1
|
Singh A, Fenwick RB, Dyson HJ, Wright PE. Role of Active Site Loop Dynamics in Mediating Ligand Release from E. coli Dihydrofolate Reductase. Biochemistry 2021; 60:2663-2671. [PMID: 34428034 DOI: 10.1021/acs.biochem.1c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conformational fluctuations from ground-state to sparsely populated but functionally important excited states play a key role in enzyme catalysis. For Escherichia coli dihydrofolate reductase (DHFR), the release of the product tetrahydrofolate (THF) and oxidized cofactor NADP+ occurs through exchange between closed and occluded conformations of the Met20 loop. A "dynamic knockout" mutant of E. coli DHFR, where the E. coli sequence in the Met20 loop is replaced by the human sequence (N23PP/S148A), models human DHFR and is incapable of accessing the occluded conformation. 1H and 15N CPMG relaxation dispersion analysis for the ternary product complex of the mutant enzyme with NADP+ and the product analogue 5,10-dideazatetrahydrofolate (ddTHF) (E:ddTHF:NADP+) reveals the mechanism by which NADP+ is released when the Met20 loop cannot undergo the closed-to-occluded conformational transition. Two excited states were observed: one related to a faster, relatively high-amplitude conformational fluctuation in areas near the active site, associated with the shuttling of the nicotinamide ring of the cofactor out of the active site, and the other to a slower process where ddTHF undergoes small-amplitude motions within the binding site that are consistent with disorder observed in a room-temperature X-ray crystal structure of the N23PP/S148A mutant protein. These motions likely arise due to steric conflict of the pterin ring of ddTHF with the ribose-nicotinamide moiety of NADP+ in the closed active site. These studies demonstrate that site-specific kinetic information from relaxation dispersion experiments can provide intimate details of the changes in catalytic mechanism that result from small changes in local amino acid sequence.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - R Bryn Fenwick
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Villani G. A Time-Dependent Quantum Approach to Allostery and a Comparison With Light-Harvesting in Photosynthetic Phenomenon. Front Mol Biosci 2020; 7:156. [PMID: 33005625 PMCID: PMC7483663 DOI: 10.3389/fmolb.2020.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 11/26/2022] Open
Abstract
The allosteric effect is one of the most important processes in regulating the function of proteins, and the elucidation of this phenomenon plays a significant role in understanding emergent behaviors in biological regulation. In this process, a perturbation, generated by a ligand in a part of the macromolecule (the allosteric site), moves along this system and reaches a specific (active) site, dozens of Ångströms away, with a great efficiency. The dynamics of this perturbation in the macromolecule can model precisely the allosteric process. In this article, we will be studying the general characteristics of allostery, using a time-dependent quantum approach to obtain rules that apply to this kind of process. Considering the perturbation as a wave that moves within the molecular system, we will characterize the allosteric process with three of the properties of this wave in the active site: (1) ta, the characteristic time for reaching that site, (2) Aa, the amplitude of the wave in this site, and (3) Ba, its corresponding spectral broadening. These three parameters, together with the process mechanism and the perturbation efficiency in the process, can describe the phenomenon. One of the main purposes of this paper is to link the parameters ta, Aa, and Ba and the perturbation efficiency to the characteristics of the system. There is another fundamental process for life that has some characteristics similar to allostery: the light-harvesting (LH) process in photosynthesis. Here, as in allostery, two distant macromolecular sites are involved—two sites dozens of Ångströms away. In both processes, it is particularly important that the perturbation is distributed efficiently without dissipating in the infinite degrees of freedom within the macromolecule. The importance of considering quantum effects in the LH process is well documented in literature, and the quantum coherences are experimentally proven by time-dependent spectroscopic techniques. Given the existing similarities between these two processes in macromolecules, in this work, we suggest using Quantum Mechanics (QM) to study allostery.
