1
|
Steele HBB, Elmer-Dixon MM, Rogan JT, Ross JBA, Bowler BE. The Human Cytochrome c Domain-Swapped Dimer Facilitates Tight Regulation of Intrinsic Apoptosis. Biochemistry 2020; 59:2055-2068. [PMID: 32428404 PMCID: PMC7291863 DOI: 10.1021/acs.biochem.0c00326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidation of cardiolipin (CL) by cytochrome c (cytc) has been proposed to initiate the intrinsic pathway of apoptosis. Domain-swapped dimer (DSD) conformations of cytc have been reported both by our laboratory and by others. The DSD is an alternate conformer of cytc that could oxygenate CL early in apoptosis. We demonstrate here that the cytc DSD has a set of properties that would provide tighter regulation of the intrinsic pathway. We show that the human DSD is kinetically more stable than horse and yeast DSDs. Circular dichroism data indicate that the DSD has a less asymmetric heme environment, similar to that seen when the monomeric protein binds to CL vesicles at high lipid:protein ratios. The dimer undergoes the alkaline conformational transition near pH 7.0, 2.5 pH units lower than that of the monomer. Data from fluorescence correlation spectroscopy and fluorescence anisotropy suggest that the alkaline transition of the DSD may act as a switch from a high affinity for CL nanodiscs at pH 7.4 to a much lower affinity at pH 8.0. Additionally, the peroxidase activity of the human DSD increases 7-fold compared to that of the monomer at pH 7 and 8, but by 14-fold at pH 6 when mixed Met80/H2O ligation replaces the lysine ligation of the alkaline state. We also present data that indicate that cytc binding shows a cooperative effect as the concentration of cytc is increased. The DSD appears to have evolved into a pH-inducible switch that provides a means to control activation of apoptosis near pH 7.0.
Collapse
Affiliation(s)
- Harmen B. B. Steele
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Margaret M. Elmer-Dixon
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - James T. Rogan
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - J. B. Alexander Ross
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry & Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
2
|
Balakrishnan G, Hu Y, Spiro TG. His26 protonation in cytochrome c triggers microsecond β-sheet formation and heme exposure: implications for apoptosis. J Am Chem Soc 2012; 134:19061-9. [PMID: 23094892 PMCID: PMC3529097 DOI: 10.1021/ja307100a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytochrome c unfolds locally and reversibly upon heating at pH 3. UV resonance Raman (UVRR) spectra reveal that instead of producing unordered structure, unfolding converts turns and some helical elements to β-sheet. It also disrupts the Met80-heme bond, and has been previously shown to induce peroxidase activity. Aromatic residues that are H-bonded to a heme propionate (Trp59 and Tyr48) alter their orientation, indicating heme displacement. T-jump/UVRR measurements give time constants of 0.2, 3.9, and 67 μs for successive phases of β-sheet formation and concomitant reorientation of Trp59. UVRR spectra reveal protonation of histidines, and specifically of His26, whose H-bond to Pro44 anchors the 40s Ω loop; this loop is known to be the least stable 'foldon' in the protein. His26 protonation is proposed to disrupt its H-bond with Pro44, triggering the extension of a short β-sheet segment at the 'neck' of the 40s Ω loop into the loop itself and back into the 60s and 70s helices. The secondary structure change displaces the heme via H-bonds from residues in the growing β-sheet, thereby exposing it to exogenous ligands, and inducing peroxidase activity. This unfolding mechanism may play a role in cardiolipin peroxidation by cyt c during apoptosis.
Collapse
|
3
|
Duncan MG, Williams MD, Bowler BE. Compressing the free energy range of substructure stabilities in iso-1-cytochrome c. Protein Sci 2009; 18:1155-64. [PMID: 19472325 DOI: 10.1002/pro.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evolutionary conservation of substructure architecture between yeast iso-1-cytochrome c and the well-characterized horse cytochrome c is studied with limited proteolysis, the alkaline conformational transition and global unfolding with guanidine-HCl. Mass spectral analysis of limited proteolysis cleavage products for iso-1-cytochrome c show that its least stable substructure is the same as horse cytochrome c. The limited proteolysis data yield a free energy of 3.8 +/- 0.4 kcal mol(-1) to unfold the least stable substructure compared with 5.05 +/- 0.30 kcal mol(-1) for global unfolding of iso-1-cytochrome c. Thus, substructure stabilities of iso-1-cytochrome c span only approximately 1.2 kcal mol(-1) compared with approximately 8 kcal mol(-1) for horse cytochrome c. Consistent with the less cooperative folding thus expected for the horse protein, the guanidine-HCl m-values are approximately 3 kcal mol(-1)M(-1) versus approximately 4.5 kcal mol(-1)M(-1) for horse versus yeast cytochrome c. The tight free energy spacing of the yeast cytochrome c substructures suggests that its folding has more branch points than for horse cytochrome c. Studies on a variant of iso-1-cytochrome c with an H26N mutation indicate that the least and most stable substructures unfold sequentially and the two least stable substructures unfold independently as for horse cytochrome c. Thus, important aspects of the substructure architecture of horse cytochrome c, albeit compressed energetically, are preserved evolutionally in yeast iso-1-cytochrome c.
