eva S Istvan
- Department of Medicine, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
30
|
Sugano E, Tomita H, Abe T, Yamashita A, Tamai M. Comparative study of cathepsins D and S in rat IPE and RPE cells. Exp Eye Res 2003; 77:203-9. [PMID: 12873451 DOI: 10.1016/s0014-4835(03)00115-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate differences between activities related to phagocytosis in iris pigment epithelial (IPE) and retinal pigment epithelial (RPE) cells, an aspartic protease, cathepsin D (cat D), and a cysteine protease, cathepsin S (cat S), of IPE and RPE were studied. IPE and RPE cells were isolated from Long Evans rat eyes. The origin of the isolated cells was determined by pigmentation and cytokeratin labelling. The mRNA expressions of cat D and cat S in cultured IPE or RPE cells were investigated by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Enzyme activities of cat D and cat S in IPE or RPE cells were measured by using specific fluorogenic substrates, MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys-(Dnp)D-Arg-NH2 and Z-Val-Val-Arg-MCA, respectively. Western blot analysis of both proteins was also performed. The cultured cells, both of IPE and RPE cells were pigmented and showed positive labelling with an anti-cytokeratin monoclonal antibody. The cat D activity in RPE cells was 37 times that in IPE cells. The cat S activity in RPE cells was four times that in IPE cells. On the other hand, mRNA expression levels of cat D in RPE cells were at the same level with IPE cells, cat S mRNA expression in RPE cells were 10 times that in IPE cells. These results were also correlated with the Western blot analysis. In this study, we measured the characteristic expressions of cat D and S in IPE and RPE cells for the first time to compare their lysosomal activities. IPE cells have the lysosomal activities like RPE cells, however, the function of lysosomal activity in IPE cells is beneath RPE's. These results indicated that the ability of ROS digestion in IPE cells was not same as RPE cells.
Collapse
Affiliation(s)
- Eriko Sugano
- Department of Ophthalmology, Tohoku University, School of Medicine, 1-1 Seiryo-machi, Sendai 980-8574, Japan
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Ben M Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610-0245, USA.
| |
Collapse
|
32
|
Brinkworth RI, Prociv P, Loukas A, Brindley PJ. Hemoglobin-degrading, aspartic proteases of blood-feeding parasites: substrate specificity revealed by homology models. J Biol Chem 2001; 276:38844-51. [PMID: 11495896 DOI: 10.1074/jbc.m101934200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blood-feeding parasites, including schistosomes, hookworms, and malaria parasites, employ aspartic proteases to make initial or early cleavages in ingested host hemoglobin. To better understand the substrate affinity of these aspartic proteases, sequences were aligned with and/or three-dimensional, molecular models were constructed of the cathepsin D-like aspartic proteases of schistosomes and hookworms and of plasmepsins of Plasmodium falciparum and Plasmodium vivax, using the structure of human cathepsin D bound to the inhibitor pepstatin as the template. The catalytic subsites S5 through S4' were determined for the modeled parasite proteases. Subsequently, the crystal structure of mouse renin complexed with the nonapeptidyl inhibitor t-butyl-CO-His-Pro-Phe-His-Leu [CHOHCH(2)]Leu-Tyr-Tyr-Ser- NH(2) (CH-66) was used to build homology models of the hemoglobin-degrading peptidases docked with a series of octapeptide substrates. The modeled octapeptides included representative sites in hemoglobin known to be cleaved by both Schistosoma japonicum cathepsin D and human cathepsin D, as well as sites cleaved by one but not the other of these enzymes. The peptidase-octapeptide substrate models revealed that differences in cleavage sites were generally attributable to the influence of a single amino acid change among the P5 to P4' residues that would either enhance or diminish the enzymatic affinity. The difference in cleavage sites appeared to be more profound than might be expected from sequence differences in the enzymes and hemoglobins. The findings support the notion that selective inhibitors of the hemoglobin-degrading peptidases of blood-feeding parasites at large could be developed as novel anti-parasitic agents.
