1
|
Mahto FK, Bhattacharya A, Bhattacharya S. Molecular dynamics simulations suggest novel allosteric modes in the Hsp70 chaperone protein. J Biomol Struct Dyn 2025; 43:966-984. [PMID: 38063068 DOI: 10.1080/07391102.2023.2290618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/25/2023] [Indexed: 01/01/2025]
Abstract
The Hsp70 chaperone protein system is an essential component of the protein folding and homeostasis machinery in E.Coli. Hsp70 is a three domain, 70 kDa protein which functions as an allosteric system cycling between an ADP-bound state where the three domains are loosely coupled via a flexible interdomain linker and an ATP-bound state where they are tightly coupled into a single entity. The structure-function model of this protein proposes an allosteric connection between the 45 kDa Nucleotide Binding Domain (NBD) and the 25 kDa Substrate Binding Domain (SBD) and Lid Domain which operates through the inter NBD-SBD linker. X-Ray crystallography and NMR spectroscopy have provided structures of the end states of the functional cycle of this protein, bound to ADP and ATP. We have used MD simulations to study the transitions between these end states and allosteric communication in this system. Our results largely validate the experimentally derived allosteric model of function, but shed additional light on the flow of allosteric information in the SBD + Lid. Specifically, we find that the Lid domain has a double-hinged structure with the potential for greater conformational flexibility than was hitherto expected.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Farindra Kumar Mahto
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Fourie KR, Jeffery A, Chand D, Choudhary P, Ng SH, Liu H, Magloire D, Khatooni Z, Berberov E, Wilson HL. Vaccination with a Lawsonia intracellularis subunit water in oil emulsion vaccine mitigated some disease parameters but failed to affect shedding. Vaccine 2024; 42:126254. [PMID: 39213981 DOI: 10.1016/j.vaccine.2024.126254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Lawsonia intracellularis is the causative agent of ileitis in swine that manifests as slower weight gain, mild or hemorrhagic diarrhea and/or death in severe cases. As an economically important swine pathogen, development of effective vaccines is important to the swine industry. In developing a subunit vaccine with three recombinant antigens - FliC, GroEL and YopN - we wanted to identify a formulation that would produce robust immune responses that reduce disease parameters associated with Lawsonia intracellularis infection. We formulated these three antigens with four adjuvants: Montanide ISA 660 VG, Montanide Gel 02 PR, Montanide IMS 1313 VG NST, and Montanide ISA 61 VG in an immunogenicity study. Groups vaccinated with formulations including Montanide ISA 660 VG or Montanide ISA 61 VG had significantly more robust immune responses than groups vaccinated with formulations including Montanide Gel 02 PR or Montanide IMS 1313 VG NST. In the challenge study, animals vaccinated with these antigens and Montanide ISA 61 VG had reduced lesion scores, reduced lesion lengths, and increased average daily gain, but no reduction in shedding relative to the control animals. This work shows that this vaccine formulation should be considered for future study in a field and performance trial.
Collapse
Affiliation(s)
- Kezia R Fourie
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Alison Jeffery
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada; Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Dylan Chand
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Pooja Choudhary
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Haoming Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Donaldson Magloire
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Emil Berberov
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
3
|
Mahto FK, Bhattacharya A, Bhattacharya S. Molecular dynamics simulations shows real-time lid opening in Hsp70 chaperone. J Mol Graph Model 2024; 129:108726. [PMID: 38377794 DOI: 10.1016/j.jmgm.2024.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
The stress-inducible mammalian heat shock protein Hsp70 and its bacterial orthologue DnaK are highly conserved molecular chaperones and a crucial part of the machinery responsible for protein folding and homeostasis. Hsp70 is a three-domain, 70 kDa protein that cycles between an ATP-bound state in which all three domains are securely coupled into one unit and an ADP-bound state in which they are loosely attached via a flexible interdomain linker. The Hsp70 presents an alluring novel therapeutic target since it is crucial for maintaining cellular proteostasis and is particularly crucial to cancer cells. We have performed molecular dynamics simulations of the SBD (substrate binding domain) along with the Lid domain in response to experimental efforts to identify small molecule inhibitors that impair the functioning of Hsp70. Our intent has been to characterize the motion of the SBD/Lid allosteric machinery and in, addition, to identify the effect of the PET16 molecule on this motion. Interestingly, we noticed the opening of the entire Lid domain in the apo-form of the dimer. The configuration of the open structure was very different from previously published structures (PDB 4JN4) of the open and docked conformation of the ATP bound form. MD simulations revealed the Lid to be capable of far greater dynamical excursions than has been anticipated by experimental structural biology. This is of value in future drug discovery efforts targeted to modulating Hsp70 activity. The PET16 molecule appears to be weakly bound and its effect on the dynamics of the complex is yet to be elucidated.
Collapse
Affiliation(s)
- Farindra Kumar Mahto
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | | | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
4
|
Edgar RH, Samson AP, Kocsis T, Viator JA. Photoacoustic Flow Cytometry Using Functionalized Microspheres for Selective Detection of Bacteria. MICROMACHINES 2023; 14:573. [PMID: 36984980 PMCID: PMC10057399 DOI: 10.3390/mi14030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Photoacoustic flow cytometry is a method to detect rare analytes in fluids. We developed photoacoustic flow cytometry to detect pathological cells in body fluids, such as circulating tumor cells or bacteria in blood. In order to induce specific optical absorption in bacteria, we use modified bacteriophage that precisely target bacterial species or subspecies for rapid identification. In order to reduce detection variability and to halt the lytic lifescycle that results in lysis of the bacteria, we attached dyed latex microspheres to the tail fibers of bacteriophage that retained the bacterial recognition binding sites. We tested these microsphere complexes using Salmonella enterica (Salmonella) and Escherichia coli (E. coli) bacteria and found robust and specific detection of targeted bacteria. In our work we used LT2, a strain of Salmonella, against K12, a strain of E. coli. Using Det7, a bacteriophage that binds to LT2 and not to K12, we detected an average of 109.3±9.0 of LT2 versus 2.0±1.7 of K12 using red microspheres and 86.7±13.2 of LT2 versus 0.3±0.6 of K12 using blue microspheres. These results confirmed our ability to selectively detect bacterial species using photoacoustic flow cytometry.
Collapse
Affiliation(s)
- Robert H. Edgar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anie-Pier Samson
- Department of Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| | - Tori Kocsis
- Department of Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| | - John A. Viator
- Department of Engineering, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
5
|
Gestaut D, Zhao Y, Park J, Ma B, Leitner A, Collier M, Pintilie G, Roh SH, Chiu W, Frydman J. Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT. Cell 2022; 185:4770-4787.e20. [PMID: 36493755 PMCID: PMC9735246 DOI: 10.1016/j.cell.2022.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/01/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
The ATP-dependent ring-shaped chaperonin TRiC/CCT is essential for cellular proteostasis. To uncover why some eukaryotic proteins can only fold with TRiC assistance, we reconstituted the folding of β-tubulin using human prefoldin and TRiC. We find unstructured β-tubulin is delivered by prefoldin to the open TRiC chamber followed by ATP-dependent chamber closure. Cryo-EM resolves four near-atomic-resolution structures containing progressively folded β-tubulin intermediates within the closed TRiC chamber, culminating in native tubulin. This substrate folding pathway appears closely guided by site-specific interactions with conserved regions in the TRiC chamber. Initial electrostatic interactions between the TRiC interior wall and both the folded tubulin N domain and its C-terminal E-hook tail establish the native substrate topology, thus enabling C-domain folding. Intrinsically disordered CCT C termini within the chamber promote subsequent folding of tubulin's core and middle domains and GTP-binding. Thus, TRiC's chamber provides chemical and topological directives that shape the folding landscape of its obligate substrates.