Collapse
Affiliation(s)
- Michael G Duncan
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, MT 59812, USA
| | | | | |
Collapse
|
4
|
Cui M, Mezei M, Osman R. Prediction of protein loop structures using a local move Monte Carlo approach and a grid-based force field. Protein Eng Des Sel 2008; 21:729-35. [PMID: 18957407 PMCID: PMC2597363 DOI: 10.1093/protein/gzn056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 11/14/2022] Open
Abstract
We have developed an improved local move Monte Carlo (LMMC) loop sampling approach for loop predictions. The method generates loop conformations based on simple moves of the torsion angles of side chains and local moves of backbone of loops. To reduce the computational costs for energy evaluations, we developed a grid-based force field to represent the protein environment and solvation effect. Simulated annealing has been used to enhance the efficiency of the LMMC loop sampling and identify low-energy loop conformations. The prediction quality is evaluated on a set of protein loops with known crystal structure that has been previously used by others to test different loop prediction methods. The results show that this approach can reproduce the experimental results with the root mean square deviation within 1.8 A for all the test cases. The LMMC loop prediction approach developed here could be useful for improvement in the quality the loop regions in homology models, flexible protein-ligand and protein-protein docking studies.
Collapse
Affiliation(s)
- Meng Cui
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, NYU, Box 1218, New York, NY 10029
- Department of Physiology and Biophysics, Virginia Commonwealth University, 1101 East Marshall Street, PO Box 980551, Richmond, VA 23298, USA
| | - Mihaly Mezei
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, NYU, Box 1218, New York, NY 10029
| | - Roman Osman
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, NYU, Box 1218, New York, NY 10029
| |
Collapse
|
5
|
Abstract
Two fundamentally different views of how proteins fold are now being debated. Do proteins fold through multiple unpredictable routes directed only by the energetically downhill nature of the folding landscape or do they fold through specific intermediates in a defined pathway that systematically puts predetermined pieces of the target native protein into place? It has now become possible to determine the structure of protein folding intermediates, evaluate their equilibrium and kinetic parameters, and establish their pathway relationships. Results obtained for many proteins have serendipitously revealed a new dimension of protein structure. Cooperative structural units of the native protein, called foldons, unfold and refold repeatedly even under native conditions. Much evidence obtained by hydrogen exchange and other methods now indicates that cooperative foldon units and not individual amino acids account for the unit steps in protein folding pathways. The formation of foldons and their ordered pathway assembly systematically puts native-like foldon building blocks into place, guided by a sequential stabilization mechanism in which prior native-like structure templates the formation of incoming foldons with complementary structure. Thus the same propensities and interactions that specify the final native state, encoded in the amino-acid sequence of every protein, determine the pathway for getting there. Experimental observations that have been interpreted differently, in terms of multiple independent pathways, appear to be due to chance misfolding errors that cause different population fractions to block at different pathway points, populate different pathway intermediates, and fold at different rates. This paper summarizes the experimental basis for these three determining principles and their consequences. Cooperative native-like foldon units and the sequential stabilization process together generate predetermined stepwise pathways. Optional misfolding errors are responsible for 3-state and heterogeneous kinetic folding.
Collapse
Affiliation(s)
- S Walter Englander
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104-6059, USA.
| | | | | |
Collapse
|
6
|
Aubin-Tam ME, Hamad-Schifferli K. Gold nanoparticle-cytochrome C complexes: the effect of nanoparticle ligand charge on protein structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:12080-4. [PMID: 16342975 DOI: 10.1021/la052102e] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report the effect of nanoparticle ligand charge on the structure of a covalently, site-specifically linked protein. Au nanoparticles with positive, negative, and neutral ligands were appended to a specific cysteine, C102, of Saccharomyces cerevisiae cytochrome c. Conjugates were purified by HPLC or gel electrophoresis. Circular dichroism spectroscopy shows that changing the nanoparticle ligand dramatically influences the attached cytochrome c structure. The protein retains its structure with neutral ligands but denatures in the presence of charged species. This is rationalized by the electrostatic interaction of amino acids in the local vicinity of C102 with the endgroups of the ligand.
