1
|
Use of mPEG-PLGA nanoparticles to improve bioactivity and hemocompatibility of streptokinase: In-vitro and in-vivo studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111427. [PMID: 33255024 DOI: 10.1016/j.msec.2020.111427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 01/11/2023]
Abstract
Streptokinase, a clot-dissolving agent, is widely used in treatment of cardiovascular diseases such as blood clots and deep thrombosis. Streptokinase is a cost-effective drug with a short biological half-life (i.e. 15 to 30 min). In addition, due to its prokaryotic source, the immune response quickly reacts to the drug. Despite these limitations, streptokinase is still the first choice for diseases associated with thrombosis. In this work, streptokinase was encapsulated in mPEG-PLGA nanoparticles to improve its pharmacokinetic properties. The nanoparticles containing the enzyme were prepared by coaxial electrospray and their physicochemical properties, blood compatibility, circulation time and cell toxicity were evaluated. The results showed that the use of mPEG-PLGA nanoparticles to encapsulate the enzyme resulted in prolonged circulation time (up to 120 min) with a slight decrease in its activity. In vivo studies also showed that the nanoparticles containing streptokinase did not have adverse effect on blood biochemistry parameters as well as liver and kidney tissues. As a result, the mPEG-PLGA nanoparticles showed the potential for increasing the biological activity of streptokinase with no important adverse effect.
Collapse
|
2
|
Yaghoobi N, Faridi Majidi R, Faramarzi MA, Baharifar H, Amani A. Preparation, Optimization and Activity Evaluation of PLGA/Streptokinase Nanoparticles Using Electrospray. Adv Pharm Bull 2017; 7:131-139. [PMID: 28507947 PMCID: PMC5426726 DOI: 10.15171/apb.2017.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 11/09/2022] Open
Abstract
Purpose: PLGA nanoparticles (NPs) have been extensively investigated as carriers of different drug molecules to enhance their therapeutic effects or preserve them from the aqueous environment. Streptokinase (SK) is an important medicine for thrombotic diseases. Methods: In this study, we used electrospray to encapsulate SK in PLGA NPs and evaluate its activity. This is the first paper which investigates activity of an electrosprayed enzyme. Effect of three input parameters, namely, voltage, internal diameter of needle (nozzle) and concentration ratio of polymer to protein on size and size distribution (SD) of NPs was evaluated using artificial neural networks (ANNs). Optimizing the SD has been rarely reported so far in electrospray. Results: From the results, to obtain lowest size of nanoparticles, ratio of polymer/enzyme and needle internal diameter (ID) should be low. Also, minimum SD was obtainable at high values of voltage. The optimum preparation had mean (SD) size, encapsulation efficiency and loading capacity of 37 (12) nm, 90% and 8.2%, respectively. Nearly, 20% of SK was released in the first 30 minutes, followed by cumulative release of 41% during 72 h. Activity of the enzyme was also checked 30 min after preparation and 19.2% activity was shown. Conclusion: Our study showed that electrospraying could be an interesting approach to encapsulate proteins/enzymes in polymeric nanoparticles. However, further works are required to assure maintaining the activity of the enzyme/protein after electrospray.
Collapse
Affiliation(s)
- Nasrin Yaghoobi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Baharifar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Sawhney P, Katare K, Sahni G. PEGylation of Truncated Streptokinase Leads to Formulation of a Useful Drug with Ameliorated Attributes. PLoS One 2016; 11:e0155831. [PMID: 27192220 PMCID: PMC4871584 DOI: 10.1371/journal.pone.0155831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022] Open
Abstract
Streptokinase (SK) remains a favored thrombolytic agent in the developing world as compared to the nearly 10-fold more expensive human tissue-plasminogen activator (tPA) for the dissolution of pathological fibrin clots in myocardial infarction. However, unlike the latter, SK induces systemic activation of plasmin which results in a greater risk of hemorrhage. Being of bacterial origin, it elicits generation of unwanted antibody and has a relatively short half-life in vivo that needs to be addressed to make it more efficacious clinically. In order to address these lacunae, in the present study we have incorporated cysteine residues specifically at the N- and C-termini of partially truncated SK and these were then PEGylated successfully. Some of the obtained derivatives displayed enhanced plasmin resistance, longer half-life (upto several hours), improved fibrin clot-specificity and reduced immune-reactivity as compared to the native SK (nSK). This paves the way for devising next-generation SK-based thrombolytic agent/s that besides being fibrin clot-specific are endowed with an improved efficacy by virtue of an extended in vivo half-life.
Collapse
Affiliation(s)
- Pooja Sawhney
- Department of Molecular Biology and Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, India
| | - Keya Katare
- Department of Molecular Biology and Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, India
| | - Girish Sahni
- Department of Molecular Biology and Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, India
| |
Collapse
|
4
|
Amino-Terminal Fusion of Epidermal Growth Factor 4,5,6 Domains of Human Thrombomodulin on Streptokinase Confers Anti-Reocclusion Characteristics along with Plasmin-Mediated Clot Specificity. PLoS One 2016; 11:e0150315. [PMID: 26974970 PMCID: PMC4790962 DOI: 10.1371/journal.pone.0150315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/11/2016] [Indexed: 11/23/2022] Open
Abstract
Streptokinase (SK) is a potent clot dissolver but lacks fibrin clot specificity as it activates human plasminogen (HPG) into human plasmin (HPN) throughout the system leading to increased risk of bleeding. Another major drawback associated with all thrombolytics, including tissue plasminogen activator, is the generation of transient thrombin and release of clot-bound thrombin that promotes reformation of clots. In order to obtain anti-thrombotic as well as clot-specificity properties in SK, cDNAs encoding the EGF 4,5,6 domains of human thrombomodulin were fused with that of streptokinase, either at its N- or C-termini, and expressed these in Pichia pastoris followed by purification and structural-functional characterization, including plasminogen activation, thrombin inhibition, and Protein C activation characteristics. Interestingly, the N-terminal EGF fusion construct (EGF-SK) showed plasmin-mediated plasminogen activation, whereas the C-terminal (SK-EGF) fusion construct exhibited ‘spontaneous’ plasminogen activation which is quite similar to SK i.e. direct activation of systemic HPG in absence of free HPN. Since HPN is normally absent in free circulation due to rapid serpin-based inactivation (such as alpha-2-antiplasmin and alpha-2-Macroglobin), but selectively present in clots, a plasmin-dependent mode of HPG activation is expected to lead to a desirable fibrin clot-specific response by the thrombolytic. Both the N- and C-terminal fusion constructs showed strong thrombin inhibition and Protein C activation properties as well, and significantly prevented re-occlusion in a specially designed assay. The EGF-SK construct exhibited fibrin clot dissolution properties with much-lowered levels of fibrinogenolysis, suggesting unmistakable promise in clot dissolver therapy with reduced hemorrhage and re-occlusion risks.