Collapse
Affiliation(s)
- Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Zhao
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Boxue Ma
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miranda Collier
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Grigore Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea,Co-Corresponding authors: (lead contact), ,
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA,Co-Corresponding authors: (lead contact), ,
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA,Department of Genetics, Stanford University, Stanford, CA 94305, USA,Co-Corresponding authors: (lead contact), ,
| |
Collapse
|
6
|
Gijsbers A, Eymery M, Gao Y, Menart I, Vinciauskaite V, Siliqi D, Peters PJ, McCarthy A, Ravelli RBG. The crystal structure of the EspB-EspK virulence factor-chaperone complex suggests an additional type VII secretion mechanism in Mycobacterium tuberculosis. J Biol Chem 2022; 299:102761. [PMID: 36463964 PMCID: PMC9811218 DOI: 10.1016/j.jbc.2022.102761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Pathogenic species from the Mycobacterium genus are responsible for a number of adverse health conditions in humans and animals that threaten health security and the economy worldwide. Mycobacteria have up to five specialized secretion systems (ESX-1 to ESX-5) that transport virulence factors across their complex cell envelope to facilitate manipulation of their environment. In pathogenic species, these virulence factors influence the immune system's response and are responsible for membrane disruption and contributing to cell death. While structural details of these secretion systems have been recently described, gaps still remain in the structural understanding of the secretion mechanisms of most substrates. Here, we describe the crystal structure of Mycobacterium tuberculosis ESX-1 secretion-associated substrate EspB bound to its chaperone EspK. We found that EspB interacts with the C-terminal domain of EspK through its helical tip. Furthermore, cryogenic electron microscopy, size exclusion chromatography analysis, and small-angle X-ray scattering experiments show that EspK keeps EspB in its secretion-competent monomeric form and prevents its oligomerization. The structure presented in this study suggests an additional secretion mechanism in ESX-1, analogous to the chaperoning of proline-glutamate (PE)-proline-proline-glutamate (PPE) proteins by EspG, where EspK facilitates the secretion of EspB in Mycobacterium species.
Collapse
Affiliation(s)
- Abril Gijsbers
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | | | - Ye Gao
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Isabella Menart
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Vanesa Vinciauskaite
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Peter J Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | | | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Karamanos TK, Clore GM. Large Chaperone Complexes Through the Lens of Nuclear Magnetic Resonance Spectroscopy. Annu Rev Biophys 2022; 51:223-246. [PMID: 35044800 DOI: 10.1146/annurev-biophys-090921-120150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones are the guardians of the proteome inside the cell. Chaperones recognize and bind unfolded or misfolded substrates, thereby preventing further aggregation; promoting correct protein folding; and, in some instances, even disaggregating already formed aggregates. Chaperones perform their function by means of an array of weak protein-protein interactions that take place over a wide range of timescales and are therefore invisible to structural techniques dependent upon the availability of highly homogeneous samples. Nuclear magnetic resonance (NMR) spectroscopy, however, is ideally suited to study dynamic, rapidly interconverting conformational states and protein-protein interactions in solution, even if these involve a high-molecular-weight component. In this review, we give a brief overview of the principles used by chaperones to bind their client proteins and describe NMR methods that have emerged as valuable tools to probe chaperone-substrate and chaperone-chaperone interactions. We then focus on a few systems for which the application of these methods has greatly increased our understanding of the mechanisms underlying chaperone functions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom;
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
8
|
Kumar A, Jernigan RL. Ligand Binding Introduces Significant Allosteric Shifts in the Locations of Protein Fluctuations. Front Mol Biosci 2021; 8:733148. [PMID: 34540902 PMCID: PMC8440829 DOI: 10.3389/fmolb.2021.733148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Allostery is usually considered to be a mechanism for transmission of signals associated with physical or dynamic changes in some part of a protein. Here, we investigate the changes in fluctuations across the protein upon ligand binding based on the fluctuations computed with elastic network models. These results suggest that binding reduces the fluctuations at the binding site but increases fluctuations at remote sites, but not to fully compensating extents. If there were complete conservation of entropy, then only the enthalpies of binding would matter and not the entropies; however this does not appear to be the case. Experimental evidence also suggests that energies and entropies of binding can compensate but that the extent of compensation varies widely from case to case. Our results do however always show transmission of an allosteric signal to distant locations where the fluctuations are increased. These fluctuations could be used to compute entropies to improve evaluations of the thermodynamics of binding. We also show the allosteric relationship between peptide binding in the GroEL trans-ring that leads directly to the release of GroES from the GroEL-GroES cis-ring. This finding provides an example of how calculating these changes to protein dynamics induced by the binding of an allosteric ligand can regulate protein function and mechanism.
Collapse
Affiliation(s)
- Ambuj Kumar
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Robert L Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Wang D, Xu P, Sun J, Yuan J, Zhao J. Effects of ethanol stress on epsilon-poly-l-lysine (ε-PL) biosynthesis in Streptomyces albulus X-18. Enzyme Microb Technol 2021; 153:109907. [PMID: 34670188 DOI: 10.1016/j.enzmictec.2021.109907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023]
Abstract
The aim of the study was to reveal the effects of ethanol stress on the production of epsilon-poly-l-lysine (ε-PL) in Streptomyces albulus X-18. The results showed that biomass and the utilization of glucose were respectively increased by ethanol stress. The ε-PL yield was increased by 41.42 % in the shake flask and 37.02 % in 10 L fermenter with 1% (v/v) ethanol. The morphology of colonies and mycelia showed significant differences. The intracellular reactive oxygen species level was increased by about 100 %. The ratio of unsaturated fatty acids to saturated fatty acids in the cell membrane was increased by ethanol stress. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteomic profile showed that 265 identified proteins were differentially expressed. The differentially expressed proteins (DEPs) were mainly involved in biological processes. The up-regulated DEPs were mainly involved in the redox reaction and stress response. The metabolic flux of l-Asp was shifted to l-Lys biosynthesis, and the DAP pathway was strengthened. Protein-protein interaction analysis showed that 30 DEPs interacted with l-Lys biosynthesis. The changes of ten proteins by Parallel Reaction Monitoring (PRM) were consistent with those by iTRAQ. The study provided valuable clues to better understand the mechanism of ε-PL biosynthesis improvement by ethanol stress.
Collapse
Affiliation(s)
- Dahong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China; Henan Engineering Research Center of Food Microbiology, Luoyang, China.
| | - Peng Xu
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| | - Jiangfeng Yuan
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China; National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Junfeng Zhao
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
10
|
Rauch J, Barton J, Kwiatkowski M, Wunderlich M, Steffen P, Moderzynski K, Papp S, Höhn K, Schwanke H, Witt S, Richardt U, Mehlhoop U, Schlüter H, Pianka V, Fleischer B, Tappe D, Osterloh A. GroEL is an immunodominant surface-exposed antigen of Rickettsia typhi. PLoS One 2021; 16:e0253084. [PMID: 34111210 PMCID: PMC8191997 DOI: 10.1371/journal.pone.0253084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
Rickettsioses are neglected and emerging potentially fatal febrile diseases that are caused by obligate intracellular bacteria, rickettsiae. Rickettsia (R.) typhi and R. prowazekii constitute the typhus group (TG) of rickettsiae and are the causative agents of endemic and epidemic typhus, respectively. We recently generated a monoclonal antibody (BNI52) against R. typhi. Characterization of BNI52 revealed that it specifically recognizes TG rickettsiae but not the members of the spotted fever group (SFG) rickettsiae. We further show that BNI52 binds to protein fragments of ±30 kDa that are exposed on the bacterial surface and also present in the periplasmic space. These protein fragments apparently derive from the cytosolic GroEL protein of R. typhi and are also recognized by antibodies in the sera from patients and infected mice. Furthermore, BNI52 opsonizes the bacteria for the uptake by antigen presenting cells (APC), indicating a contribution of GroEL-specific antibodies to protective immunity. Finally, it is interesting that the GroEL protein belongs to 32 proteins that are differentially downregulated by R. typhi after passage through immunodeficient BALB/c CB17 SCID mice. This could be a hint that the rickettsia GroEL protein may have immunomodulatory properties as shown for the homologous protein from several other bacteria, too. Overall, the results of this study provide evidence that GroEL represents an immunodominant antigen of TG rickettsiae that is recognized by the humoral immune response against these pathogens and that may be interesting as a vaccine candidate. Apart from that, the BNI52 antibody represents a new tool for specific detection of TG rickettsiae in various diagnostic and experimental setups.
Collapse
Affiliation(s)
- Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Barton
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Malte Wunderlich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Pascal Steffen
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefanie Papp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hella Schwanke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ulricke Richardt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ute Mehlhoop
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Verena Pianka
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anke Osterloh
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
11
|
Sanders JC, Holmstrom ED. Integrating single-molecule FRET and biomolecular simulations to study diverse interactions between nucleic acids and proteins. Essays Biochem 2021; 65:37-49. [PMID: 33600559 PMCID: PMC8052285 DOI: 10.1042/ebc20200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The conformations of biological macromolecules are intimately related to their cellular functions. Conveniently, the well-characterized dipole-dipole distance-dependence of Förster resonance energy transfer (FRET) makes it possible to measure and monitor the nanoscale spatial dimensions of these conformations using fluorescence spectroscopy. For this reason, FRET is often used in conjunction with single-molecule detection to study a wide range of conformationally dynamic biochemical processes. Written for those not yet familiar with the subject, this review aims to introduce biochemists to the methodology associated with single-molecule FRET, with a particular emphasis on how it can be combined with biomolecular simulations to study diverse interactions between nucleic acids and proteins. In the first section, we highlight several conceptual and practical considerations related to this integrative approach. In the second section, we review a few recent research efforts wherein various combinations of single-molecule FRET and biomolecular simulations were used to study the structural and dynamic properties of biochemical systems involving different types of nucleic acids (e.g., DNA and RNA) and proteins (e.g., folded and disordered).