Collapse
Affiliation(s)
- Marie-Eve Aubin-Tam
- Department of Mechanical Engineering and the Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
7
|
Krishna MMG, Lin Y, Rumbley JN, Englander SW. Cooperative omega loops in cytochrome c: role in folding and function. J Mol Biol 2003; 331:29-36. [PMID: 12875833 DOI: 10.1016/s0022-2836(03)00697-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrogen exchange experiments under slow exchange conditions show that an omega loop in cytochrome c (residues 40-57) acts as a cooperative unfolding/refolding unit under native conditions. This unit behavior accounts for an initial step on the unfolding pathway, a final step in refolding, and a number of other structural, functional and evolutionary properties.
Collapse
Affiliation(s)
- Mallela M G Krishna
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania School of Medicine, 422 Curie Blvd, 1007 Stellar Chance Bldg, Philadelphia, PA 19104-6059, USA.
| | | | | | | |
Collapse
|
8
|
Hammack BN, Smith CR, Bowler BE. Denatured state thermodynamics: residual structure, chain stiffness and scaling factors. J Mol Biol 2001; 311:1091-104. [PMID: 11531342 DOI: 10.1006/jmbi.2001.4909] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A set of nine variants of yeast iso-1-cytochrome c with zero or one surface histidine have been engineered such that the N-terminal amino group is acetylated in vivo. N-terminal acetylation has been confirmed by mass spectral analysis of intact and proteolytically digested protein. The histidine-heme loop-forming equilibrium, under denaturing conditions (3 M guanidine hydrochloride), has been measured by pH titration providing an observed pK(a), pK(a)(obs), for each variant. N-terminal acetylation prevents the N-terminal amino group-heme binding equilibrium from interfering with measurements of histidine-heme affinity. Significant deviation is observed from the linear dependence of pK(a)(obs) on the log of the number of monomers in the loop formed, expected for a random coil denatured state. The maximum histidine-heme affinity occurs for a loop size of 37 monomers. For loop sizes of 37-83 monomers, histidine-heme pK(a)(obs) values are consistent with a scaling factor of -4.2+/-0.3. This value is much larger than the scaling factor of -1.5 for a freely jointed random coil, which is commonly used to represent the conformational properties of protein denatured states. For loop sizes of nine to 22 monomers, chain stiffness is likely responsible for the decreases in histidine-heme affinity relative to a loop size of 37. The results are discussed in terms of residual structure and sequence composition effects on the conformational properties of the denatured states of proteins.
Collapse
Affiliation(s)
- B N Hammack
- Department of Chemistry & Biochemistry, University of Denver, 2190 East Iliff Avenue, Denver, CO 80208-2436, USA
| | | | | |
Collapse
|
9
|
Godbole S, Hammack B, Bowler BE. Measuring denatured state energetics: deviations from random coil behavior and implications for the folding of iso-1-cytochrome c. J Mol Biol 2000; 296:217-28. [PMID: 10656828 DOI: 10.1006/jmbi.1999.3454] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The changes in the free energy of the denatured state of a set of yeast iso-1-cytochrome c variants with single surface histidine residues have been measured in 3 M guanidine hydrochloride. The thermodynamics of unfolding by guanidine hydrochloride is also reported. All variants have decreased stability relative to the wild-type protein. The free energy of the denatured state was determined in 3 M guanidine hydrochloride by evaluating the strength of heme-histidine ligation through determination of the pK(a) for loss of histidine binding to the heme. The data are corrected for the presence of the N-terminal amino group which also ligates to the heme under similar solution conditions. Significant deviations from random coil behavior are observed. Relative to a variant with a single histidine at position 26, residual structure of the order of -1.0 to -2.5 kcal/mol is seen for the other variants studied. The data explain the slower folding of yeast iso-1-cytochrome c relative to the horse protein. The greater number of histidines and the greater strength of ligation are expected to slow conversion of the histidine-misligated forms to the obligatory aquo-heme intermediate during the ligand exchange phase of folding. The particularly strong association of histidine residues at positions 54 and 89 may indicate regions of the protein with strong energetic propensities to collapse against the heme during early folding events, consistent with available data in the literature on early folding events for cytochrome c.
Collapse
Affiliation(s)
- S Godbole
- Department of Chemistry and Biochemistry, University of Denver, 2190 East Iliff Avenue, Denver, CO 80208-2436, USA
| | | | | |
Collapse
|