Collapse
|
5
|
Kotb E. The biotechnological potential of fibrinolytic enzymes in the dissolution of endogenous blood thrombi. Biotechnol Prog 2014; 30:656-72. [DOI: 10.1002/btpr.1918] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/09/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Essam Kotb
- Dept. of Microbiology, Faculty of Science; Zagazig University; Zagazig Egypt 44519
| |
Collapse
|
6
|
Aneja R, Datt M, Yadav S, Sahni G. Multiple exosites distributed across the three domains of streptokinase co-operate to generate high catalytic rates in the streptokinase-plasmin activator complex. Biochemistry 2013; 52:8957-68. [PMID: 23919427 DOI: 10.1021/bi400142s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To examine the global function of the key surface-exposed loops of streptokinase, bearing substrate-specific exosites, namely, the 88-97 loop in the α domain, the 170 loop in the β domain, and the coiled-coil region (Leu321-Asn338) in the γ domain, mutagenic as well as peptide inhibition studies were carried out. Peptides corresponded to the primary structure of an exosite, either individual or stoichiometric mixtures of various disulfide-constrained synthetic peptide(s) inhibited plasminogen activation by streptokinase. Remarkably, pronounced inhibition of substrate plasminogen activation by the preformed streptokinase-plasmin activator complex was observed when complementary mixtures of different peptides were used compared to the same overall concentrations of individual peptides, suggesting co-operative interactions between the exosites. This observation was confirmed with streptokinase variants mutated at one, two, or three sites simultaneously. The single/double/triple exosite mutants of streptokinase showed a nonadditive, synergistic decline in kcat for substrate plasminogen activation in the order single > double > triple exosite mutant. Under the same conditions, zymogen activation by the various mutants remained essentially native- like in terms of nonproteolytic activation of partner plasminogen. Multisite mutants also retain affinity to form 1:1 stoichiometric activator complexes with plasmin when probed through sensitive equilibrium fluorescence studies. Thus, the present results strongly support a model of streptokinase action, wherein catalysis by the streptokinase-plasmin complex operates through a distributed network of substrate-interacting exosites resident across all three domains of the cofactor protein.
Collapse
Affiliation(s)
- Rachna Aneja
- The Institute of Microbial Technology (CSIR) , Sector 39-A, Chandigarh-160036, India
| | | | | | | |
Collapse
|
7
|
Activity assessment of microbial fibrinolytic enzymes. Appl Microbiol Biotechnol 2013; 97:6647-65. [PMID: 23812278 DOI: 10.1007/s00253-013-5052-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 12/24/2022]
Abstract
Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.
Collapse
|
8
|
Joshi KK, Nanda JS, Kumar P, Sahni G. Substrate kringle-mediated catalysis by the streptokinase-plasmin activator complex: Critical contribution of kringle-4 revealed by the mutagenesis approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:326-33. [DOI: 10.1016/j.bbapap.2011.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/18/2011] [Accepted: 10/19/2011] [Indexed: 10/16/2022]
|
9
|
Yadav S, Aneja R, Kumar P, Datt M, Sinha S, Sahni G. Identification through combinatorial random and rational mutagenesis of a substrate-interacting exosite in the gamma domain of streptokinase. J Biol Chem 2010; 286:6458-69. [PMID: 21169351 DOI: 10.1074/jbc.m110.152355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify new structure-function correlations in the γ domain of streptokinase, mutants were generated by error-prone random mutagenesis of the γ domain and its adjoining region in the β domain followed by functional screening specifically for substrate plasminogen activation. Single-site mutants derived from various multipoint mutation clusters identified the importance of discrete residues in the γ domain that are important for substrate processing. Among the various residues, aspartate at position 328 was identified as critical for substrate human plasminogen activation through extensive mutagenesis of its side chain, namely D328R, D328H, D328N, and D328A. Other mutants found to be important in substrate plasminogen activation were, namely, R319H, N339S, K334A, K334E, and L335Q. When examined for their 1:1 interaction with human plasmin, these mutants were found to retain the native-like high affinity for plasmin and also to generate amidolytic activity with partner plasminogen in a manner similar to wild type streptokinase. Moreover, cofactor activities of the mutants precomplexed with plasmin against microplasminogen as the substrate as well as in silico modeling studies suggested that the region 315-340 of the γ domain interacts with the serine protease domain of the macromolecular substrate. Overall, our results identify the presence of a substrate specific exosite in the γ domain of streptokinase.
Collapse
Affiliation(s)
- Suman Yadav
- Institute of Microbial Technology (Council of Scientific and Industrial Research), Chandigarh 160036, India
| | | | | | | | | | | |
Collapse
|
10
|
Goyal D, Sahni G, Sahoo DK. Enhanced production of recombinant streptokinase in Escherichia coli using fed-batch culture. BIORESOURCE TECHNOLOGY 2009; 100:4468-4474. [PMID: 19428239 DOI: 10.1016/j.biortech.2009.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 03/30/2009] [Accepted: 04/03/2009] [Indexed: 05/27/2023]
Abstract
Fed-batch culture strategy is often used for increasing production of heterologous recombinant proteins in Escherichia coli. This study was initiated to investigate the effects of dissolved oxygen concentration (DOC), complex nitrogen sources and pH control agents on cell growth and intracellular expression of streptokinase (SK) in recombinant E. coli BL21(DE3). Increase in DOC set point from 30% to 50% did not affect SK expression in batch culture where as similar increase in fed-batch cultivation led to a significant improvement in SK expression (from 188 to 720 mg l(-1)). This increase in SK could be correlated with increase in plasmid segregational stability. Supplementation of production medium with yeast extract and tryptone and replacement of liquid ammonia with NaOH as pH control agent further enhanced SK expression without affecting cell growth. Overall, SK concentration of 1120 mg l(-1) representing 14-fold increase in SK production on process scale-up from flask to bioreactor scale fed-batch culture is the highest reported concentration of SK to date.