Collapse
Affiliation(s)
- Joshua C Sanders
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
| | - Erik D Holmstrom
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, U.S.A
| |
Collapse
|
12
|
Stevens M, Howe C, Ray AM, Washburn A, Chitre S, Sivinski J, Park Y, Hoang QQ, Chapman E, Johnson SM. Analogs of nitrofuran antibiotics are potent GroEL/ES inhibitor pro-drugs. Bioorg Med Chem 2020; 28:115710. [PMID: 33007545 PMCID: PMC7914298 DOI: 10.1016/j.bmc.2020.115710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023]
Abstract
In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.
Collapse
Affiliation(s)
- Mckayla Stevens
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Chris Howe
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Alex Washburn
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Siddhi Chitre
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Jared Sivinski
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Yangshin Park
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Quyen Q Hoang
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
13
|
Rodriguez A, Von Salzen D, Holguin BA, Bernal RA. Complex Destabilization in the Mitochondrial Chaperonin Hsp60 Leads to Disease. Front Mol Biosci 2020; 7:159. [PMID: 32766281 PMCID: PMC7381220 DOI: 10.3389/fmolb.2020.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023] Open
Abstract
Several neurological disorders have been linked to mutations in chaperonin genes and more specifically to the HSPD1 gene. In humans, HSPD1 encodes the mitochondrial Heat Shock Protein 60 (mtHsp60) chaperonin, which carries out essential protein folding reactions that help maintain mitochondrial and cellular homeostasis. It functions as a macromolecular complex that provides client proteins an environment that favors proper folding in an ATP-dependent manner. It has been established that mtHsp60 plays a crucial role in the proper folding of mitochondrial proteins involved in ATP producing pathways. Recently, various single-point mutations in the mtHsp60 encoding gene have been directly linked to neuropathies and paraplegias. Individuals who harbor mtHsp60 mutations that negatively impact its folding ability display phenotypes with highly compromised muscle and neuron cells. Carriers of these mutations usually develop neuropathies and paraplegias at different stages of their lives mainly characterized by leg stiffness and weakness as well as degeneration of spinal cord nerves. These phenotypes are likely due to hindered energy producing pathways involved in cellular respiration resulting in ATP deprived cells. Although the complete protein folding mechanism of mtHsp60 is not well understood, recent work suggests that several of these mutations act by destabilizing the oligomeric stability of mtHsp60. Here, we discuss recent studies that highlight key aspects of the mtHsp60 mechanism with a focus on some of the known disease-causing point mutations, D29G and V98I, and their effect on the protein folding reaction cycle.
Collapse
Affiliation(s)
| | | | | | - Ricardo A. Bernal
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
14
|
Improvement of ε-poly-L-lysine production of Streptomyces albulus by continuous introduction of streptomycin resistance. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Micciche A, Rothrock MJ, Yang Y, Ricke SC. Essential Oils as an Intervention Strategy to Reduce Campylobacter in Poultry Production: A Review. Front Microbiol 2019; 10:1058. [PMID: 31139172 PMCID: PMC6527745 DOI: 10.3389/fmicb.2019.01058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Campylobacter is a major foodborne pathogen and can be acquired through consumption of poultry products. With 1.3 million United States cases a year, the high prevalence of Campylobacter within the poultry gastrointestinal tract is a public health concern and thus a target for the development of intervention strategies. Increasing demand for antibiotic-free products has led to the promotion of various alternative pathogen control measures both at the farm and processing level. One such measure includes utilizing essential oils in both pre- and post-harvest settings. Essential oils are derived from plant-based extracts, and there are currently over 300 commercially available compounds. They have been proposed to control Campylobacter in the gastrointestinal tract of broilers. When used in concentrations low enough to not influence sensory characteristics, essential oils have also been proposed to decrease bacterial contamination of the poultry product during processing. This review explores the use of essential oils, particularly thymol, carvacrol, and cinnamaldehyde, and their role in reducing Campylobacter concentrations both pre- and post-harvest. This review also details the suggested mechanisms of action of essential oils on Campylobacter.
Collapse
Affiliation(s)
- Andrew Micciche
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael J. Rothrock
- United States Department of Agriculture, Agricultural Research Service, Athens, GA, United States
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
16
|
Stevens M, Abdeen S, Salim N, Ray AM, Washburn A, Chitre S, Sivinski J, Park Y, Hoang QQ, Chapman E, Johnson SM. HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules. Bioorg Med Chem Lett 2019; 29:1106-1112. [PMID: 30852084 DOI: 10.1016/j.bmcl.2019.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 01/08/2023]
Abstract
All living organisms contain a unique class of molecular chaperones called 60 kDa heat shock proteins (HSP60 - also known as GroEL in bacteria). While some organisms contain more than one HSP60 or GroEL isoform, at least one isoform has always proven to be essential. Because of this, we have been investigating targeting HSP60 and GroEL chaperonin systems as an antibiotic strategy. Our initial studies focused on applying this antibiotic strategy for treating African sleeping sickness (caused by Trypanosoma brucei parasites) and drug-resistant bacterial infections (in particular Methicillin-resistant Staphylococcus aureus - MRSA). Intriguingly, during our studies we found that three known antibiotics - suramin, closantel, and rafoxanide - were potent inhibitors of bacterial GroEL and human HSP60 chaperonin systems. These findings prompted us to explore what other approved drugs, natural products, and known bioactive molecules might also inhibit HSP60 and GroEL chaperonin systems. Initial high-throughput screening of 3680 approved drugs, natural products, and known bioactives identified 161 hit inhibitors of the Escherichia coli GroEL chaperonin system (4.3% hit rate). From a purchased subset of 60 hits, 29 compounds (48%) re-confirmed as selective GroEL inhibitors in our assays, all of which were nearly equipotent against human HSP60. These findings illuminate the notion that targeting chaperonin systems might be a more common occurrence than we previously appreciated. Future studies are needed to determine if the in vivo modes of action of these approved drugs, natural products, and known bioactive molecules are related to GroEL and HSP60 inhibition.
Collapse
Affiliation(s)
- Mckayla Stevens
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Sanofar Abdeen
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Nilshad Salim
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Alex Washburn
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Siddhi Chitre
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Jared Sivinski
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Yangshin Park
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Quyen Q Hoang
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
17
|
Kunkle T, Abdeen S, Salim N, Ray AM, Stevens M, Ambrose AJ, Victorino J, Park Y, Hoang QQ, Chapman E, Johnson SM. Hydroxybiphenylamide GroEL/ES Inhibitors Are Potent Antibacterials against Planktonic and Biofilm Forms of Staphylococcus aureus. J Med Chem 2018; 61:10651-10664. [PMID: 30392371 DOI: 10.1021/acs.jmedchem.8b01293] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We recently reported the identification of a GroEL/ES inhibitor (1, N-(4-(benzo[ d]thiazol-2-ylthio)-3-chlorophenyl)-3,5-dibromo-2-hydroxybenzamide) that exhibited in vitro antibacterial effects against Staphylococcus aureus comparable to vancomycin, an antibiotic of last resort. To follow up, we have synthesized 43 compound 1 analogs to determine the most effective functional groups of the scaffold for inhibiting GroEL/ES and killing bacteria. Our results identified that the benzothiazole and hydroxyl groups are important for inhibiting GroEL/ES-mediated folding functions, with the hydroxyl essential for antibacterial effects. Several analogs exhibited >50-fold selectivity indices between antibacterial efficacy and cytotoxicity to human liver and kidney cells in cell culture. We found that MRSA was not able to easily generate acute resistance to lead inhibitors in a gain-of-resistance assay and that lead inhibitors were able to permeate through established S. aureus biofilms and maintain their bactericidal effects.