Collapse
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti OrganoMetallici (UOS Pisa) - CNR, Area della Ricerca di Pisa, Pisa, Italy
| |
Collapse
|
3
|
Verkhivker GM, Agajanian S, Hu G, Tao P. Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Front Mol Biosci 2020; 7:136. [PMID: 32733918 PMCID: PMC7363947 DOI: 10.3389/fmolb.2020.00136] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the "second secret of life." The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of allosteric modulators. The unifying theme and overarching goal of allosteric regulation studies in recent years have been integration between emerging experiment and computational approaches and technologies to advance quantitative characterization of allosteric mechanisms in proteins. Despite significant advances, the quantitative characterization and reliable prediction of functional allosteric states, interactions, and mechanisms continue to present highly challenging problems in the field. In this review, we discuss simulation-based multiscale approaches, experiment-informed Markovian models, and network modeling of allostery and information-theoretical approaches that can describe the thermodynamics and hierarchy allosteric states and the molecular basis of allosteric mechanisms. The wealth of structural and functional information along with diversity and complexity of allosteric mechanisms in therapeutically important protein families have provided a well-suited platform for development of data-driven research strategies. Data-centric integration of chemistry, biology and computer science using artificial intelligence technologies has gained a significant momentum and at the forefront of many cross-disciplinary efforts. We discuss new developments in the machine learning field and the emergence of deep learning and deep reinforcement learning applications in modeling of molecular mechanisms and allosteric proteins. The experiment-guided integrated approaches empowered by recent advances in multiscale modeling, network science, and machine learning can lead to more reliable prediction of allosteric regulatory mechanisms and discovery of allosteric modulators for therapeutically important protein targets.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
4
|
Sheik Amamuddy O, Veldman W, Manyumwa C, Khairallah A, Agajanian S, Oluyemi O, Verkhivker GM, Tastan Bishop Ö. Integrated Computational Approaches and Tools forAllosteric Drug Discovery. Int J Mol Sci 2020; 21:E847. [PMID: 32013012 PMCID: PMC7036869 DOI: 10.3390/ijms21030847] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding molecular mechanisms underlying the complexity of allosteric regulationin proteins has attracted considerable attention in drug discovery due to the benefits and versatilityof allosteric modulators in providing desirable selectivity against protein targets while minimizingtoxicity and other side effects. The proliferation of novel computational approaches for predictingligand-protein interactions and binding using dynamic and network-centric perspectives has ledto new insights into allosteric mechanisms and facilitated computer-based discovery of allostericdrugs. Although no absolute method of experimental and in silico allosteric drug/site discoveryexists, current methods are still being improved. As such, the critical analysis and integration ofestablished approaches into robust, reproducible, and customizable computational pipelines withexperimental feedback could make allosteric drug discovery more efficient and reliable. In this article,we review computational approaches for allosteric drug discovery and discuss how these tools can beutilized to develop consensus workflows for in silico identification of allosteric sites and modulatorswith some applications to pathogen resistance and precision medicine. The emerging realization thatallosteric modulators can exploit distinct regulatory mechanisms and can provide access to targetedmodulation of protein activities could open opportunities for probing biological processes and insilico design of drug combinations with improved therapeutic indices and a broad range of activities.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Colleen Manyumwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Odeyemi Oluyemi
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| |
Collapse
|
5
|
NMR and computational methods for molecular resolution of allosteric pathways in enzyme complexes. Biophys Rev 2019; 12:155-174. [PMID: 31838649 DOI: 10.1007/s12551-019-00609-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
Allostery is a ubiquitous biological mechanism in which a distant binding site is coupled to and drastically alters the function of a catalytic site in a protein. Allostery provides a high level of spatial and temporal control of the integrity and activity of biomolecular assembles composed of proteins, nucleic acids, or small molecules. Understanding the physical forces that drive allosteric coupling is critical to harnessing this process for use in bioengineering, de novo protein design, and drug discovery. Current microscopic models of allostery highlight the importance of energetics, structural rearrangements, and conformational fluctuations, and in this review, we discuss the synergistic use of solution NMR spectroscopy and computational methods to probe these phenomena in allosteric systems, particularly protein-nucleic acid complexes. This combination of experimental and theoretical techniques facilitates an unparalleled detection of subtle changes to structural and dynamic equilibria in biomolecules with atomic resolution, and we provide a detailed discussion of specialized NMR experiments as well as the complementary methods that provide valuable insight into allosteric pathways in silico. Lastly, we highlight two case studies to demonstrate the adaptability of this approach to enzymes of varying size and mechanistic complexity.