Collapse
Affiliation(s)
- Deepika Goyal
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | | | | |
Collapse
|
11
|
Aneja R, Datt M, Singh B, Kumar S, Sahni G. Identification of a new exosite involved in catalytic turnover by the streptokinase-plasmin activator complex during human plasminogen activation. J Biol Chem 2009; 284:32642-50. [PMID: 19801674 DOI: 10.1074/jbc.m109.046573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the goal of identifying hitherto unknown surface exosites of streptokinase involved in substrate human plasminogen recognition and catalytic turnover, synthetic peptides encompassing the 170 loop (CQFTPLNPDDDFRPGLKDTKLLC) in the beta-domain were tested for selective inhibition of substrate human plasminogen activation by the streptokinase-plasmin activator complex. Although a disulfide-constrained peptide exhibited strong inhibition, a linear peptide with the same sequence, or a disulfide-constrained variant with a single lysine to alanine mutation showed significantly reduced capabilities of inhibition. Alanine-scanning mutagenesis of the 170 loop of the beta-domain of streptokinase was then performed to elucidate its importance in streptokinase-mediated plasminogen activation. Some of the 170 loop mutants showed a remarkable decline in k(cat) without any alteration in apparent substrate affinity (K(m)) as compared with wild-type streptokinase and identified the importance of Lys(180) as well as Pro(177) in the functioning of this loop. Remarkably, these mutants were able to generate amidolytic activity and non-proteolytic activation in "partner" plasminogen as wild-type streptokinase. Moreover, cofactor activities of the 170 loop mutants, pre-complexed with plasmin, against microplasminogen as the substrate showed a similar pattern of decline in k(cat) as that observed in the case of full-length plasminogen, with no concomitant change in K(m). These results strongly suggest that the 170 loop of the beta-domain of streptokinase is important for catalysis by the streptokinase-plasmin(ogen) activator complex, particularly in catalytic processing/turnover of substrate, although it does not seem to contribute significantly toward enzyme-substrate affinity per se.
Collapse
Affiliation(s)
- Rachna Aneja
- Department of Molecular Biology and Protein Engineering, The Institute of Microbial Technology (CSIR), Sector 39-A, Chandigarh 160036, India
| | | | | | | | | |
Collapse
|
12
|
Tharp AC, Laha M, Panizzi P, Thompson MW, Fuentes-Prior P, Bock PE. Plasminogen substrate recognition by the streptokinase-plasminogen catalytic complex is facilitated by Arg253, Lys256, and Lys257 in the streptokinase beta-domain and kringle 5 of the substrate. J Biol Chem 2009; 284:19511-21. [PMID: 19473980 PMCID: PMC2740577 DOI: 10.1074/jbc.m109.005512] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/19/2009] [Indexed: 11/06/2022] Open
Abstract
Streptokinase (SK) conformationally activates the central zymogen of the fibrinolytic system, plasminogen (Pg). The SK.Pg* catalytic complex binds Pg as a specific substrate and cleaves it into plasmin (Pm), which binds SK to form the SK.Pm complex that propagates Pm generation. Catalytic complex formation is dependent on lysine-binding site (LBS) interactions between a Pg/Pm kringle and the SK COOH-terminal Lys(414). Pg substrate recognition is also LBS-dependent, but the kringle and SK structural element(s) responsible have not been identified. SK mutants lacking Lys(414) with Ala substitutions of charged residues in the SK beta-domain 250-loop were evaluated in kinetic studies that resolved conformational and proteolytic Pg activation. Activation of [Lys]Pg and mini-Pg (containing only kringle 5 of Pg) by SK with Ala substitutions of Arg(253), Lys(256), and Lys(257) showed decreases in the bimolecular rate constant for Pm generation, with nearly total inhibition for the SK Lys(256)/Lys(257) double mutant. Binding of bovine Pg (BPg) to the SK.Pm complex containing fluorescently labeled Pm demonstrated LBS-dependent assembly of a SK.labeled Pm.BPg ternary complex, whereas BPg did not bind to the complex containing the SK Lys(256)/Lys(257) mutant. BPg was activated by SK.Pm with a K(m) indistinguishable from the K(D) for BPg binding to form the ternary complex, whereas the SK Lys(256)/Lys(257) mutant did not support BPg activation. We conclude that SK residues Arg(253), Lys(256), and Lys(257) mediate Pg substrate recognition through kringle 5 of the [Lys]Pg and mini-Pg substrates. A molecular model of the SK.kringle 5 complex identifies the putative interactions involved in LBS-dependent Pg substrate recognition.
Collapse
Affiliation(s)
- Anthony C. Tharp
- From the Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Malabika Laha
- From the Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Peter Panizzi
- From the Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Michael W. Thompson
- From the Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Pablo Fuentes-Prior
- the Institut de Recerca, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Paul E. Bock
- From the Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| |
Collapse
|
13
|
Ward PN, Abu-Median ABAK, Leigh JA. Structural consideration of the formation of the activation complex between the staphylokinase-like streptococcal plasminogen activator PadA and bovine plasminogen. J Mol Biol 2008; 381:734-47. [PMID: 18588895 DOI: 10.1016/j.jmb.2008.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 06/02/2008] [Accepted: 06/10/2008] [Indexed: 11/16/2022]
Abstract
The characteristics of a streptococcal plasminogen activator (PA) displaying specificity for ruminant plasminogen (Plg) were defined using molecular approaches. The 16-kDa secreted protein PadA was found to be prevalent in Streptococcus dysgalactiae subspecies dysgalactiae isolated from cases of bovine mastitis and septic arthritis in lambs. PadA was able to activate bovine, ovine and caprine Plg, but not human Plg. Amino acid sequence analysis identified a limited level of homology to other streptococcal PAs, including streptokinase; however, PadA was found to align well with and match in size the staphylococcal PA, staphylokinase. Recombinant PadA was used to investigate interaction with bovine Plg, leading to formation of an activator complex that was capable of recruiting and converting further substrate Plg into plasmin. Individual non-overlapping peptides of PadA or bovine microplasminogen were found to block the interaction between PadA and bovine Plg, preventing the formation of the activation complex. Homology modelling based upon structures of staphylokinase complexed with human microplasminogen supported these findings by placing critical residues in close proximity to the plasmin component of the activation complex.