Collapse
Affiliation(s)
- Trent Kunkle
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Sanofar Abdeen
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Nilshad Salim
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Anne-Marie Ray
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Mckayla Stevens
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , 1703 E. Mabel Street , P.O. Box 210207, Tucson , Arizona 85721 , United States
| | - José Victorino
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Yangshin Park
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States.,Stark Neurosciences Research Institute , Indiana University School of Medicine , 320 W. 15th Street, Suite 414 , Indianapolis , Indiana 46202 , United States.,Department of Neurology , Indiana University School of Medicine . 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Quyen Q Hoang
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States.,Stark Neurosciences Research Institute , Indiana University School of Medicine , 320 W. 15th Street, Suite 414 , Indianapolis , Indiana 46202 , United States.,Department of Neurology , Indiana University School of Medicine . 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , 1703 E. Mabel Street , P.O. Box 210207, Tucson , Arizona 85721 , United States
| | - Steven M Johnson
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| |
Collapse
|
18
|
Abdeen S, Kunkle T, Salim N, Ray AM, Mammadova N, Summers C, Stevens M, Ambrose AJ, Park Y, Schultz PG, Horwich AL, Hoang QQ, Chapman E, Johnson SM. Sulfonamido-2-arylbenzoxazole GroEL/ES Inhibitors as Potent Antibacterials against Methicillin-Resistant Staphylococcus aureus (MRSA). J Med Chem 2018; 61:7345-7357. [PMID: 30060666 DOI: 10.1021/acs.jmedchem.8b00989] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extending from a study we recently published examining the antitrypanosomal effects of a series of GroEL/ES inhibitors based on a pseudosymmetrical bis-sulfonamido-2-phenylbenzoxazole scaffold, here, we report the antibiotic effects of asymmetric analogs of this scaffold against a panel of bacteria known as the ESKAPE pathogens ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). While GroEL/ES inhibitors were largely ineffective against K. pneumoniae, A. baumannii, P. aeruginosa, and E. cloacae (Gram-negative bacteria), many analogs were potent inhibitors of E. faecium and S. aureus proliferation (Gram-positive bacteria, EC50 values of the most potent analogs were in the 1-2 μM range). Furthermore, even though some compounds inhibit human HSP60/10 biochemical functions in vitro (IC50 values in the 1-10 μM range), many of these exhibited moderate to low cytotoxicity to human liver and kidney cells (CC50 values > 20 μM).
Collapse
Affiliation(s)
- Sanofar Abdeen
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Trent Kunkle
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Nilshad Salim
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Anne-Marie Ray
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Najiba Mammadova
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Corey Summers
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Mckayla Stevens
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Andrew J Ambrose
- College of Pharmacy, Department of Pharmacology and Toxicology , The University of Arizona , 1703 East Mabel Street , P.O. Box 210207, Tucson , Arizona 85721 , United States
| | - Yangshin Park
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States.,Stark Neurosciences Research Institute , Indiana University School of Medicine , 320 West 15th Street, Suite 414 , Indianapolis , Indiana 46202 , United States.,Department of Neurology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Peter G Schultz
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Arthur L Horwich
- HHMI, Department of Genetics, Yale School of Medicine , Boyer Center for Molecular Medicine , 295 Congress Avenue , New Haven , Connecticut 06510 , United States
| | - Quyen Q Hoang
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States.,Stark Neurosciences Research Institute , Indiana University School of Medicine , 320 West 15th Street, Suite 414 , Indianapolis , Indiana 46202 , United States.,Department of Neurology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology , The University of Arizona , 1703 East Mabel Street , P.O. Box 210207, Tucson , Arizona 85721 , United States
| | - Steven M Johnson
- Department of Biochemistry and Molecular Biology , Indiana University School of Medicine , 635 Barnhill Drive , Indianapolis , Indiana 46202 , United States
| |
Collapse
|
19
|
Abstract
A half century of studying protein folding in vitro and modeling it in silico has not provided us with a reliable computational method to predict the native conformations of proteins de novo, let alone identify the intermediates on their folding pathways. In this Opinion article, we suggest that the reason for this impasse is the over-reliance on current physical models of protein folding that are based on the assumption that proteins are able to fold spontaneously without assistance. These models arose from studies conducted in vitro on a biased sample of smaller, easier-to-isolate proteins, whose native structures appear to be thermodynamically stable. Meanwhile, the vast empirical data on the majority of larger proteins suggests that once these proteins are completely denatured in vitro, they cannot fold into native conformations without assistance. Moreover, they tend to lose their native conformations spontaneously and irreversibly in vitro, and therefore such conformations must be metastable. We propose a model of protein folding that is based on the notion that the folding of all proteins in the cell is mediated by the actions of the "protein folding machine" that includes the ribosome, various chaperones, and other components involved in co-translational or post-translational formation, maintenance and repair of protein native conformations in vivo. The most important and universal component of the protein folding machine consists of the ribosome in complex with the welcoming committee chaperones. The concerted actions of molecular machinery in the ribosome peptidyl transferase center, in the exit tunnel, and at the surface of the ribosome result in the application of mechanical and other forces to the nascent peptide, reducing its conformational entropy and possibly creating strain in the peptide backbone. The resulting high-energy conformation of the nascent peptide allows it to fold very fast and to overcome high kinetic barriers along the folding pathway. The early folding intermediates in vivo are stabilized by interactions with the ribosome and welcoming committee chaperones and would not be able to exist in vitro in the absence of such cellular components. In vitro experiments that unfold proteins by heat or chemical treatment produce denaturation ensembles that are very different from folding intermediates in vivo and therefore have very limited use in reconstructing the in vivo folding pathways. We conclude that computational modeling of protein folding should deemphasize the notion of unassisted thermodynamically controlled folding, and should focus instead on the step-by-step reverse engineering of the folding process as it actually occurs in vivo. REVIEWERS This article was reviewed by Eugene Koonin and Frank Eisenhaber.
Collapse
|
20
|
Bhatt JM, Enriquez AS, Wang J, Rojo HM, Molugu SK, Hildenbrand ZL, Bernal RA. Single-Ring Intermediates Are Essential for Some Chaperonins. Front Mol Biosci 2018; 5:42. [PMID: 29755985 PMCID: PMC5934643 DOI: 10.3389/fmolb.2018.00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/13/2018] [Indexed: 11/20/2022] Open
Abstract
Chaperonins are macromolecular complexes found throughout all kingdoms of life that assist unfolded proteins reach a biologically active state. Historically, chaperonins have been classified into two groups based on sequence, subunit structure, and the requirement for a co-chaperonin. Here, we present a brief review of chaperonins that can form double- and single-ring conformational intermediates in their protein-folding catalytic pathway. To date, the bacteriophage encoded chaperonins ϕ-EL and OBP, human mitochondrial chaperonin and most recently, the bacterial groEL/ES systems, have been reported to form single-ring intermediates as part of their normal protein-folding activity. These double-ring chaperonins separate into single-ring intermediates that have the ability to independently fold a protein. We discuss the structural and functional features along with the biological relevance of single-ring intermediates in cellular protein folding. Of special interest are the ϕ-EL and OBP chaperonins which demonstrate features of both group I and II chaperonins in addition to their ability to function via single-ring intermediates.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Adrian S Enriquez
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Jinliang Wang
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Humberto M Rojo
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Sudheer K Molugu
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Ricardo A Bernal
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
21
|
Chi H, Xu B, Liu Z, Wei J, Li S, Ren H, Xu Y, Lu X, Wang X, Wang X, Huang F. Combined thermodynamic and kinetic analysis of GroEL interacting with CXCR4 transmembrane peptides. Biochim Biophys Acta Gen Subj 2018; 1862:1576-1583. [PMID: 29627450 DOI: 10.1016/j.bbagen.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
GroEL along with ATP and its co-chaperonin GroES has been demonstrated to significantly enhance the folding of newly translated G-protein-coupled receptors (GPCRs). This work extends the previous studies to explore the guest capture and release processes in GroEL-assisted folding of GPCRs, by the reduced approach of employing CXCR4 transmembrane peptides as model substrates. Each of the CXCR4-derived peptides exhibited high affinity for GroEL with a binding stoichiometry near seven. It is found that the peptides interact with the paired α helices in the apical domain of the chaperonin which are similar with the binding sites of SBP (strongly binding peptide: SWMTTPWGFLHP). Complementary binding study with a single-ring version of GroEL indicates that each of the two chaperonin rings is competent for accommodating all the seven CXCR4 peptides bound to GroEL under saturation condition. Meanwhile, the binding kinetics of CXCR4 peptides with GroEL was also examined; ATP alone, or in combination of GroES evidently promoted the release of the peptide substrates from the chaperonin. The results obtained would be beneficial to understand the thermodynamic and kinetic nature of GroEL-GPCRs interaction which is the central molecular event in the assisted folding process.