Collapse
|
6
|
Astl L, Verkhivker GM. Data-driven computational analysis of allosteric proteins by exploring protein dynamics, residue coevolution and residue interaction networks. Biochim Biophys Acta Gen Subj 2019:S0304-4165(19)30179-5. [PMID: 31330173 DOI: 10.1016/j.bbagen.2019.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Computational studies of allosteric interactions have witnessed a recent renaissance fueled by the growing interest in modeling of the complex molecular assemblies and biological networks. Allosteric interactions in protein structures allow for molecular communication in signal transduction networks. METHODS In this work, we performed a large scale comprehensive and multi-faceted analysis of >300 diverse allosteric proteins and complexes with allosteric modulators. By modeling and exploring coarse-grained dynamics, residue coevolution, and residue interaction networks for allosteric proteins, we have determined unifying molecular signatures shared by allosteric systems. RESULTS The results of this study have suggested that allosteric inhibitors and allosteric activators may differentially affect global dynamics and network organization of protein systems, leading to diverse allosteric mechanisms. By using structural and functional data on protein kinases, we present a detailed case study that that included atomic-level analysis of coevolutionary networks in kinases bound with allosteric inhibitors and activators. CONCLUSIONS We have found that coevolutionary networks can form direct communication pathways connecting functional regions and can recapitulate key regulatory sites and interactions responsible for allosteric signaling in the studied protein systems. The results of this computational investigation are compared with the experimental studies and reveal molecular signatures of known regulatory hotspots in protein kinases. GENERAL SIGNIFICANCE This study has shown that allosteric inhibitors and allosteric activators can have a different effect on residue interaction networks and can exploit distinct regulatory mechanisms, which could open up opportunities for probing allostery and new drug combinations with broad range of activities.
Collapse
Affiliation(s)
- Lindy Astl
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States of America
| | - Gennady M Verkhivker
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States of America; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States of America.
| |
Collapse
|
7
|
Hu W, Wang H, Hou Y, Hao Y, Liu D. Trimethylsilyl reporter groups for NMR studies of conformational changes in G protein-coupled receptors. FEBS Lett 2019; 593:1113-1121. [PMID: 30953343 DOI: 10.1002/1873-3468.13382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022]
Abstract
Large membrane proteins such as G protein-coupled receptors (GPCRs) are difficult for NMR study due to severe signal overlaps and unfavorable relaxation properties. We used a trimethylsilyl (TMS) group as a reporter group for 1 H NMR study of conformational changes in proteins, utilizing high-intensity 1 H NMR signals near 0 p.p.m. The β2 -adrenergic receptor was labeled with TMS groups at two cysteines located at the cytoplasmic ends of helices VI and VII. Binding of various ligands led to changes in 1 H NMR signals, which manifested that helix VI is sensitive to G protein-specific activation, whereas helix VII is sensitive to β-arrestin-specific activation. Thus, the TMS group is a useful reporter group in NMR for studying conformational changes in membrane proteins such as GPCRs.
