1
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 6. [PMID: 26442941 DOI: 10.1128/ecosalplus.esp-0005-2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topology, and the mode of energy conservation. Most of the energy-conserving dehydrogenases (FdnGHI, HyaABC, HybCOAB, and others) and the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox-loop mechanism. Two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases and terminal reductases do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known or can be predicted. The H+/2e- ratios for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and the respiratory chains is described and related to the H+/2e- ratios.
Collapse
|
2
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 3. [PMID: 26443736 DOI: 10.1128/ecosalplus.3.2.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli contains a versatile respiratory chain which oxidizes ten different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use even two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. Various respiratory pathways can be established by combining the oxidation of different electron donors and acceptors which are linked by respiratory quinones. The enzymes vary largely with respect to architecture, membrane topology, and mode of energy conservation. Most of the energy-conserving dehydrogenases (e.g., FdnGHI, HyaABC, and HybCOAB) and of the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox loop mechanism. Only two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases (e.g., Ndh, SdhABCD, and GlpD) and of terminal reductases (e.g., FrdABCD and DmsABC) do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known from structural and biochemical studies or can be predicted from sequence information. The H+/2e- ratios of proton translocation for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and of the respiratory chains is described. In contrast to the knowledge on enzyme function are physiological aspects of respiration such as organization and coordination of the electron transport and the use of alternative respiratory enzymes, not well characterized.
Collapse
|
3
|
Abstract
(1)H-, (11)B-, (13)C-, (15)N-, (17)O-, (19)F-, and (31)P-NMR chemical shifts of flavocoenzymes and derivatives of it, as well as of alloxazines and isoalloxazinium salts, from NMR experiments performed under various experimental conditions (e.g., dependence of the chemical shifts on temperature, concentration, solvent polarity, and pH) are reported. Also solid-state (13)C- and (15)N-NMR experiments are described revealing the anisotropic values of corresponding chemical shifts. These data, in combination with a number of coupling constants, led to a detailed description of the electronic structure of oxidized and reduced flavins. The data also demonstrate that the structure of oxidized flavin can assume a configuration deviating from coplanarity, depending on substitutions in the isoalloxazine ring, while that of reduced flavin exhibits several configurations, from almost planar to quite bended. The complexes formed between oxidized flavin and metal ions or organic molecules revealed three coordination sites with metal ions (depending on the chemical nature of the ion), and specific interactions between the pyrimidine moiety of flavin and organic molecules, mimicking specific interactions between apoflavoproteins and their coenzymes. Most NMR studies on flavoproteins were performed using (13)C- and (15)N-substituted coenzymes, either specifically enriched in the pterin moiety of flavin or uniformly labeled flavins. The chemical shifts of free flavins are used as a guide in the interpretation of the chemical shifts observed in flavoproteins. Although the hydrogen-bonding pattern in oxidized and reduced flavoproteins varies considerably, no correlation is obvious between these patterns and the corresponding redox potentials. In all reduced flavoproteins the N(1)H group of the flavocoenzyme is deprotonated, an exception is thioredoxin reductase. Three-dimensional structures of only a few flavoproteins, mostly belonging to the family of flavodoxins, have been solved. Also the kinetics of unfolding and refolding of flavodoxins has been investigated by NMR techniques. In addition, (31)P-NMR data of all so far studied flavoproteins and some (19)F-NMR spectra are discussed.
Collapse
Affiliation(s)
- Franz Müller
- , Wylstrasse 13, CH-6052, Hergiswil, Switzerland,
| |
Collapse
|
4
|
Merkel L, Budisa N. Organic fluorine as a polypeptide building element: in vivo expression of fluorinated peptides, proteins and proteomes. Org Biomol Chem 2012; 10:7241-61. [DOI: 10.1039/c2ob06922a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Yanamala N, Dutta A, Beck B, van Vliet B, van Fleet B, Hay K, Yazbak A, Ishima R, Doemling A, Klein-Seetharaman J. NMR-based screening of membrane protein ligands. Chem Biol Drug Des 2011; 75:237-56. [PMID: 20331645 DOI: 10.1111/j.1747-0285.2009.00940.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with ligands non-specifically, overlap with protein signals, modulate protein dynamics and conformational exchange and compromise sensitivity by adding highly intense background signals. In this article, we discuss the special considerations arising from these problems when conducting NMR-based ligand-binding studies with membrane proteins. While the use of (13)C and (15)N isotopes is becoming increasingly feasible, (19)F and (1)H NMR-based approaches are currently the most widely explored. By using suitable NMR parameter selection schemes independent of or exploiting the presence of detergent, (1)H-based approaches require least effort in sample preparation because of the high sensitivity and natural abundance of (1)H in both, ligand and protein. On the other hand, the (19)F nucleus provides an ideal NMR probe because of its similarly high sensitivity to that of (1)H and the lack of natural (19)F background in biologic systems. Despite its potential, the use of NMR spectroscopy is highly underdeveloped in the area of drug discovery for membrane proteins.