Collapse
Affiliation(s)
- Haixia Chi
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; Qingdao Langoo Oceantec Co., Ltd, Qingdao 266235, PR China
| | - Baomei Xu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Zhenzhen Liu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Junting Wei
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yan Xu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xinwei Lu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; College of Science, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
22
|
Molecular Chaperones: Structure-Function Relationship and their Role in Protein Folding. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Molecular chaperones maximize the native state yield on biological times by driving substrates out of equilibrium. Proc Natl Acad Sci U S A 2017; 114:E10919-E10927. [PMID: 29217641 DOI: 10.1073/pnas.1712962114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Molecular chaperones facilitate the folding of proteins and RNA in vivo. Under physiological conditions, the in vitro folding of Tetrahymena ribozyme by the RNA chaperone CYT-19 behaves paradoxically; increasing the chaperone concentration reduces the yield of native ribozymes. In contrast, the protein chaperone GroEL works as expected; the yield of the native substrate increases with chaperone concentration. The discrepant chaperone-assisted ribozyme folding thus contradicts the expectation that it operates as an efficient annealing machine. To resolve this paradox, we propose a minimal stochastic model based on the Iterative Annealing Mechanism (IAM) that offers a unified description of chaperone-mediated folding of both proteins and RNA. Our theory provides a general relation that quantitatively predicts how the yield of native states depends on chaperone concentration. Although the absolute yield of native states decreases in the Tetrahymena ribozyme, the product of the folding rate and the steady-state native yield increases in both cases. By using energy from ATP hydrolysis, both CYT-19 and GroEL drive their substrate concentrations far out of equilibrium, thus maximizing the native yield in a short time. This also holds when the substrate concentration exceeds that of GroEL. Our findings satisfy the expectation that proteins and RNA be folded by chaperones on biologically relevant time scales, even if the final yield is lower than what equilibrium thermodynamics would dictate. The theory predicts that the quantity of chaperones in vivo has evolved to optimize native state production of the folded states of RNA and proteins in a given time.
Collapse
|
24
|
Enriquez AS, Rojo HM, Bhatt JM, Molugu SK, Hildenbrand ZL, Bernal RA. The human mitochondrial Hsp60 in the APO conformation forms a stable tetradecameric complex. Cell Cycle 2017; 16:1309-1319. [PMID: 28594255 PMCID: PMC5531633 DOI: 10.1080/15384101.2017.1321180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The human mitochondrial chaperonin is a macromolecular machine that catalyzes the proper folding of mitochondrial proteins and is of vital importance to all cells. This chaperonin is composed of 2 distinct proteins, Hsp60 and Hsp10, that assemble into large oligomeric complexes that mediate the folding of non-native polypeptides in an ATP dependent manner. Here, we report the bacterial expression and purification of fully assembled human Hsp60 and Hsp10 recombinant proteins and that Hsp60 forms a stable tetradecameric double-ring conformation in the absence of co-chaperonin and nucleotide. Evidence of the stable double-ring conformation is illustrated by the 15 Å resolution electron microscopy reconstruction presented here. Furthermore, our biochemical analyses reveal that the presence of a non-native substrate initiates ATP-hydrolysis within the Hsp60/10 chaperonin to commence protein folding. Collectively, these data provide insight into the architecture of the intermediates used by the human mitochondrial chaperonin along its protein folding pathway and lay a foundation for subsequent high resolution structural investigations into the conformational changes of the mitochondrial chaperonin.
Collapse
Affiliation(s)
- Adrian S Enriquez
- a Department of Chemistry , The University of Texas at El Paso , El Paso , TX , USA
| | - Humberto M Rojo
- a Department of Chemistry , The University of Texas at El Paso , El Paso , TX , USA
| | - Jay M Bhatt
- a Department of Chemistry , The University of Texas at El Paso , El Paso , TX , USA
| | - Sudheer K Molugu
- b Department of Pharmacology , School of Medicine, Case Western Reserve University , Cleveland , OH , USA
| | | | - Ricardo A Bernal
- a Department of Chemistry , The University of Texas at El Paso , El Paso , TX , USA
| |
Collapse
|
25
|
Anunciado DB, Nyugen VP, Hurst GB, Doktycz MJ, Urban V, Langan P, Mamontov E, O'Neill H. In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale. J Phys Chem Lett 2017; 8:1899-1904. [PMID: 28388043 DOI: 10.1021/acs.jpclett.7b00399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10-12 m2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Internal protein dynamics showed a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale being probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. The approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using "in-cell neutron scattering" to study the dynamics of complex biomolecular systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hugh O'Neill
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
26
|
Abdeen S, Salim N, Mammadova N, Summers CM, Goldsmith-Pestana K, McMahon-Pratt D, Schultz PG, Horwich AL, Chapman E, Johnson SM. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness. Bioorg Med Chem Lett 2016; 26:5247-5253. [PMID: 27720295 DOI: 10.1016/j.bmcl.2016.09.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause African sleeping sickness in humans (also known as Human African Trypanosomiasis-HAT). Without treatment, T. brucei infections are fatal. There is an urgent need for new therapeutic strategies as current drugs are toxic, have complex treatment regimens, and are becoming less effective owing to rising antibiotic resistance in parasites. We hypothesize that targeting the HSP60/10 chaperonin systems in T. brucei is a viable anti-trypanosomal strategy as parasites rely on these stress response elements for their development and survival. We recently discovered several hundred inhibitors of the prototypical HSP60/10 chaperonin system from Escherichia coli, termed GroEL/ES. One of the most potent GroEL/ES inhibitors we discovered was compound 1. While examining the PubChem database, we found that a related analog, 2e-p, exhibited cytotoxicity to Leishmania major promastigotes, which are trypanosomatids highly related to Trypanosoma brucei. Through initial counter-screening, we found that compounds 1 and 2e-p were also cytotoxic to Trypanosoma brucei parasites (EC50=7.9 and 3.1μM, respectively). These encouraging initial results prompted us to develop a library of inhibitor analogs and examine their anti-parasitic potential in vitro. Of the 49 new chaperonin inhibitors developed, 39% exhibit greater cytotoxicity to T. brucei parasites than parent compound 1. While many analogs exhibit moderate cytotoxicity to human liver and kidney cells, we identified molecular substructures to pursue for further medicinal chemistry optimization to increase the therapeutic windows of this novel class of chaperonin-targeting anti-parasitic candidates. An intriguing finding from this study is that suramin, the first-line drug for treating early stage T. brucei infections, is also a potent inhibitor of GroEL/ES and HSP60/10 chaperonin systems.
Collapse
Affiliation(s)
- Sanofar Abdeen
- Indiana University, School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Nilshad Salim
- Indiana University, School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Najiba Mammadova
- Indiana University, School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Corey M Summers
- Indiana University, School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Karen Goldsmith-Pestana
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College St., New Haven, CT 06520, United States
| | - Diane McMahon-Pratt
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College St., New Haven, CT 06520, United States
| | - Peter G Schultz
- The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Rd., La Jolla, CA 92037, United States
| | - Arthur L Horwich
- HHMI, Department of Genetics, Yale School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Ave., New Haven, CT 06510, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University, School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
27
|
Lea WA, O'Neil PT, Machen AJ, Naik S, Chaudhri T, McGinn-Straub W, Tischer A, Auton MT, Burns JR, Baldwin MR, Khar KR, Karanicolas J, Fisher MT. Chaperonin-Based Biolayer Interferometry To Assess the Kinetic Stability of Metastable, Aggregation-Prone Proteins. Biochemistry 2016; 55:4885-908. [PMID: 27505032 DOI: 10.1021/acs.biochem.6b00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy for decreasing disease pathologies caused by protein folding defects or deleterious kinetic transitions. Current methods of examining binding of a ligand to these marginally stable native states are limited because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, and multidomain proteins) and metastable proteins (e.g., low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein, immobilized on a BLI biosensor, to increasing denaturant concentrations (urea or GuHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remains is detected by an increased level of GroEL binding. Because this kinetic denaturant pulse is brief, the amplitude of binding of GroEL to the immobilized protein depends on the duration of the exposure to the denaturant, the concentration of the denaturant, wash times, and the underlying protein unfolding-refolding kinetics; fixing all other parameters and plotting the GroEL binding amplitude versus denaturant pulse concentration result in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein manifests as a decreased level of GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant concentrations. This particular platform approach can be used to identify small molecules and/or solution conditions that can stabilize or destabilize thermally stable proteins, multidomain proteins, oligomeric proteins, and, most importantly, aggregation-prone metastable proteins.