Collapse
Affiliation(s)
- R I Brinkworth
- Institute of Molecular Biosciences and Department of Microbiology and Parasitology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
33
|
Pimenta DC, Oliveira A, Juliano MA, Juliano L. Substrate specificity of human cathepsin D using internally quenched fluorescent peptides derived from reactive site loop of kallistatin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1544:113-22. [PMID: 11341921 DOI: 10.1016/s0167-4838(00)00209-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kallistatin, a serpin that specifically inhibits human tissue kallikrein, was demonstrated to be cleaved at the Phe-Phe bond in its reactive site loop (RSL) by cathepsin D. Internally quenched fluorescent peptides containing the amino acid sequence of kallistatin RSL were highly susceptible to hydrolysis by cathepsin D. Surprisingly, these peptides were efficiently hydrolyzed at Phe-Phe bond, despite having Lys and Ser at P2 and P2' positions, respectively, which was reported to be very unfavorable for substrates for cathepsin D. Due to the importance of cathepsin D in several physiological and pathological processes, we took the peptide containing kallistatin RSL sequence, Abz-Ala-Ile-Lys-Phe-Phe-Ser-Arg-Gln-EDDnp, as a reference substrate for a systematic specificity study of S3 to S3' protease subsites (EDDnp=N-[2,4-dinitrophenyl]-ethylenediamine and Abz=ortho-amino benzoic acid). We present in this paper some internally quenched fluorescent peptides that were efficient substrates for cathepsin D. They essentially differ from other previously described substrates by their higher kcat/Km values due, mainly, to low Km values, such as the substrate Abz-Ala-Ile-Ala-Phe-Phe-Ser-Arg-Gln-EDDnp (Km=0.27 microM, kcat=16.25 s(-1), kcat/Km=60185 microM(-1) x s(-1)).
Collapse
Affiliation(s)
- D C Pimenta
- Department of Biophysics, Escola Paulista de Medicina-NIFESP, Rua Três de Maio, 100, 2o andar, 04044-020, São Paulo, Brazil
| | | | | | | |
Collapse
|
34
|
Abstract
Two chimeric enzymes were constructed by exchanging domains between porcine pepsinogen and rhizopuspepsinogen in order to examine the contributions of the subsites present on different domains toward enzymatic specificity. Both chimeras exhibited the characteristic features of aspartic proteinases, such as auto-activation at low pH and abrogation of enzymatic activity by pepstatin. The activity of the chimera containing the N-terminal domain of rhizopuspepsinogen and the C-terminal domain of porcine pepsinogen (rhzNppC) could be observed by HPLC after prolonged incubation with the substrates. In contrast, the reciprocal chimera, ppNrhzC, containing the N-terminal domain of porcine pepsinogen and the C-terminal domain of rhizopuspepsinogen exhibited catalytic activity, measurable by a spectrophotometric assay. Kinetic data and inhibitor analyses strongly suggest that interdependency may exist between adjacent subsites contributed by different domains. Therefore, in order to develop an optimal substrate or inhibitor, the effect of adjacent residues of the ligand has to be examined along with the preferences for each subsite.