Collapse
Affiliation(s)
- Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:335-360. [PMID: 20161395 PMCID: PMC2782866 DOI: 10.1016/j.pnmrs.2009.07.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Hak Jun Kim
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, 406-840, Korea
| | - Stanley C. Howell
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Wade D. Van Horn
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Young Ho Jeon
- Center for Magnetic Resonance, Korea Basic Research Institute, Daejon, 305-333, Korea
| | - Charles R. Sanders
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
- Corresponding Author: ; phone: 615-936-3756; fax: 615-936-2211
| |
Collapse
|
7
|
Dym O, Pratt EA, Ho C, Eisenberg D. The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc Natl Acad Sci U S A 2000; 97:9413-8. [PMID: 10944213 PMCID: PMC16878 DOI: 10.1073/pnas.97.17.9413] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
d-Lactate dehydrogenase (d-LDH) of Escherichia coli is a peripheral membrane respiratory enzyme involved in electron transfer, located on the cytoplasmic side of the inner membrane. d-LDH catalyzes the oxidation of d-lactate to pyruvate, which is coupled to transmembrane transport of amino acids and sugars. Here we describe the crystal structure at 1.9 A resolution of the three domains of d-LDH: the flavin adenine dinucleotide (FAD)-binding domain, the cap domain, and the membrane-binding domain. The FAD-binding domain contains the site of d-lactate reduction by a noncovalently bound FAD cofactor and has an overall fold similar to other members of a recently discovered FAD-containing family of proteins. This structural similarity extends to the cap domain as well. The most prominent difference between d-LDH and the other members of the FAD-containing family is the membrane-binding domain, which is either absent in some of these proteins or differs significantly. The d-LDH membrane-binding domain presents an electropositive surface with six Arg and five Lys residues, which presumably interacts with the negatively charged phospholipid head groups of the membrane. Thus, d-LDH appears to bind the membrane through electrostatic rather than hydrophobic forces.
Collapse
Affiliation(s)
- O Dym
- Department of Energy Laboratory of Structural Biology and Molecular Medicine, University of California, Los Angeles 90095, USA
| | | | | | | |
Collapse
|
8
|
Danielson MA, Falke JJ. Use of 19F NMR to probe protein structure and conformational changes. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1996; 25:163-95. [PMID: 8800468 PMCID: PMC2899692 DOI: 10.1146/annurev.bb.25.060196.001115] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
19F NMR has proven to be a powerful technique in the study of protein structure and dynamics because the 19F nucleus is easily incorporated at specific labeling sites, where it provides a relatively nonperturbing yet sensitive probe with no background signals. Recent applications of 19F NMR in mapping out structural and functional features of proteins, including the galactose-binding protein, the transmembrane aspartate receptor, the CheY protein, dihydrofolate reductase, elongation factor-Tu, and D-lactose dehydrogenase, illustrate the utility of 19F NMR in the analysis of protein conformational states even in molecules too large or unstable for full NMR structure determination. These studies rely on the fact that the chemical shift of 19F is extremely sensitive to changes in the local conformational environment, including van der Waals packing interactions and local electrostatic fields. Additional information is provided by solvent-induced isotope shifts or line broadening of the 19F resonance by aqueous and membrane-bound paramagnetic probes, which may reveal the proximity of a 19F label to bulk solvent or a biological membrane. Finally, the effect of exchanging conformations on the 19F resonance can directly determine the kinetic parameters of the conformational transition.