Collapse
Affiliation(s)
- Wendy A Lea
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Pierce T O'Neil
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Alexandra J Machen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Subhashchandra Naik
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | | | - Wesley McGinn-Straub
- fortéBIO (a division of Pall Life Sciences) , Menlo Park, California 94025, United States
| | - Alexander Tischer
- Division of Hematology, Department of Internal Medicine, Mayo Clinic , Rochester, Minnesota 55902, United States
| | - Matthew T Auton
- Division of Hematology, Department of Internal Medicine, Mayo Clinic , Rochester, Minnesota 55902, United States
| | - Joshua R Burns
- Department of Molecular Microbiology and Immunology, University of Missouri , Columbia, Missouri 65212, United States
| | - Michael R Baldwin
- Department of Molecular Microbiology and Immunology, University of Missouri , Columbia, Missouri 65212, United States
| | - Karen R Khar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - John Karanicolas
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
28
|
Ojha B, Fukui N, Hongo K, Mizobata T, Kawata Y. Suppression of amyloid fibrils using the GroEL apical domain. Sci Rep 2016; 6:31041. [PMID: 27488469 PMCID: PMC4973282 DOI: 10.1038/srep31041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 01/09/2023] Open
Abstract
In E. coli cells, rescue of non-native proteins and promotion of native state structure is assisted by the chaperonin GroEL. An important key to this activity lies in the structure of the apical domain of GroEL (GroEL-AD) (residue 191–376), which recognizes and binds non-native protein molecules through hydrophobic interactions. In this study, we investigated the effects of GroEL-AD on the aggregation of various client proteins (α-Synuclein, Aβ42, and GroES) that lead to the formation of distinct protein fibrils in vitro. We found that GroEL-AD effectively inhibited the fibril formation of these three proteins when added at concentrations above a critical threshold; the specific ratio differed for each client protein, reflecting the relative affinities. The effect of GroEL-AD in all three cases was to decrease the concentration of aggregate-forming unfolded client protein or its early intermediates in solution, thereby preventing aggregation and fibrillation. Binding affinity assays revealed some differences in the binding mechanisms of GroEL-AD toward each client. Our findings suggest a possible applicability of this minimal functioning derivative of the chaperonins (the “minichaperones”) as protein fibrillation modulators and detectors.
Collapse
Affiliation(s)
- Bimlesh Ojha
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University, Tottori 680-8552, Japan
| | - Naoya Fukui
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University, Tottori 680-8552, Japan
| | - Kunihiro Hongo
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University, Tottori 680-8552, Japan.,Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori 680-8552, Japan
| | - Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University, Tottori 680-8552, Japan.,Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori 680-8552, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University, Tottori 680-8552, Japan.,Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
29
|
GroEL/ES inhibitors as potential antibiotics. Bioorg Med Chem Lett 2016; 26:3127-3134. [PMID: 27184767 DOI: 10.1016/j.bmcl.2016.04.089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 01/11/2023]
Abstract
We recently reported results from a high-throughput screening effort that identified 235 inhibitors of the Escherichia coli GroEL/ES chaperonin system [Bioorg. Med. Chem. Lett.2014, 24, 786]. As the GroEL/ES chaperonin system is essential for growth under all conditions, we reasoned that targeting GroEL/ES with small molecule inhibitors could be a viable antibacterial strategy. Extending from our initial screen, we report here the antibacterial activities of 22 GroEL/ES inhibitors against a panel of Gram-positive and Gram-negative bacteria, including E. coli, Bacillus subtilis, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae. GroEL/ES inhibitors were more effective at blocking the proliferation of Gram-positive bacteria, in particular S. aureus, where lead compounds exhibited antibiotic effects from the low-μM to mid-nM range. While several compounds inhibited the human HSP60/10 refolding cycle, some were able to selectively target the bacterial GroEL/ES system. Despite inhibiting HSP60/10, many compounds exhibited low to no cytotoxicity against human liver and kidney cell lines. Two lead candidates emerged from the panel, compounds 8 and 18, that exhibit >50-fold selectivity for inhibiting S. aureus growth compared to liver or kidney cell cytotoxicity. Compounds 8 and 18 inhibited drug-sensitive and methicillin-resistant S. aureus strains with potencies comparable to vancomycin, daptomycin, and streptomycin, and are promising candidates to explore for validating the GroEL/ES chaperonin system as a viable antibiotic target.
Collapse
|
30
|
Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release. Proc Natl Acad Sci U S A 2016; 113:E1615-24. [PMID: 26951662 DOI: 10.1073/pnas.1524777113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane protein biogenesis poses enormous challenges to cellular protein homeostasis and requires effective molecular chaperones. Compared with chaperones that promote soluble protein folding, membrane protein chaperones require tight spatiotemporal coordination of their substrate binding and release cycles. Here we define the chaperone cycle for cpSRP43, which protects the largest family of membrane proteins, the light harvesting chlorophyll a/b-binding proteins (LHCPs), during their delivery. Biochemical and NMR analyses demonstrate that cpSRP43 samples three distinct conformations. The stromal factor cpSRP54 drives cpSRP43 to the active state, allowing it to tightly bind substrate in the aqueous compartment. Bidentate interactions with the Alb3 translocase drive cpSRP43 to a partially inactive state, triggering selective release of LHCP's transmembrane domains in a productive unloading complex at the membrane. Our work demonstrates how the intrinsic conformational dynamics of a chaperone enables spatially coordinated substrate capture and release, which may be general to other ATP-independent chaperone systems.
Collapse
|
31
|
Pan D, Zha X, Yu X, Wu Y. Enhanced expression of soluble human papillomavirus L1 through coexpression of molecular chaperonin in Escherichia coli. Protein Expr Purif 2015; 120:92-8. [PMID: 26732286 DOI: 10.1016/j.pep.2015.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/01/2023]
Abstract
The major recombinant capsid protein L1 of human papillomavirus (HPV) is widely used to produce HPV prophylactic vaccines. However, the quality of soluble and active expression of L1 in Escherichia coli was below the required amount. Coexpression with the chaperonin GroEL/ES enhanced L1 expression. Overexpressing GroEL/ES increased the soluble expression level of glutathione S-transferase-fused L1 (GST-L1) by approximately ∼3 fold. The yield of HPV type 16 L1 pentamer (L1-p) was ∼2 fold higher than that in a single expression system after purification through size-exclusion chromatograph. The expression and purification conditions were then optimized. The yield of L1-p was enhanced by ∼5 fold, and those of HPV types 18 and 58 L1-p increased by ∼3 and ∼2 folds, respectively, compared with that in the single expression system. Coexpressing the mono-site mutant HPV16 L1 L469A with GroEL/ES increased L1-p yield by ∼7 fold compared with strains expressing the wild-type L1 gene. L1-p was then characterized using circular dichroism spectra, UV-vis cloud point, dynamic light scattering and transmission electron microscope analyses. Results indicated that the conformation and biological characteristics of L1-p were identical to that of native L1. Hence, overexpressing chaperonin in E. coli can increase the expression level of GST-L1 and L1-p production after purification. This finding may contribute to the development of a platform for prophylactic HPV vaccines.
Collapse
Affiliation(s)
- Dong Pan
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun, 130012, China
| | - Xiao Zha
- Sichuan Tumor Hospital & Institute, 55, Renmin Nanlu, Section 4, Chengdu, 610041, China
| | - Xianghui Yu
- The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun, 130012, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
32
|
GroEL2 of Mycobacterium tuberculosis Reveals the Importance of Structural Pliability in Chaperonin Function. J Bacteriol 2015; 198:486-97. [PMID: 26553853 DOI: 10.1128/jb.00844-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Intracellular protein folding is mediated by molecular chaperones, the best studied among which are the chaperonins GroEL and GroES. Conformational changes and allosteric transitions between different metastable states are hallmarks of the chaperonin mechanism. These conformational transitions between three structural domains of GroEL are anchored at two hinges. Although hinges are known to be critical for mediating the communication between different domains of GroEL, the relative importance of hinges on GroEL oligomeric assembly, ATPase activity, conformational changes, and functional activity is not fully characterized. We have exploited the inability of Mycobacterium tuberculosis GroEL2 to functionally complement an Escherichia coli groEL mutant to address the importance of hinge residues in the GroEL mechanism. Various chimeras of M. tuberculosis GroEL2 and E. coli GroEL allowed us to understand the role of hinges and dissect the consequences of oligomerization and substrate binding capability on conformational transitions. The present study explains the concomitant conformational changes observed with GroEL hinge variants and is best supported by the normal mode analysis. IMPORTANCE Conformational changes and allosteric transitions are hallmarks of the chaperonin mechanism. We have exploited the inability of M. tuberculosis GroEL2 to functionally complement a strain of E. coli in which groEL expression is repressed to address the importance of hinges. The significance of conservation at the hinge regions stands out as a prominent feature of the GroEL mechanism in binding to GroES and substrate polypeptides. The hinge residues play a significant role in the chaperonin activity in vivo and in vitro.