Collapse
Affiliation(s)
- Philip N Ward
- Nuffield Department of Clinical Laboratory Sciences, Oxford University, John Radcliffe Hospital, Headington OX3 9DU, UK.
| | | | | |
Collapse
|
14
|
Goyal D, Sahoo DK, Sahni G. Hydrophobic interaction expanded bed adsorption chromatography (HI-EBAC) based facile purification of recombinant Streptokinase from E. coli inclusion bodies. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 850:384-91. [PMID: 17188946 DOI: 10.1016/j.jchromb.2006.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 12/03/2006] [Accepted: 12/09/2006] [Indexed: 10/23/2022]
Abstract
The downstream processing of recombinant streptokinase (rSK), a protein used for dissolution of blood clots has been investigated employing Escherichia coli inclusion bodies obtained after direct chemical extraction followed by expanded bed adsorption chromatography (EBAC). Streptokinase was over-expressed using high cell density (final OD(600)=40) culture of recombinant E. coli, and an SK protein concentration of 1080 mg l(-1) was achieved. The wet cell pellet after centrifugation was re-suspended in 8M urea containing buffer resulting in direct extraction of almost 97% of cellular proteins into solution. Compared to mechanical disruption using sonication, the direct extraction helped in simultaneous cell lysis and inclusion body (IB) solubilization in a single integrated step. The post-extraction solution containing cell debris and cellular proteins was diluted and directly loaded on to an EBAC column containing Streamline phenyl, without clarification. By passing the solution four times through the column and using 1M NaCl during loading, 82.7% rSK activity could be recovered in the 10mM sodium phosphate buffer used for elution. A 3-fold increase in specific activity of rSK, from 0.18 x 10(5) in cell lysate to 0.53 x 10(5)IU mg(-1) resulted after this step. rSK was further purified to near-homogeneity (specific activity=0.96 x 10(5)IU mg(-1)) by a subsequent ion-exchange step operated in packed bed mode. An overall downstream recovery of 63% rSK was achieved after EBAC and ion exchange chromatography. The paper thus describes the purification of rSK using a three-step regime involving simple, efficient and highly facile steps.
Collapse
Affiliation(s)
- Deepika Goyal
- Institute of Microbial Technology, Sector - 39A, Chandigarh 160036, India
| | | | | |
Collapse
|
15
|
Abstract
Thrombosis, the blockage of blood vessels with clots, can lead to acute myocardial infarction and ischemic stroke, both leading causes of death. Other than surgical interventions to remove or by pass the blockage, or the generation of collateral vessels to provide a new blood supply, the only treatment available is the administration of thrombolytic agents to dissolve the blood clot. This article describes a comprehensive review of streptokinase (SK). We discuss the biochemistry and molecular biology of SK, describing the mechanism of action, structures, confirmational properties, immunogenecity, chemical modification, and cloning and expression. The production and physico-chemical properties of this SK are also discussed. In this review, considering the properties and characteristics of SK that make it the drug of choice for thrombolytic therapy.
Collapse
Affiliation(s)
- Adinarayana Kunamneni
- Department of Pharmaceutical Sciences, Pharmaceutical Biotechnology Division, Andhra University, Visakhapatnam, 530 003, India.
| | | | | |
Collapse
|
16
|
Reyes O, Torrens I, Ojalvo AG, Seralena A, Garay HE. Profiling the immune responses of human patients treated with recombinant streptokinase after myocardial infarct. Mol Divers 2004; 8:251-6. [PMID: 15384418 DOI: 10.1023/b:modi.0000036235.45565.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The SPOT synthesis of peptide arrays on continuous cellulose membranes should be generally applicable in the analysis of sequential antibody binding sites using the enzyme-substrate or other standard detection protocols. The use of total serum is limited by the occurrence of high background levels. This may be overcome if affinity purified antibodies or sera with high antibody titers are used, which allows work at high dilutions and a consequent reduction of background level. Here we demonstrate the mapping of antigenic regions located on recombinant streptokinase SK-2 (Heberkinase) using cellulose-bound peptide scans and human total sera from patients treated with SK-2 (Heberkinase). Streptokinase (SK) is a 47 kDa protein produced by various strains of hemolytic streptococci and is a potent activator of the fibrinolytic enzyme system in humans. SK is in widespread clinical use to treat acute infarction because of its function as an activator of vascular fibrinolysis. Since streptococcal infections are common, normal individuals are immunized with SK and antibodies (Abs) to SK can be detected in most of them. This therapy generates significant T-cell responses to SK and the neutralizing capacity of the Abs rises significantly. Neutralizing Abs reduces the efficiency of thrombolytic therapy and may cause allergic reactions. The widespread use of SK in humans makes its antigenicity an important clinical problem. In this regard the study of the immunodominant regions of SK becomes an important aspect for the improvement of this thrombolytic agent.
Collapse
Affiliation(s)
- O Reyes
- Centro de Ingeniería Genética y Biotecnología, P.O. Box 6162, Havana, Cuba.
| | | | | | | | | |
Collapse
|
17
|
Abstract
A failure of hemostasis and consequent formation of blood clots in the circulatory system can produce severe outcomes such as stroke and myocardial infraction. Pathological development of blood clots requires clinical intervention with fibrinolytic agents such as urokinase, tissue plasminogen activator and streptokinase. This review deals with streptokinase as a clinically important and cost-effective plasminogen activator. The aspects discussed include: the mode of action; the structure and structure-function relationships; the structural modifications for improving functionality; recombinant streptokinase; microbial production; and recovery of this protein from crude broths.