Collapse
Affiliation(s)
- D Bhatt
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, Florida, 32610-0245
| | | |
Collapse
|
35
|
Cronin NB, Badasso MO, J Tickle I, Dreyer T, Hoover DJ, Rosati RL, Humblet CC, Lunney EA, Cooper JB. X-ray structures of five renin inhibitors bound to saccharopepsin: exploration of active-site specificity. J Mol Biol 2000; 303:745-60. [PMID: 11061973 DOI: 10.1006/jmbi.2000.4181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Saccharopepsin is a vacuolar aspartic proteinase involved in activation of a number of hydrolases. The enzyme has great structural homology to mammalian aspartic proteinases including human renin and we have used it as a model system to study the binding of renin inhibitors by X-ray crystallography. Five medium-to-high resolution structures of saccharopepsin complexed with transition-state analogue renin inhibitors were determined. The structure of a cyclic peptide inhibitor (PD-129,541) complexed with the proteinase was solved to 2.5 A resolution. This inhibitor has low affinity for human renin yet binds very tightly to the yeast proteinase (K(i)=4 nM). The high affinity of this inhibitor can be attributed to its bulky cyclic moiety spanning P(2)-P(3)' and other residues that appear to optimally fit the binding sub-sites of the enzyme. Superposition of the saccharopepsin structure on that of renin showed that a movement of the loop 286-301 relative to renin facilitates tighter binding of this inhibitor to saccharopepsin. Our 2.8 A resolution structure of the complex with CP-108,420 shows that its benzimidazole P(3 )replacement retains one of the standard hydrogen bonds that normally involve the inhibitor's main-chain. This suggests a non-peptide lead in overcoming the problem of susceptible peptide bonds in the design of aspartic proteinase inhibitors. CP-72,647 which possesses a basic histidine residue at P(2), has a high affinity for renin (K(i)=5 nM) but proves to be a poor inhibitor for saccharopepsin (K(i)=3.7 microM). This may stem from the fact that the histidine residue would not bind favourably with the predominantly hydrophobic S(2) sub-site of saccharopepsin.
Collapse
Affiliation(s)
- N B Cronin
- Department of Crystallography, Birkbeck College, University of London, London, WC1E 7HX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Galea CA, Dalrymple BP, Kuypers R, Blakeley R. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin. Protein Sci 2000; 9:1947-59. [PMID: 11106168 PMCID: PMC2144476 DOI: 10.1110/ps.9.10.1947] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The substrate specificity of porcine pepsin has been altered by site-directed mutagenesis in an attempt to selectively cleave bovine hide collagen at only a few sites, similar to cathepsin D, for the production of high quality gelatin. Kinetic parameters were determined using chromogenic peptide substrates based on the sequence Lys-Pro-Xaa-Yaa-Phe*Nph-Arg-Leu (where Xaa is Ile or Pro, Yaa is Glu. Leu, Gln or Lys, Nph is p-nitrophenylalanine, and * is the site of cleavage). Substitution of Thr222 and Glu287 within the S2 subsite of pepsin by Val and Met, respectively, produced a double mutant with a two- to fourfold higher kcat/Km, compared with wild-type pepsin, for the chromogenic peptides with residues Leu, Gln, and Glu at position P2 (Yaa). The results suggest that the functional group of the P2 side chain may be exposed to solvent, while the aliphatic portion interacts with hydrophobic residues comprising S2. Wild-type pepsin cleaved a peptide corresponding to the carboxy-terminal telopeptide region of bovine type I collagen alpha1 chain, SGGYDLSFLPQPPQE, predominantly at three sites (Asp-Leu, Leu-Ser, and Phe-Leu) and at a significantly lower rate at Ser-Phe. However, Thr222Val/Glu287Met cleaved site Ser-Phe at a rate 20-fold higher than the wild-type. Significantly, enzymes containing the double substitution Phe111Thr/Leu112Phe cleaved this peptide predominantly at one site Leu-Ser (similar to cathepsin D) and at a rate 23-fold higher than the wild-type. These mutants can potentially enhance the rate of solubilization of bovine hide collagen under conditions mild enough to maintain the triple helix structure and hence minimize the rate of subsequent denaturation and proteolytic cleavage.