Collapse
Affiliation(s)
- Wanhui Hu
- iHuman Institute, ShanghaiTech University, China
| | - Huixia Wang
- iHuman Institute, ShanghaiTech University, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaguang Hou
- iHuman Institute, ShanghaiTech University, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yimei Hao
- iHuman Institute, ShanghaiTech University, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
8
|
Astl L, Tse A, Verkhivker GM. Interrogating Regulatory Mechanisms in Signaling Proteins by Allosteric Inhibitors and Activators: A Dynamic View Through the Lens of Residue Interaction Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:187-223. [DOI: 10.1007/978-981-13-8719-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Hauenschild T, Hinderberger D. A Platform of Phenol-Based Nitroxide Radicals as an “EPR Toolbox” in Supramolecular and Click Chemistry. Chempluschem 2018; 84:43-51. [DOI: 10.1002/cplu.201800429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Till Hauenschild
- Martin Luther University Halle-Wittenberg; Institute of Chemistry Physical Chemistry - Complex Self-Organizing Systems; Von-Danckelmann-Platz 4 06120 Halle (Saale) Germany
| | - Dariush Hinderberger
- Martin Luther University Halle-Wittenberg; Institute of Chemistry Physical Chemistry - Complex Self-Organizing Systems; Von-Danckelmann-Platz 4 06120 Halle (Saale) Germany
| |
Collapse
|
10
|
Joseph PRB, Spyracopoulos L, Rajarathnam K. Dynamics-Derived Insights into Complex Formation between the CXCL8 Monomer and CXCR1 N-Terminal Domain: An NMR Study. Molecules 2018; 23:E2825. [PMID: 30384436 PMCID: PMC6278376 DOI: 10.3390/molecules23112825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 11/29/2022] Open
Abstract
Interleukin-8 (CXCL8), a potent neutrophil-activating chemokine, exerts its function by activating the CXCR1 receptor that belongs to class A G protein-coupled receptors (GPCRs). Receptor activation involves interactions between the CXCL8 N-terminal loop and CXCR1 N-terminal domain (N-domain) residues (Site-I) and between the CXCL8 N-terminal and CXCR1 extracellular/transmembrane residues (Site-II). CXCL8 exists in equilibrium between monomers and dimers, and it is known that the monomer binds CXCR1 with much higher affinity and that Site-I interactions are largely responsible for the differences in monomer vs. dimer affinity. Here, using backbone 15N-relaxation nuclear magnetic resonance (NMR) data, we characterized the dynamic properties of the CXCL8 monomer and the CXCR1 N-domain in the free and bound states. The main chain of CXCL8 appears largely rigid on the picosecond time scale as evident from high order parameters (S²). However, on average, S² are higher in the bound state. Interestingly, several residues show millisecond-microsecond (ms-μs) dynamics only in the bound state. The CXCR1 N-domain is unstructured in the free state but structured with significant dynamics in the bound state. Isothermal titration calorimetry (ITC) data indicate that both enthalpic and entropic factors contribute to affinity, suggesting that increased slow dynamics in the bound state contribute to affinity. In sum, our data indicate a critical and complex role for dynamics in driving CXCL8 monomer-CXCR1 Site-I interactions.
Collapse
Affiliation(s)
- Prem Raj B Joseph
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
11
|
Nguyen D, Lokesh GLR, Volk DE, Iwahara J. A Unique and Simple Approach to Improve Sensitivity in 15N-NMR Relaxation Measurements for NH₃⁺ Groups: Application to a Protein-DNA Complex. Molecules 2017; 22:molecules22081355. [PMID: 28809801 PMCID: PMC5602601 DOI: 10.3390/molecules22081355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 11/16/2022] Open
Abstract
NMR spectroscopy is a powerful tool for research on protein dynamics. In the past decade, there has been significant progress in the development of NMR methods for studying charged side chains. In particular, NMR methods for lysine side-chain NH₃⁺ groups have been proven to be powerful for investigating the dynamics of hydrogen bonds or ion pairs that play important roles in biological processes. However, relatively low sensitivity has been a major practical issue in NMR experiments on NH₃⁺ groups. In this paper, we present a unique and simple approach to improve sensitivity in 15N relaxation measurements for NH₃⁺ groups. In this approach, the efficiency of coherence transfers for the desired components are maximized, whereas undesired anti-phase or multi-spin order components are purged through pulse schemes and rapid relaxation. For lysine side-chain NH₃⁺ groups of a protein-DNA complex, we compared the data obtained with the previous and new pulse sequences under the same conditions and confirmed that the 15N relaxation parameters were consistent for these datasets. While retaining accuracy in measuring 15N relaxation, our new pulse sequences for NH₃⁺ groups allowed an 82% increase in detection sensitivity of 15N longitudinal and transverse relaxation measurements.