Collapse
Affiliation(s)
- Anirban Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar (Mohali) 160062 Punjab, India
| | | | | |
Collapse
|
18
|
Sundram V, Nanda JS, Rajagopal K, Dhar J, Chaudhary A, Sahni G. Domain truncation studies reveal that the streptokinase-plasmin activator complex utilizes long range protein-protein interactions with macromolecular substrate to maximize catalytic turnover. J Biol Chem 2003; 278:30569-77. [PMID: 12773528 DOI: 10.1074/jbc.m303799200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To explore the interdomain co-operativity during human plasminogen (HPG) activation by streptokinase (SK), we expressed the cDNAs corresponding to each SK domain individually (alpha, beta, and gamma), and also their two-domain combinations, viz. alphabeta and betagamma in Escherichia coli. After purification, alpha and beta showed activator activities of approximately 0.4 and 0.05%, respectively, as compared with that of native SK, measured in the presence of human plasmin, but the bi-domain constructs alphabeta and betagamma showed much higher co-factor activities (3.5 and 0.7% of native SK, respectively). Resonant Mirror-based binding studies showed that the single-domain constructs had significantly lower affinities for "partner" HPG, whereas the affinities of the two-domain constructs were remarkably native-like with regards to both binary-mode as well as ternary mode ("substrate") binding with HPG, suggesting that the vast difference in co-factor activity between the two- and three-domain structures did not arise merely from affinity differences between activator species and HPG. Remarkably, when the co-factor activities of the various constructs were measured with microplasminogen, the nearly 50-fold difference in the co-factor activity between the two- and three-domain SK constructs observed with full-length HPG as substrate was found to be dramatically attenuated, with all three types of constructs now exhibiting a low activity of approximately 1-2% compared to that of SK.HPN and HPG. Thus, the docking of substrate through the catalytic domain at the active site of SK-plasmin(ogen) is capable of engendering, at best, only a minimal level of co-factor activity in SK.HPN. Therefore, apart from conferring additional substrate affinity through kringle-mediated interactions, reported earlier (Dhar et al., 2002; J. Biol. Chem. 277, 13257), selective interactions between all three domains of SK and the kringle domains of substrate vastly accelerate the plasminogen activation reaction to near native levels.
Collapse
|
19
|
Mundada LV, Prorok M, DeFord ME, Figuera M, Castellino FJ, Fay WP. Structure-function analysis of the streptokinase amino terminus (residues 1-59). J Biol Chem 2003; 278:24421-7. [PMID: 12704199 DOI: 10.1074/jbc.m301825200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptokinase (SK) binds to plasminogen (Pg) to form a complex that converts substrate Pg to plasmin. Residues 1-59 of SK regulate its capacity to induce an active site in bound Pg by a nonproteolytic mechanism and to activate substrate Pg in a fibrin-independent manner. We analyzed 24 SK mutants to better define the functional properties of SK-(1-59). Mutations within the alphabeta1 strand (residues 17-26) of SK completely prevented nonproteolytic active site induction in bound Pg and rendered SK incapable of protecting plasmin from inhibition by alpha2-antiplasmin. However, when fibrin-bound, the activities of alphabeta1 strand mutants were similar to that of wild-type (WT) SK and resistant to alpha2-antiplasmin. Mutation of Ile1 of SK also prevented nonproteolytic active site induction in bound Pg. However, unlike alphabeta1 strand mutants, the functional defect of Ile1 mutants was not relieved by fibrin, and complexes of Ile1 mutants and plasmin were resistant to alpha2-antiplasmin. Plasmin enhanced the activities of alphabeta1 strand and Ile1 mutants, suggesting that SK-plasmin complexes activated mutant SK.Pg complexes by hydrolyzing the Pg Arg561-Val562 bond. Mutational analysis of Glu39 of SK suggested that a salt bridge between Glu39 and Arg719 of Pg is important, but not essential, for nonproteolytic active site induction in Pg. Deleting residues 1-59 rendered SK dependent on plasmin and fibrin to generate plasminogen activator (PA) activity. However, the PA activity of SK-(60-414) in the presence of fibrin was markedly reduced compared with WT SK. Despite its reduced PA activity, the fibrinolytic potency of SK-(60-414) was greater than that of WT SK at higher (but not lower) SK concentrations due to its capacity to deplete plasma Pg. These studies define mechanisms by which the SK alpha domain regulates rapid active site induction in bound Pg, contributes to the resistance of the SK-plasmin complex to alpha2-antiplasmin, and controls fibrin-independent Pg activation.
Collapse
Affiliation(s)
- Lakshmi V Mundada
- Research Service, Ann Arbor Veterans Affairs Hospital and the Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | | | | | |
Collapse
|
20
|
Parhami-Seren B, Seavey M, Krudysz J, Tsantili P. Structural correlates of a functional streptokinase antigenic epitope: serine 138 is an essential residue for antibody binding. J Immunol Methods 2003; 272:93-105. [PMID: 12505715 DOI: 10.1016/s0022-1759(02)00435-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We determined the pattern of cross-reactivity of a panel of anti-streptokinase (SK) monoclonal antibodies (mAbs) with SK variants in order to map the antigenic and functional epitope of SK. Comparison of the pattern of cross-reactivity of the anti-SK mAb A4.3 with SK variants and sequence alignments of SK variants and native (n) SK suggested that mutation of Ser 138 to Lys results in loss of binding of mAb A4.3 to SK variants. However, this mutation does not affect formation of activator complex by these proteins. The epitope specificity of the mAb A4.3 was further confirmed by mutating Ser 138 to Lys in n SK. Monoclonal Ab A4.3 did not bind to mutant SK (Ser138Lys). Activator activity of mutant SK (Ser138Lys) was indistinguishable from that of n SK and recombinant n SK. Since addition of A4.3 mAb to an equimolar mixture of SK and human plasminogen inhibits activator complex formation, the sequences spanning position 138 are likely important for formation of streptokinase-plasminogen activator complex or processing of the plasminogen substrate.