Collapse
Affiliation(s)
- C A Galea
- Department of Biochemistry, University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
37
|
Pimenta DC, Chen VC, Chao J, Juliano MA, Juliano L. Alpha1-antichymotrypsin and kallistatin hydrolysis by human cathepsin D. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:411-8. [PMID: 11131147 DOI: 10.1023/a:1026432402259] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present paper, we demonstrate that alpha1-antichymotrypsin, a serpin with high inhibitory specificity toward cathepsin G, and kallistatin, a human serpin with high specificity toward tissue kallikrein, are digested by cathepsin D. Alpha1-Antichymotrypsin was hydrolyzed essentially in the reactive center loop at L-S, A-L, or L-V bonds; kallistatin was split into small fragments, but we detected the cleavage at F-F and F-S bonds in its reactive center loop in the first 15 min of digestion. In contrast to alpha1-antichymotrypsin, kallistatin is irreversibly inactivated at pH 4.0. Synthetic internally quenched fluorescent peptides containing sequences similar to the reactive center loops of these serpins were hydrolyzed by cathepsin D. The peptides derived from kallistatin were hydrolyzed more efficiently, and particularly relevant was the high susceptibility of the substrates Abz-AIKFFSAQTNRHILRFNRQ-EDDnp (Km = 0.08 microM, kcat = 2.4 s(-1)) and Abz-AIKFFSAQTNRQ-EDDnp (Km = 0.8 microM, kcat = 17.8 s(-1)), which were hydrolyzed at the F-F bond. Therefore, besides the description of a new class of very efficient internally quenched substrates for cathepsin D, we give evidence for the downregulation role of this proteinase on alpha1-antichymotrypsin and kallistatin. The acidification of extracellular milieu by tumor cells can result in activation of cathepsin D; as a consequence, kinins can be released, improving blood supply and leaving more cathepsin G available for the degradation of extracellular matrix.
Collapse
Affiliation(s)
- D C Pimenta
- Department of Biophysics, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
38
|
Brinkworth RI, Harrop SA, Prociv P, Brindley PJ. Host specificity in blood feeding parasites: a defining contribution by haemoglobin-degrading enzymes? Int J Parasitol 2000; 30:785-90. [PMID: 10856514 DOI: 10.1016/s0020-7519(00)00045-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A hypothesis is presented that proposes that the compatibility between species-specific variants of haemoglobin-degrading proteases of blood-feeding parasites (e.g. hookworms, schistosomes, malarial parasites, etc.), and their natural substrates, i.e. haemoglobins from diverse species of mammals, has influenced to evolution of the host range of these parasites. Support for the hypothesis was drawn from molecular modelling studies of the three dimensional structure of an aspartic protease, Acasp, from the canine hookworm Ancylostoma caninum, and models of canine and human haemoglobins docked with the active site of Acasp. The molecular modelling suggested that Acasp, from a canine-specific hookworm, would have a higher substrate affinity for canine haemoglobin than for human haemoglobin.
Collapse
Affiliation(s)
- R I Brinkworth
- Centre for Drug Design & Development, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
39
|
Dunn BM, Hung S. The two sides of enzyme-substrate specificity: lessons from the aspartic proteinases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:231-40. [PMID: 10708860 DOI: 10.1016/s0167-4838(99)00275-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Like most proteolytic enzymes, the aspartic proteinases bind substrates and most inhibitors within an extended active site cleft. Bound ligands typically adopt a beta-strand conformation. Interactions with groups on both sides of the cleft determine the primary as well as secondary specificity of the enzymes. We have pursued the discovery of the sometimes subtle distinctions between members of the aspartic proteinase family by two routes. In the first case, we have constructed sets of oligopeptide substrates with systematic variation in each position to assess interactions at one position at a time. In the second type of experiment, we have altered residues of the enzymes in order to test theories of selectivity. The combination of the two approaches has provided a better understanding of the forces involved in determining specificity of enzyme action.
Collapse
Affiliation(s)
- B M Dunn
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, P.O. Box 100245, Gainesville, FL 32610-0245, USA
| | | |
Collapse
|
40
|
Oliveira V, Ferro ES, Gomes MD, Oshiro ME, Almeida PC, Juliano MA, Juliano L. Characterization of thiol-, aspartyl-, and thiol-metallo-peptidase activities in Madin-Darby canine kidney cells. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000301)76:3<478::aid-jcb14>3.0.co;2-h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
|
42
|
Abstract
Members of the aspartic proteinase family of enzymes have very similar three-dimensional structures and catalytic mechanisms. Each, however, has unique substrate specificity. These distinctions arise from variations in amino acid residues that line the active site subsites and interact with the side chains of the amino acids of the peptides that bind to the active site. To understand the unique binding preferences of plasmepsin II, an enzyme of the aspartic proteinase class from the malaria parasite, Plasmodium falciparum, chromogenic octapeptides having systematic substitutions at various positions in the sequence were analyzed. This enabled the design of new, improved substrates for this enzyme (Lys-Pro-Ile-Leu-Phe*Nph-Ala/Glu-Leu-Lys, where * indicates the cleavage point). Additionally, the crystal structure of plasmepsin II was analyzed to explain the binding characteristics. Specific amino acids (Met13, Ser77, and Ile287) that were suspected of contributing to active site binding and specificity were chosen for site-directed mutagenesis experiments. The Met13Glu and Ile287Glu single mutants and the Met13Glu/Ile287Glu double mutant gain the ability to cleave substrates containing Lys residues.