Collapse
Affiliation(s)
- M A Danielson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA
| | | |
Collapse
|
9
|
Dowd SR, Pratt EA, Sun ZY, Ho C. Nature and environment of the sulfhydryls of membrane-associated D-lactate dehydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1252:278-83. [PMID: 7578234 DOI: 10.1016/0167-4838(95)00121-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid), has been used to titrate D-lactate dehydrogenase (D-LDH), a respiratory flavoenzyme of Escherichia coli. All six of the possible sulfhydryls titrate in the presence of 2% sodium dodecylsulfate, showing that D-lactate dehydrogenase does not contain any -S-S- bridges. In the native state, only two sulfhydryls are accessible in buffer and only one in the presence of lipid. Single-site mutations of each of the six cysteines of D-lactate dehydrogenase have been prepared. Each of the purified mutant proteins has full activity, demonstrating that an -SH group is not essential to the FAD-driven redox reaction. Ellman's titrations of the mutant proteins have led to the identification of cysteines 65, 146, 156, and 256 in the amino-terminal end as those containing the sulfhydryls that are not accessible in buffer or in buffer plus lipid. The cysteine at 422 is titrated only partially in buffer, while in buffer containing lipid, a necessary factor for full enzymatic activity, its sulfhydryl is inaccessible to the reagent. Cysteine 492 has been identified as containing the sulfhydryl that is accessible to the reagent under both conditions.
Collapse
Affiliation(s)
- S R Dowd
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
10
|
Sun ZY, Dowd SR, Felix C, Hyde JS, Ho C. Stopped-flow kinetic and biophysical studies of membrane-associated D-lactate dehydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1252:269-77. [PMID: 7578233 DOI: 10.1016/0167-4838(95)00120-j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The enzyme kinetics of the FAD-containing membrane-associated D-lactate dehydrogenase (D-LDH) of Escherichia coli have been investigated by stopped-flow spectroscopy. The reduction of D-LDH by the substrate, D-lactate, exhibits a two-stage behavior as observed by the absorbance change for the enzyme-bound FAD. The fast stage with a maximum rate of 400 s-1 represents the rapid formation of the enzyme-substrate complex and the formation of the equilibrium between the oxidized and the reduced enzyme-substrate complexes. The slow stage, which occurs on the order of 0.36 s-1, represents the slow release of the product, pyruvate, from the reduced enzyme. The formation of a D-LDH semiquinone radical was not observed during the oxidation of D-lactate by D-LDH at 25 degrees C. However, during the subsequent electron transfer from the reduced enzyme to a nitroxide spin-label, a one-electron acceptor, an enzyme intermediate has been observed and identified by both optical and EPR spectroscopies as an anionic semiquinone. Results from 1H-NMR spectroscopic studies suggest the possible formation of a substrate carbanion when D-lactate is bound at the active site of D-LDH.
Collapse
Affiliation(s)
- Z Y Sun
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
11
|
Varga ME, Weiner JH. Physiological role of GlpB of anaerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. Biochem Cell Biol 1995; 73:147-53. [PMID: 7576488 DOI: 10.1139/o95-018] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli is encoded by an operon of three genes, glpACB. The promoter distal gene, glpB, encodes a 44-kilodalton polypeptide that is not part of the purified soluble dehydrogenase. By recombinant plasmid complementation, in a strain harboring a chromosomal deletion of glpACB, we found that all three genes were essential for anaerobic growth on glycerol-3-phosphate (G3P). By isolation of inner membrane preparations we confirmed the cytoplasmic membrane localization of GlpB. GlpB displayed an electron paramagnetic resonance spectrum that suggested the presence of iron-sulfur center(s) within GlpB. We used this spectrum to show that the center(s) were reduced by the artificial reductant dithionite and by the physiological substrate G3P but not by lactate or formate. The center(s) were oxidized by fumarate. These data indicated that GlpB mediates electron transfer from the soluble GlpAC dimer to the terminal electron acceptor fumarate via the membrane-bound menaquinone pool.
Collapse
Affiliation(s)
- M E Varga
- University of Alberta, Edmonton, Canada
| | | |
Collapse
|