Collapse
Affiliation(s)
- Behnaz Parhami-Seren
- Department of Biochemistry, College of Medicine, Given Building, University of Vermont, 89 Beaumont Street, Burlington 05405-0068, USA.
| | | | | | | |
Collapse
|
21
|
Parhami-Seren B, Krudysz J, Tsantili P. Affinity panning of peptide libraries using anti-streptokinase monoclonal antibodies: selection of an inhibitor of plasmin(ogen) active site. J Immunol Methods 2002; 267:185-98. [PMID: 12165440 DOI: 10.1016/s0022-1759(02)00183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To select sequences complementary to their binding sites, two anti-streptokinase (SK) monoclonal antibodies (mAbs), A4.5 and A5.5, were used in biopanning of 15-mer and hexamer phage-displayed peptide libraries, respectively. mAb A4.5 inhibits the catalytic activity of streptokinase-plasminogen activator complex (SKPAC), the binding of plasminogen to SK and the binding of human anti-SK polyclonal Abs to SK. All clones selected from the 15-mer peptide library by mAb A4.5 had identical nucleotide and amino acid sequences, RSVYRCSPFVGCWFG. An 11-mer peptide (peptide A4.5, YRCSPFVGCWF) derived from this sequence inhibited the binding of mAb A4.5 and human anti-SK polyclonal Abs to SK as well as the catalytic activity of both SKPAC and plasmin. The binding of the second mAb (mAb A5.5) to SK is lost upon interaction of SK with plasminogen, suggesting that sequences selected by this mAb are likely associated with the C-terminal cleavage site of SK. Biopanning of a hexamer peptide library with mAb A5.5 selected the sequence RYLQDY that is homologous to residues 324-328, adjacent to one possible C-terminal cleavage site in SK. A 10-mer synthetic peptide (LDFRDLYDPR) corresponding to residues 321-330 in SK specifically inhibited the binding of mAb A5.5 to SK. The selection and characterization of these two peptides enhances our understanding of SK structure, maps an antigenic epitope, and identifies a peptide inhibitor of plasminogen activation.
Collapse
Affiliation(s)
- Behnaz Parhami-Seren
- Department of Biochemistry, College of Medicine, University of Vermont, Given Building, Room C444, 89 Beaumont Avenue, Burlington 05405-0068, USA.
| | | | | |
Collapse
|
22
|
Wakeham N, Terzyan S, Zhai P, Loy JA, Tang J, Zhang XC. Effects of deletion of streptokinase residues 48-59 on plasminogen activation. Protein Eng Des Sel 2002; 15:753-61. [PMID: 12456874 DOI: 10.1093/protein/15.9.753] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streptokinase (SK) is a thrombolytic agent widely used for the clinical treatment of clotting disorders such as heart attack. The treatment is based on the ability of SK to bind plasminogen (Pg) or plasmin (Pm), forming complexes that proteolytically activate other Pg molecules to Pm, which carries out fibrinolysis. SK contains three major domains. The N-terminal domain, SKalpha, provides the complex with substrate recognition towards Pg. SKalpha contains a unique mobile loop, residues 45-70, absent in the corresponding domains of other bacterial Pg activators. To study the roles of this loop, we deleted 12 residues in this loop in both full-length SK and the SKalpha fragment. Kinetic data indicate that this loop participates in the recognition of substrate Pg, but does not function in the active site formation in the activator complex. Two crystal structures of the deletion mutant of SKalpha (SKalpha(delta)) complexed with the protease domain of Pg were determined. While the structure of SKalpha(delta) is essentially the same as this domain in full-length SK, the mode of SK-Pg interaction was however different from a previously observed structure. Even though mutagenesis studies indicated that the current complex represents a minor interacting form in solution, the binding to SKalpha(delta) triggered similar conformational changes in the Pg active site in both crystal forms.
Collapse
Affiliation(s)
- N Wakeham
- Crystallography Research Program and Protein Studies Program, Oklahoma Medical Research Foundation, 825 N E 13th Street,Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
23
|
Azuaga AI, Dobson CM, Mateo PL, Conejero-Lara F. Unfolding and aggregation during the thermal denaturation of streptokinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4121-33. [PMID: 12180989 DOI: 10.1046/j.1432-1033.2002.03107.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thermal denaturation of streptokinase from Streptococcus equisimilis (SK) together with that of a set of fragments encompassing each of its three domains has been investigated using differential scanning calorimetry (DSC). Analysis of the effects of pH, sample concentration and heating rates on the DSC thermograms has allowed us to find conditions where thermal unfolding occurs unequivocally under equilibrium. Under these conditions, pH 7.0 and a sample concentration of less than approximately 1.5 mg x mL(-1), or pH 8.0, the heat capacity curves of intact SK can be quantitatively described by three independent two-state transitions, each of which compares well with the two-state transition observed for the corresponding isolated SK domain. The results indicate that each structural domain of SK behaves as a single cooperative unfolding unit under equilibrium conditions. At pH 7.0 and high sample concentration, or at pH 6.0 at any concentration investigated, the thermal unfolding of domain A was accompanied by the time-dependent formation of aggregates of SK. This produces a severe deformation of the DSC curves, which become concentration dependent and kinetically controlled, and thus precludes their proper analysis by standard deconvolution methods. A simple model involving time-dependent, high-order aggregation may account for the observed effects. Limited-proteolysis experiments suggest that in the aggregates the N-terminal segment 1-63 and the whole of SK domain C are at least partially structured, while domain B is highly unstructured. Unfolding of domain A, under conditions where the N-terminal segment 1-63 has a high propensity for beta sheet structure and a partially formed hydrophobic core, gives rise to rapid aggregation. It is likely that this region is able to act as a nucleus for the aggregation of the full-length protein.