Collapse
Affiliation(s)
- J Westling
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville 32610-0245, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bazzett LB, Watkins CS, Gercel-Taylor C, Taylor DD. Modulation of proliferation and chemosensitivity by procathepsin D and its peptides in ovarian cancer. Gynecol Oncol 1999; 74:181-7. [PMID: 10419729 DOI: 10.1006/gyno.1999.5426] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the presence of precursors (pro-forms) of the aspartyl endoprotease, cathepsin D, appears to be linked with tumor progression, their presence was examined in sera and tumor tissues of ovarian cancer patients. The role of cathepsin D pro-forms was further assessed in the dysregulated proliferation and chemoresistance observed in advanced ovarian cancer. Cathepsin D was isolated from sera of ovarian cancer patients (n = 20) and normal volunteers (n = 11), as well as from solubilized normal ovarian epithelium (n = 8) and ovarian epithelial tumor tissue (n = 12). The specific molecular forms of cathepsin D were analyzed in these samples by Western immunoblot. Multiple circulating molecular weight forms of cathepsin D were identified in ovarian cancer patients ranging from 24 to 60 kDa, while in normal controls, a major band was observed at 34 kDa in all samples and minor bands corresponding to 27 and 48 kDa were detected in approximately half of the controls. To assess its consequences on ovarian cancer, the 52-kDa protein was immunoprecipitated from culture medium of an exponentially growing ovarian tumor cell line and was further purified by reverse-phase high-pressure liquid chromatography. Its effect on proliferation was assayed by determining cell doubling times and their chemosensitivity was measured in a standard cytotoxicity assay using cisplatin. In addition, decapeptides corresponding to the pro-portion of cathepsin D were analyzed in parallel. Procathepsin D and one decapeptide, peptide 2, as well as IGF-II (as a known positive) increased cell proliferation, with doubling times of 28.4, 28.8, and 30.3 h, respectively, versus untreated UL-1 cells (36.4 h). Procathepsin D treatment of UL-1 tumor cells significantly increased the cisplatin LD(50) (74.9 microgram/ml) over untreated (33.9 microgram/ml) as well as IGF-II-treated (38.8 microgram/ml) cells. Peptide 2 also showed a significant increase in LD(50) (69.5 microgram/ml) compared to untreated and peptide 1-treated cells (37.1 microgram/ml). There are several unique forms of cathepsin D expressed and accumulated by ovarian tumors and these forms are detectable in the sera of those with ovarian cancer. The presence of these procathepsin D can increase the proliferation of these tumor cells, while decreasing their sensitivity to chemotherapeutic agents. While procathepsin D and IGF-II both enhance proliferation, only procathepsin D (and peptide 2) appears to modulate chemosensitivity, suggesting a separate receptor or pathway for this consequence.