Collapse
|
33
|
Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding. PLoS Comput Biol 2015; 11:e1004496. [PMID: 26394388 PMCID: PMC4578939 DOI: 10.1371/journal.pcbi.1004496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/03/2015] [Indexed: 11/23/2022] Open
Abstract
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. Several non-native proteins require molecular chaperones for proper folding. Many unfolded proteins if not folded accurately, become causal factors in various types of misfolding or aggregation induced diseases such as Alzheimer′s, Huntington′s and several other neurodegenerative disorders. However, structural information of non-folded proteins especially chaperone-dependent proteins is difficult to probe experimentally due to their inherent aggregation propensities. In this work, we study DapA protein, which exhibits obligate requirement on GroEL chaperonin machinery for its folding. We use molecular dynamics simulations to reveal populated intermediate structures of DapA in atomic details. The most plausible intermediate was found to be in agreement with recently reported hydrogen-exchange experimental data. Significant increase in surface exposed hydrophobicity was observed in intermediates compared to native, which was further validated using ANS binding experiments. We also constructed network model of these intermediates that provides remarkable insights into stable hubs (or important residues) underlying diverse states of unfolded proteins. In summary, our work provides a molecular picture of an unfolded protein that is en route to chaperone binding, and these underlying structural properties might act as a molecular signal for their productive folding.
Collapse
|
34
|
The evolution of protein moonlighting: adaptive traps and promiscuity in the chaperonins. Biochem Soc Trans 2015; 42:1709-14. [PMID: 25399594 DOI: 10.1042/bst20140225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Moonlighting proteins exhibit functions that are alternative to their main role in the cell. Heat-shock proteins, also known as molecular chaperones, are now recognized for their wide range of activities in and/or outside the cell, being prominent examples of moonlighting proteins. Chaperonins are highly conserved molecular chaperones that fold other proteins into their native conformation allowing them to carry out essential functions in the cell. Activities alternative to folding have been reported for the chaperonin (Cpn) 60 protein. Preservation of various alternative functions in one protein conflicts with the optimization of each of the functions. What evolutionary mechanisms have allowed the persistence of moonlighting proteins, and in particular the chaperonins, remains a mystery. In the present article, I argue that mechanisms that increase the resistance of phenotypes to genetic and environmental perturbations enable the persistence of a reservoir of genetic variants, each potentially codifying for a distinct function. Gene duplication is one such mechanism that has characterized the expansion and has been concomitant with the emergence of novel functions in these protein families. Indeed, Cpn60 performs a large list of folding-independent functions, including roles in the transmission of viruses from insects to plants and stimulation of the immune system, among others. In addition to the innovation promoted by gene duplication, I discuss that the Cpn60 protein comprises a hidden amino acid combinatorial code that may well be responsible for its ability to develop novel functions while maintaining an optimized folding ability. The present review points to a complex model of evolution of protein moonlighting.
Collapse
|
35
|
Goyal M, Chaudhuri TK. GroEL–GroES assisted folding of multiple recombinant proteins simultaneously over-expressed in Escherichia coli. Int J Biochem Cell Biol 2015; 64:277-86. [DOI: 10.1016/j.biocel.2015.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/17/2015] [Accepted: 04/28/2015] [Indexed: 11/16/2022]
|
36
|
Kumar Singh M, Janardhan Reddy PV, Sreedhar AS, Tiwari PK. Molecular characterization and expression analysis of hsp60 gene homologue of sheep blowfly, Lucilia cuprina. J Therm Biol 2015; 52:24-37. [PMID: 26267495 DOI: 10.1016/j.jtherbio.2015.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 01/09/2023]
Abstract
The 60kDa heat shock protein (Hsp60) or chaperonin is one among the highly conserved families of heat shock proteins, known to be involved in variety of cellular activities, including protein folding, thermal protection, etc. In this study we sequence characterized hsp60 gene homologue of Lucilia cuprina, isolated and cloned from the genomic library as well as by genomic PCR, followed by RACE- PCR. The L. cuprina hsp60 gene/protein expression pattern was analyzed in various tissues, either at normal temperature (25±1°C) or after exposure to heat stress (42°C). The analysis of nucleotide sequence of Lchsp60 gene revealed absence of intron and the nuclear localizing signal (NLS). The deduced amino acid sequence showed presence of unique conserved sequences, such as those for mitochondrial localization, ATP binding, etc. Unlike Drosophila, Lucilia showed presence of only one isoform, i.e., hsp60A. Phylogenetic analysis of hsp60 gene homologues from different species revealed Lchsp60 to have >88.36% homology with D. melanogaster, 76.86% with L. sericata, 58.31% with mice, 57.99% with rat, and 57.72% with human. Expression analysis using Real Time PCR and fluorescence imaging showed significant enhancement in the expression level of Lchsp60 upon heat stress in a tissue specific manner, indicating its likely role in thermo-tolerance as well as in normal cellular activities.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Centre for Genomics, Jiwaji University, Gwalior 474 011, India; Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | | - A S Sreedhar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - P K Tiwari
- Centre for Genomics, Jiwaji University, Gwalior 474 011, India.
| |
Collapse
|
37
|
Survival and innovation: The role of mutational robustness in evolution. Biochimie 2014; 119:254-61. [PMID: 25447135 DOI: 10.1016/j.biochi.2014.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/15/2014] [Indexed: 11/23/2022]
Abstract
Biological systems are resistant to perturbations caused by the environment and by the intrinsic noise of the system. Robustness to mutations is a particular aspect of robustness in which the phenotype is resistant to genotypic variation. Mutational robustness has been linked to the ability of the system to generate heritable genetic variation (a property known as evolvability). It is known that greater robustness leads to increased evolvability. Therefore, mechanisms that increase mutational robustness fuel evolvability. Two such mechanisms, molecular chaperones and gene duplication, have been credited with enormous importance in generating functional diversity through the increase of system's robustness to mutational insults. However, the way in which such mechanisms regulate robustness remains largely uncharacterized. In this review, I provide evidence in support of the role of molecular chaperones and gene duplication in innovation. Specifically, I present evidence that these mechanisms regulate robustness allowing unstable systems to survive long periods of time, and thus they provide opportunity for other mutations to compensate the destabilizing effects of functionally innovative mutations. The findings reported in this study set new questions with regards to the synergy between robustness mechanisms and how this synergy can alter the adaptive landscape of proteins. The ideas proposed in this article set the ground for future research in the understanding of the role of robustness in evolution.
Collapse
|
38
|
Correia AR, Naik S, Fisher MT, Gomes CM. Probing the kinetic stabilities of Friedreich's ataxia clinical variants using a solid phase GroEL chaperonin capture platform. Biomolecules 2014; 4:956-79. [PMID: 25333765 PMCID: PMC4279165 DOI: 10.3390/biom4040956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 08/29/2014] [Accepted: 09/19/2014] [Indexed: 11/17/2022] Open
Abstract
Numerous human diseases are caused by protein folding defects where the protein may become more susceptible to degradation or aggregation. Aberrant protein folding can affect the kinetic stability of the proteins even if these proteins appear to be soluble in vivo. Experimental discrimination between functional properly folded and misfolded nonfunctional conformers is not always straightforward at near physiological conditions. The differences in the kinetic behavior of two initially folded frataxin clinical variants were examined using a high affinity chaperonin kinetic trap approach at 25 °C. The kinetically stable wild type frataxin (FXN) shows no visible partitioning onto the chaperonin. In contrast, the clinical variants FXN-p.Asp122Tyr and FXN-p.Ile154Phe kinetically populate partial folded forms that tightly bind the GroEL chaperonin platform. The initially soluble FXN-p.Ile154Phe variant partitions onto GroEL more rapidly and is more kinetically liable. These differences in kinetic stability were confirmed using differential scanning fluorimetry. The kinetic and aggregation stability differences of these variants may lead to the distinct functional impairments described in Friedreich's ataxia, the neurodegenerative disease associated to frataxin functional deficiency. This chaperonin platform approach may be useful for identifying small molecule stabilizers since stabilizing ligands to frataxin variants should lead to a concomitant decrease in chaperonin binding.
Collapse
Affiliation(s)
- Ana R Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2784-505, Portugal.
| | - Subhashchandra Naik
- Department of Biochemistry and Molecular Biology, Hemenway Life Sciences Innovation Center (HLSIC), University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, Hemenway Life Sciences Innovation Center (HLSIC), University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2784-505, Portugal.
| |
Collapse
|
39
|
Naik S, Kumru OS, Cullom M, Telikepalli SN, Lindboe E, Roop TL, Joshi SB, Amin D, Gao P, Middaugh CR, Volkin DB, Fisher MT. Probing structurally altered and aggregated states of therapeutically relevant proteins using GroEL coupled to bio-layer interferometry. Protein Sci 2014; 23:1461-78. [PMID: 25043635 DOI: 10.1002/pro.2515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/09/2022]
Abstract
The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6-8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay's experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates.