Collapse
Affiliation(s)
- Ana I Azuaga
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | |
Collapse
|
24
|
Gladysheva IP, Sazonova IY, Chowdhry SA, Liu L, Turner RB, Reed GL. Chimerism reveals a role for the streptokinase Beta -domain in nonproteolytic active site formation, substrate, and inhibitor interactions. J Biol Chem 2002; 277:26846-51. [PMID: 12016220 DOI: 10.1074/jbc.m202999200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptokinase (SK) and staphylokinase form cofactor-enzyme complexes that promote the degradation of fibrin thrombi by activating human plasminogen. The unique abilities of streptokinase to nonproteolytically activate plasminogen or to alter the interactions of plasmin with substrates and inhibitors may be the result of high affinity binding mediated by the streptokinase beta-domain. To examine this hypothesis, a chimeric streptokinase, SKbetaswap, was created by swapping the SK beta-domain with the homologous beta-domain of Streptococcus uberis Pg activator (SUPA or PauA, SK uberis), a streptokinase that cannot activate human plasminogen. SKbetaswap formed a tight complex with microplasminogen with an affinity comparable with streptokinase. The SKbetaswap-plasmin complex also activated human plasminogen with catalytic efficiencies (k(cat)/K(m) = 16.8 versus 15.2 microm(-1) min(-1)) comparable with streptokinase. However, SKbetaswap was incapable of nonproteolytic active site generation and activated plasminogen by a staphylokinase mechanism. When compared with streptokinase complexes, SKbetaswap-plasmin and SKbetaswap-microplasmin complexes had altered affinities for low molecular weight substrates. The SKbetaswap-plasmin complex also was less resistant than the streptokinase-plasmin complex to inhibition by alpha(2)-antiplasmin and was readily inhibited by soybean trypsin inhibitor. Thus, in addition to mediating high affinity binding to plasmin(ogen), the streptokinase beta-domain is required for nonproteolytic active site generation and specifically modulates the interactions of the complex with substrates and inhibitors.
Collapse
Affiliation(s)
- Inna P Gladysheva
- Cardiovascular Biology Laboratory, Harvard School of Public Health II-127, 677 Huntington Avenue, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
25
|
Dhar J, Pande AH, Sundram V, Nanda JS, Mande SC, Sahni G. Involvement of a nine-residue loop of streptokinase in the generation of macromolecular substrate specificity by the activator complex through interaction with substrate kringle domains. J Biol Chem 2002; 277:13257-67. [PMID: 11821385 DOI: 10.1074/jbc.m108422200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selective deletion of a discrete surface-exposed epitope (residues 254-262; 250-loop) in the beta domain of streptokinase (SK) significantly decreased the rates of substrate human plasminogen (HPG) activation by the mutant (SK(del254-262)). A kinetic analysis of SK(del254-262) revealed that its low HPG activator activity arose from a 5-6-fold increase in K(m) for HPG as substrate, with little alteration in k(cat) rates. This increase in the K(m) for the macromolecular substrate was proportional to a similar decrease in the binding affinity for substrate HPG as observed in a new resonant mirror-based assay for the real-time kinetic analysis of the docking of substrate HPG onto preformed binary complex. In contrast, studies on the interaction of the two proteins with microplasminogen showed no difference between the rates of activation of microplasminogen under conditions where HPG was activated differentially by nSK and SK(del254-262). The involvement of kringles was further indicated by a hypersusceptibility of the SK(del254-262).plasmin activator complex to epsilon-aminocaproic acid-mediated inhibition of substrate HPG activation in comparison with that of the nSK.plasmin activator complex. Further, ternary binding experiments on the resonant mirror showed that the binding affinity of kringles 1-5 of HPG to SK(del254-262).HPG was reduced by about 3-fold in comparison with that of nSK.HPG . Overall, these observations identify the 250 loop in the beta domain of SK as an important structural determinant of the inordinately stringent substrate specificity of the SK.HPG activator complex and demonstrate that it promotes the binding of substrate HPG to the activator via the kringle(s) during the HPG activation process.
Collapse
Affiliation(s)
- Jayeeta Dhar
- Institute of Microbial Technology, Sector 39-A, Chandigarh-160036, India
| | | | | | | | | | | |
Collapse
|
26
|
Liu L, Sazonova IY, Turner RB, Chowdhry SA, Tsai J, Houng AK, Reed GL. Leucine 42 in the fibronectin motif of streptokinase plays a critical role in fibrin-independent plasminogen activation. J Biol Chem 2000; 275:37686-91. [PMID: 10961989 DOI: 10.1074/jbc.m003963200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NH(2) terminus (residues 1-59) of streptokinase (SK) is a molecular switch that permits fibrin-independent plasminogen activation. Targeted mutations were made in recombinant (r) SK1-59 to identify structural interactions required for this process. Mutagenesis established the functional roles of Phe-37and Glu-39, which were projected to interact with microplasmin in the activator complex. Mutation of Leu-42 (rSK1-59(L42A)), a conserved residue in the SK fibronectin motif that lacks interactions with microplasmin, strongly reduced plasminogen activation (k(cat) decreased 50-fold) but not amidolysis (k(cat) decreased 1.5-fold). Otherwise rSK1-59(L42A) and native rSK1-59 were indistinguishable in several parameters. Both displayed saturable and specific binding to Glu-plasminogen or the remaining SK fragment (rSKDelta59). Similarly rSK1-59 and rSK1-59(L42A) bound simultaneously to two different plasminogen molecules, indicating that both plasminogen binding sites were intact. However, when bound to SKDelta59, rSK1-59(L42A) was less effective than rSK1-59 in restructuring the native conformation of the SK A domain, as detected by conformation-dependent monoclonal antibodies. In the light of previous studies, these data provide evidence that SK1-59 contributes to fibrin-independent plasminogen activation through 1) intermolecular interactions with the plasmin in the activator complex, 2) binding interactions with the plasminogen substrate, and 3) intramolecular interactions that structure the A domain of SK for Pg substrate processing.