Collapse
Affiliation(s)
- L B Bazzett
- Departments of Obstetrics & Gynecology, University of Louisville School of Medicine, Louisville, Kentucky, 40292, USA
| | | | | | | |
Collapse
|
44
|
Coombs GS, Bergstrom RC, Pellequer JL, Baker SI, Navre M, Smith MM, Tainer JA, Madison EL, Corey DR. Substrate specificity of prostate-specific antigen (PSA). CHEMISTRY & BIOLOGY 1998; 5:475-88. [PMID: 9751643 DOI: 10.1016/s1074-5521(98)90004-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The serine protease prostate-specific antigen (PSA) is a useful clinical marker for prostatic malignancy. PSA is a member of the kallikrein subgroup of the (chymo)trypsin serine protease family, but differs from the prototypical member of this subgroup, tissue kallikrein, in possessing a specificity more similar to that of chymotrypsin than trypsin. We report the use of two strategies, substrate phage display and iterative optimization of natural cleavage sites, to identify labile sequences for PSA cleavage. RESULTS Iterative optimization and substrate phage display converged on the amino-acid sequence SS(Y/F)Y decreases S(G/S) as preferred subsite occupancy for PSA. These sequences were cleaved by PSA with catalytic efficiencies as high as 2200-3100 M-1 s-1, compared with values of 2-46 M-1 s-1 for peptides containing likely physiological target sequences of PSA from the protein semenogelin. Substrate residues that bind to secondary (non-S1) subsites have a critical role in defining labile substrates and can even cause otherwise disfavored amino acids to bind in the primary specificity (S1) pocket. CONCLUSION The importance of secondary subsites in defining both the specificity and efficiency of cleavage suggests that substrate recognition by PSA is mediated by an extended binding site. Elucidation of preferred subsite occupancy allowed refinement of the structural model of PSA and should facilitate the development of more sensitive activity-based assays and the design of potent inhibitors.
Collapse
Affiliation(s)
- G S Coombs
- Corvas International, Department of Molecular Biology, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Runeberg-Roos P, Saarma M. Phytepsin, a barley vacuolar aspartic proteinase, is highly expressed during autolysis of developing tracheary elements and sieve cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:139-145. [PMID: 9744102 DOI: 10.1046/j.1365-313x.1998.00187.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vacuolarisation, formation of autophagocytotic vacuoles and tonoplast disruption have been reported in plant cells undergoing developmentally regulated programmed cell death (PCD), but little is known about the vacuolar proteins involved. In HeLa cells, cathepsin D, a lysosomal aspartic proteinase has been shown to mediate PCD. Based on immunohistochemical staining of barley roots, we show here that the previously well characterised barley vacuolar aspartic proteinase (phytepsin), a plant homologue to cathepsin D, is highly expressed both during formation of tracheary elements and during partial autolysis of sieve cells. In serial transverse sections of the vascular cylinder, starting from the root tip, phytepsin is expressed in root cap cells, in the tracheary elements of early and late metaxylem, and in the sieve cells of the protophloem and metaphloem. Aleurain, a barley vacuolar cysteine proteinase, is expressed similarly in root cap cells but differently in the tracheary elements of protoxylem and early metaxylem. This is the first evidence that a vacuolar aspartic proteinase, in analogy to cathepsin D in animals, may play a role in the active autolysis of plant cells.
Collapse
Affiliation(s)
- P Runeberg-Roos
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland.
| | | |
Collapse
|
46
|
Carroll CD, Orlowski M. Screening aspartyl proteases with combinatorial libraries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 436:375-80. [PMID: 9561244 DOI: 10.1007/978-1-4615-5373-1_52] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large numbers of pharmaceutically relevant low-molecular weight compounds can now be synthesized using combinatorial methods. Screening these large libraries of compounds requires high throughput assays. These methods are utilized to search for inhibitors of the aspartyl proteases, plasmepsin II and cathepsin D. Plasmepsin II, a protease found in the malaria parasite, hydrolyzes human hemoglobin, the nutrient source for the parasite and is a new target for anti-malaria therapy. Cathepsin D may be involved in many biological processes and inhibitors would help to clarify the role of cathepsin D in these processes. Plasmepsin II and cathepsin D are approximately 35% identical in amino acid sequence. Therefore, a comparison of the screening results of these two enzymes will be very useful in determining each enzyme's specificity and demonstrating the power of utilizing encoded combinatorial libraries.