Collapse
Affiliation(s)
- Subhashchandra Naik
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin CH, Su SC, Ho KH, Hsu YW, Lee KR. Bactericidal effect of sulbactam against Acinetobacter baumannii ATCC 19606 studied by 2D-DIGE and mass spectrometry. Int J Antimicrob Agents 2014; 44:38-46. [DOI: 10.1016/j.ijantimicag.2014.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
|
41
|
Johnson SM, Sharif O, Mak PA, Wang HT, Engels IH, Brinker A, Schultz PG, Horwich AL, Chapman E. A biochemical screen for GroEL/GroES inhibitors. Bioorg Med Chem Lett 2014; 24:786-9. [DOI: 10.1016/j.bmcl.2013.12.100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
|
42
|
Mikhailova AG, Khairullin RF, Demidyuk IV, Kostrov SV, Grinberg NV, Burova TV, Grinberg VY, Rumsh LD. Cloning, sequencing, expression, and characterization of thermostability of oligopeptidase B from Serratia proteamaculans, a novel psychrophilic protease. Protein Expr Purif 2014; 93:63-76. [DOI: 10.1016/j.pep.2013.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 11/30/2022]
|
43
|
Dahiya V, Chaudhuri TK. Chaperones GroEL/GroES accelerate the refolding of a multidomain protein through modulating on-pathway intermediates. J Biol Chem 2013; 289:286-98. [PMID: 24247249 DOI: 10.1074/jbc.m113.518373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.
Collapse
Affiliation(s)
- Vinay Dahiya
- From the Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | |
Collapse
|
44
|
Ho M, Wilson BA, Peterson JW. Bacterially Expressed Raf-1 Catalytic Domain is Highly Associated with GroEL. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199900101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Ruiz-González MX, Fares MA. Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L. BMC Evol Biol 2013; 13:156. [PMID: 23875653 PMCID: PMC3728108 DOI: 10.1186/1471-2148-13-156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND GroESL is a heat-shock protein ubiquitous in bacteria and eukaryotic organelles. This evolutionarily conserved protein is involved in the folding of a wide variety of other proteins in the cytosol, being essential to the cell. The folding activity proceeds through strong conformational changes mediated by the co-chaperonin GroES and ATP. Functions alternative to folding have been previously described for GroEL in different bacterial groups, supporting enormous functional and structural plasticity for this molecule and the existence of a hidden combinatorial code in the protein sequence enabling such functions. Describing this plasticity can shed light on the functional diversity of GroEL. We hypothesize that different overlapping sets of amino acids coevolve within GroEL, GroES and between both these proteins. Shifts in these coevolutionary relationships may inevitably lead to evolution of alternative functions. RESULTS We conducted the first coevolution analyses in an extensive bacterial phylogeny, revealing complex networks of evolutionary dependencies between residues in GroESL. These networks differed among bacterial groups and involved amino acid sites with functional importance and others with previously unsuspected functional potential. Coevolutionary networks formed statistically independent units among bacterial groups and map to structurally continuous regions in the protein, suggesting their functional link. Sites involved in coevolution fell within narrow structural regions, supporting dynamic combinatorial functional links involving similar protein domains. Moreover, coevolving sites within a bacterial group mapped to regions previously identified as involved in folding-unrelated functions, and thus, coevolution may mediate alternative functions. CONCLUSIONS Our results highlight the evolutionary plasticity of GroEL across the entire bacterial phylogeny. Evidence on the functional importance of coevolving sites illuminates the as yet unappreciated functional diversity of proteins.
Collapse
Affiliation(s)
- Mario X Ruiz-González
- Integrative and Systems Biology Group, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC-UPV), Valencia, SPAIN
| | | |
Collapse
|
46
|
Singhal K, Vreede J, Mashaghi A, Tans SJ, Bolhuis PG. Hydrophobic collapse of trigger factor monomer in solution. PLoS One 2013; 8:e59683. [PMID: 23565160 PMCID: PMC3615003 DOI: 10.1371/journal.pone.0059683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/16/2013] [Indexed: 11/30/2022] Open
Abstract
Trigger factor (TF) is a chaperone, found in bacterial cells and chloroplasts, that interacts with nascent polypeptide chains to suppress aggregation. While its crystal structure has been resolved, the solution structure and dynamics are largely unknown. We performed multiple molecular dynamics simulations on Trigger factor in solution, and show that its tertiary domains display collective motions hinged about inter-domain linkers with minimal or no loss in secondary structure. Moreover, we find that isolated TF typically adopts a collapsed state, with the formation of domain pairs. This collapse of TF in solution is induced by hydrophobic interactions and stabilised by hydrophilic contacts. To determine the nature of the domain interactions, we analysed the hydrophobicity of the domain surfaces by using the hydrophobic probe method of Acharya et al.[1], [2], as the standard hydrophobicity scales predictions are limited due to the complex environment. We find that the formation of domain pairs changes the hydrophobic map of TF, making the N-terminal and arm2 domain pair more hydrophilic and the head and arm1 domain pair more hydrophobic. These insights into the dynamics and interactions of the TF domains are important to eventually understand chaperone-substrate interactions and chaperone function.
Collapse
Affiliation(s)
- Kushagra Singhal
- van ‘t Hoff Institute of Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jocelyne Vreede
- van ‘t Hoff Institute of Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alireza Mashaghi
- Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands
| | - Sander J. Tans
- Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands
| | - Peter G. Bolhuis
- van ‘t Hoff Institute of Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
47
|
Kumar V, Punetha A, Sundar D, Chaudhuri TK. In silico engineering of aggregation-prone recombinant proteins for substrate recognition by the chaperonin GroEL. BMC Genomics 2013; 13 Suppl 7:S22. [PMID: 23281895 PMCID: PMC3521247 DOI: 10.1186/1471-2164-13-s7-s22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Molecular chaperones appear to have been evolved to facilitate protein folding in the cell through entrapment of folding intermediates on the interior of a large cavity formed between GroEL and its co-chaperonin GroES. They bind newly synthesized or non-native polypeptides through hydrophobic interactions and prevent their aggregation. Some proteins do not interact with GroEL, hence even though they are aggregation prone, cannot be assisted by GroEL for their folding. Results In this study, we have attempted to engineer these non-substrate proteins to convert them as the substrate for GroEL, without compromising on their function. We have used a computational biology approach to generate mutants of the selected proteins by selectively mutating residues in the hydrophobic patch, similar to GroES mobile loop region that are responsible for interaction with GroEL, and compared with the wild counterparts for calculation of their instability and aggregation propensities. The energies of the newly designed mutants were computed through molecular dynamics simulations. We observed increased aggregation propensity of some of the mutants formed after replacing charged amino acid residues with hydrophobic ones in the well defined hydrophobic patch, raising the possibility of their binding ability to GroEL. Conclusions The newly generated mutants may provide potential substrates for Chaperonin GroEL, which can be experimentally generated and tested for their tendency of aggregation, interactions with GroEL and the possibility of chaperone-assisted folding to produce functional proteins.
Collapse
Affiliation(s)
- Vipul Kumar
- School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | | | | |
Collapse
|
48
|
Mondal S, Shet D, Prasanna C, Atreya HS. High yield expression of proteins in <i>E. coli</i> for NMR studies. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.46099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Geitner AJ, Schmid FX. Combination of the Human Prolyl Isomerase FKBP12 with Unrelated Chaperone Domains Leads to Chimeric Folding Enzymes with High Activity. J Mol Biol 2012; 420:335-49. [DOI: 10.1016/j.jmb.2012.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/10/2012] [Accepted: 04/18/2012] [Indexed: 12/11/2022]
|
50
|
Activation of transcriptional activity of HSE by a novel mouse zinc finger protein ZNFD specifically expressed in testis. Mol Cell Biochem 2012; 363:409-17. [PMID: 22231842 DOI: 10.1007/s11010-011-1193-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
Zinc finger proteins (ZFPs) that contain multiple cysteine and/or histidine residues perform important roles in various cellular functions, including transcriptional regulation, cell proliferation, differentiation, and apoptosis. The Cys-Cys-His-His (C(2)H(2)) type of ZFPs are the well-defined members of this super family and are the largest and most complex proteins in eukaryotic genomes. In this study, we identified a novel C(2)H(2) type of zinc finger gene ZNFD from mice which has a 1,002 bp open reading frame and encodes a protein with 333 amino acid residues. The predicted 37.4 kDa protein contains a C(2)H(2) zinc finger domain. ZNFD gene is located on chromosome 18qD1. RT-PCR analysis revealed that the ZNFD gene was specifically expressed in mouse testis but not in other tissues. Subcellular localization analysis demonstrated that ZNFD was localized in the nucleus. Reporter gene assays showed that overexpression of ZNFD in the COS7 cells activates the transcriptional activities of heat shock element (HSE). Overall, these results suggest that ZNFD is a member of the zinc finger transcription factor family and it participates in the transcriptional regulation of HSE. Many heat shock proteins regulated by HSE are involved in testicular development. Therefore, our results suggest that ZNFD may probably participate in the development of mouse testis and function as a transcription activator in HSE-mediated gene expression and signaling pathways.
Collapse
|