Collapse
Affiliation(s)
- L Liu
- Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Chaudhary A, Vasudha S, Rajagopal K, Komath SS, Garg N, Yadav M, Mande SC, Sahni G. Function of the central domain of streptokinase in substrate plasminogen docking and processing revealed by site-directed mutagenesis. Protein Sci 1999; 8:2791-805. [PMID: 10631997 PMCID: PMC2144232 DOI: 10.1110/ps.8.12.2791] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The possible role of the central beta-domain (residues 151-287) of streptokinase (SK) was probed by site-specifically altering two charged residues at a time to alanines in a region (residues 230-290) previously identified by Peptide Walking to play a key role in plasminogen (PG) activation. These mutants were then screened for altered ability to activate equimolar "partner" human PG, or altered interaction with substrate PG resulting in an overall compromised capability for substrate PG processing. Of the eight initial alanine-linker mutants of SK, one mutant, viz. SK(KK256.257AA) (SK-D1), showed a roughly 20-fold reduction in PG activator activity in comparison to wild-type SK expressed in Escherichia coli (nSK). Five other mutants were as active as nSK, with two [SK(RE248.249AA) and SK(EK281.282AA), referred to as SK(C) and SK(H), respectively] showing specific activities approximately one-half and two-thirds, respectively, that of nSK. Unlike SK(C) and SK(H), however, SK(D1) showed an extended initial delay in the kinetics of PG activation. These features were drastically accentuated when the charges on the two Lys residues at positions 256 and 257 of nSK were reversed, to obtain SK(KK256.257EE) [SK(D2)]. This mutant showed a PG activator activity approximately 10-fold less than that of SK(D1). Remarkably, inclusion of small amounts of human plasmin (PN) in the PG activation reactions of SK(D2) resulted in a dramatic, PN dose-dependent rejuvenation of its PG activation capability, indicating that it required pre-existing PN to form a functional activator since it could not effect active site exposure in partner PG on its own, a conclusion further confirmed by its inability to show a "burst" of p-nitrophenol release in the presence of equimolar human PG and p-nitrophenyl guanidino benzoate. The steady-state kinetic parameters for HPG activation of its 1:1 complex with human PN revealed that although it could form a highly functional activator once "supplied" with a mature active site, the Km for PG was increased nearly eightfold in comparison to that of nSK-PN. SK mutants carrying simultaneous two- and three-site charge-cluster alterations, viz., SK(RE24249AA:EK281.282AA) [SK(CH)], SK(EK272.273AA;EK281.282AA) [SK(FH)], and SK(RE248.249AA;EK272.273AA:EK281.282AA+ ++) [SK(CFH)], showed additive/synergistic influence of multiple charge-cluster mutations on HPG activation when compared to the respective "single-site" mutants, with the "triple-site" mutant [SK(CFH)] showing absolutely no detectable HPG activation ability. Nevertheless, like the other constructs, the double- and triple-charge cluster mutants retained a native like affinity for complexation with partner PG. Their overall structure also, as judged by far-ultraviolet circular dichroism, was closely similar to that of nSK. These results provide the first experimental evidence for a direct assistance by the SK beta-domain in the docking and processing of substrate PG by the activator complex, a facet not readily evident probably because of the flexibility of this domain in the recent X-ray crystal structure of the SK-plasmin light chain complex.
Collapse
Affiliation(s)
- A Chaudhary
- Institute of Microbial Technology, Chandigarh, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Torréns I, Reyes O, Ojalvo AG, Seralena A, Chinea G, Cruz LJ, de la Fuente J. Mapping of the antigenic regions of streptokinase in humans after streptokinase therapy. Biochem Biophys Res Commun 1999; 259:162-8. [PMID: 10334933 DOI: 10.1006/bbrc.1999.0747] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptokinase (SK) is efficaciously used as a thrombolytic drug for the treatment of myocardial infarction. Being a bacterial protein, SK is immunogenic in humans. Therefore, resulting from SK therapy, patients become immunized and anti-SK antibody (Ab) titers rise post-treatment. High Ab titers might provoke severe immune reactions during SK therapy and neutralize SK activity, preventing effective thrombolysis. Spot synthesis combined with peptide library techniques is a useful tool for studying protein-peptide interactions on continuous cellulose membranes. Here, we report on the mapping of antigenic regions of SK using a spot-synthesized peptide library and human total sera from patients receiving SK therapy. All tested samples have high anti-SK Ab titers and most of them show significant SK neutralizing capacity. Individual variations in peptide recognition were detected. However, patients treated with SK tend, in general, to show a common regional binding pattern, including residues 1-20, 130-149, 170-189, and 390-399. This is the first study reporting the probing of a cellulose-bound set of peptides with total human sera.
Collapse
Affiliation(s)
- I Torréns
- Division of Pharmaceutical, Centro de Ingeniería Genética y Biotecnología, Havana, Cuba.
| | | | | | | | | | | | | |
Collapse
|
29
|
Azuaga AI, Woodruff ND, Conejero-Lara F, Cox VF, Smith RA, Dobson CM. Expression and characterization of the intact N-terminal domain of streptokinase. Protein Sci 1999; 8:443-6. [PMID: 10048340 PMCID: PMC2144260 DOI: 10.1110/ps.8.2.443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Proteolytic studies have enabled two of the three putative domains of the fibrinolytic protein streptokinase to be isolated and characterized (Conejero-Lara F et al., 1996, Protein Sci 5:2583-2591). The N-terminal domain, however, could not be isolated in these experiments because of its susceptibility to proteolytic cleavage. To complete the biophysical characterization of the domain structure of streptokinase we have overexpressed, purified, and characterized the N-terminal region of the protein, residues 1-146. The results show this is cooperatively folded with secondary structure content and overall stability closely similar to those of the equivalent region in the intact protein.
Collapse
Affiliation(s)
- A I Azuaga
- Oxford Centre for Molecular Sciences and New Chemistry Laboratory, University of Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Wang X, Lin X, Loy JA, Tang J, Zhang XC. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 1998; 281:1662-5. [PMID: 9733510 DOI: 10.1126/science.281.5383.1662] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Streptokinase is a plasminogen activator widely used in treating blood-clotting disorders. Complexes of streptokinase with human plasminogen can hydrolytically activate other plasminogen molecules to plasmin, which then dissolves blood clots. A similar binding activation mechanism also occurs in some key steps of blood coagulation. The crystal structure of streptokinase complexed with the catalytic unit of human plasmin was solved at 2.9 angstroms. The amino-terminal domain of streptokinase in the complex is hypothesized to enhance the substrate recognition. The carboxyl-terminal domain of streptokinase, which binds near the activation loop of plasminogen, is likely responsible for the contact activation of plasminogen in the complex.
Collapse
Affiliation(s)
- X Wang
- Crystallography Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|