Collapse
Affiliation(s)
- C D Carroll
- Pharmacopeia, Inc., Princeton, New Jersey 08540, USA
| | | |
Collapse
|
47
|
Tyas L, Moon RP, Loetscher H, Dunn BM, Kay J, Ridley RG, Berry C. Plasmepsins I and II from the malarial parasite Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 436:407-11. [PMID: 9561249 DOI: 10.1007/978-1-4615-5373-1_57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- L Tyas
- School of Molecular and Medical Biosciences, University of Wales, Cardiff, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
48
|
Dunn BM, Oda K, Kay J, Rao-Naik C, Lowther WT, Beyer BM, Scarborough PE, Bukhtiyarova M. Comparison of the specificity of the aspartic proteinases towards internally consistent sets of oligopeptide substrates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 436:133-8. [PMID: 9561210 DOI: 10.1007/978-1-4615-5373-1_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- B M Dunn
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610-0245, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sachdev D, Chirgwin JM. Solubility of proteins isolated from inclusion bodies is enhanced by fusion to maltose-binding protein or thioredoxin. Protein Expr Purif 1998; 12:122-32. [PMID: 9473466 DOI: 10.1006/prep.1997.0826] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
When the mammalian aspartic proteinases, procathepsin D or pepsinogen, are expressed in Escherichia coli both accumulate in inclusion bodies. While pepsinogen is efficiently refolded in vitro, recovery of procathepsin D is limited by insolubility. We expressed procathepsin D and pepsinogen in E. coli, with E. coli maltose-binding protein (MBP) or thioredoxin (trx) fused to their C-termini (aspartic proteinase-MBP or aspartic proteinase-trx). The fusion proteins were still found in inclusion bodies. However, the recovery of soluble procathepsin D-MBP and procathepsin D-trx after refolding was facilitated by the bacterial fusion partners. Maltose-binding protein was more efficient than thioredoxin in increasing the recovery of soluble protein. The vector, pET23bMBPH6, can be used for general expression of heterologous proteins in E. coli. The vector includes a histidine tag at the C-terminus of MBP to allow one-step purification of the fusion proteins under denaturing conditions. After purification, the protein of interest can be cleaved from MBP with factor Xa protease and separated from the MBP partner. Refolded pepsinogen-MBP and pepsinogen-trx were enzymatically active, but procathepsin D-MBP and procathepsin D-trx were soluble but largely inactive. The results show that the limited recovery of activity upon refolding of procathepsin D is not the consequence of competing aggregation. Thus, the fusions do not necessarily facilitate native refolding, but they do enhance the recovery of soluble protein. Such fusions could provide a system to study, in soluble form, folding states which are otherwise inaccessible because of aggregation and precipitation.
Collapse
Affiliation(s)
- D Sachdev
- Audie L. Murphy Memorial Veterans Administration Hospital, The University of Texas Health Science Center at San Antonio, Texas 78284-7877, USA
| | | |
Collapse
|
50
|
Beyer BM, Dunn BM. Prime region subsite specificity characterization of human cathepsin D: the dominant role of position 128. Protein Sci 1998; 7:88-95. [PMID: 9514263 PMCID: PMC2143827 DOI: 10.1002/pro.5560070109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to contribute to our understanding of cathepsin D (CatD) active site specificity, two series of chromogenic octapeptides with systematic substitutions in positions P2' and P3' were synthesized. This panel was characterized with native human liver cathepsin D (nHuCatD) and yielded information concerning specificity trends within the S2' and S3' subsites. The pepstatin inhibited crystal structure of nHuCatD (Baldwin et al., 1993) was then utilized in conjunction with these subsite preference data to identify residues suspected of contributing to "prime" side subsite specificity. These residues were targeted for site-directed mutagenesis using the re-engineered recombinant model, "short" pseudocathepsin D (Beyer & Dunn, 1996). As a result of these analyses it was determined that prime region subsites do contribute to the unique specificity of human CatD. Furthermore, it was ascertained that the poly-proline loop does not have an active role in S3' subsite specificity. Lastly, it appears that Ile128 has a dominant role on S2' subsite specificity whereas Val130 does not.
Collapse
Affiliation(s)
- B M Beyer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville 32610-0245, USA
| | | |
Collapse
|