Collapse
Affiliation(s)
- Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
12
|
Jiang Y, Kalodimos CG. NMR Studies of Large Proteins. J Mol Biol 2017; 429:2667-2676. [PMID: 28728982 DOI: 10.1016/j.jmb.2017.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023]
Abstract
Recent breakthroughs in isotope-labeling and pulse sequence techniques have enabled the NMR characterization of large protein systems with molecular masses of hundreds of kilodaltons. NMR studies of a great variety of large proteins have provided unique insights into the binding, dynamic, and allosteric mechanisms. Here we present a brief summary of these developments by highlighting few cases that exemplify the uniqueness of NMR in providing atomic resolution information into key dynamic processes and structures of protein complexes with high degree of flexibility.
Collapse
Affiliation(s)
- Yajun Jiang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Charalampos G Kalodimos
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
13
|
Franco R, Gil-Caballero S, Ayala I, Favier A, Brutscher B. Probing Conformational Exchange Dynamics in a Short-Lived Protein Folding Intermediate by Real-Time Relaxation–Dispersion NMR. J Am Chem Soc 2017; 139:1065-1068. [DOI: 10.1021/jacs.6b12089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rémi Franco
- Institut
de Biologie Structurale, Université Grenoble Alpes, 71 Avenue
des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National
de Recherche Scientifique (CNRS), Grenoble, France
| | | | - Isabel Ayala
- Institut
de Biologie Structurale, Université Grenoble Alpes, 71 Avenue
des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National
de Recherche Scientifique (CNRS), Grenoble, France
| | - Adrien Favier
- Institut
de Biologie Structurale, Université Grenoble Alpes, 71 Avenue
des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National
de Recherche Scientifique (CNRS), Grenoble, France
| | - Bernhard Brutscher
- Institut
de Biologie Structurale, Université Grenoble Alpes, 71 Avenue
des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National
de Recherche Scientifique (CNRS), Grenoble, France
| |
Collapse
|
14
|
Abstract
Allostery is a ubiquitous biological regulatory process in which distant binding sites within a protein or enzyme are functionally and thermodynamically coupled. Allosteric interactions play essential roles in many enzymological mechanisms, often facilitating formation of enzyme-substrate complexes and/or product release. Thus, elucidating the forces that drive allostery is critical to understanding the complex transformations of biomolecules. Currently, a number of models exist to describe allosteric behavior, taking into account energetics as well as conformational rearrangements and fluctuations. In the following Review, we discuss the use of solution NMR techniques designed to probe allosteric mechanisms in enzymes. NMR spectroscopy is unequaled in its ability to detect structural and dynamical changes in biomolecules, and the case studies presented herein demonstrate the range of insights to be gained from this valuable method. We also provide a detailed technical discussion of several specialized NMR experiments that are ideally suited for the study of enzymatic allostery.
Collapse
Affiliation(s)
- George P. Lisi
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - J. Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
15
|
Characterization of the conformational fluctuations in the Josephin domain of ataxin-3. Biophys J 2016; 107:2932-2940. [PMID: 25517158 PMCID: PMC4269769 DOI: 10.1016/j.bpj.2014.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 11/24/2022] Open
Abstract
As for a variety of other molecular recognition processes, conformational fluctuations play an important role in the cleavage of polyubiquitin chains by the Josephin domain of ataxin-3. The interaction between Josephin and ubiquitin appears to be mediated by the motions of α-helical hairpin that is unusual among deubiquitinating enzymes. Here, we characterized the conformational fluctuations of the helical hairpin by incorporating NMR measurements as replica-averaged restraints in molecular dynamics simulations, and by validating the results by small-angle x-ray scattering measurements. This approach allowed us to define the extent of the helical hairpin motions and suggest a role of such motions in the recognition of ubiquitin.
Collapse
|
16
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
17
|
Abstract
Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach.
Collapse
Affiliation(s)
- Sarina Grutsch
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Sven Brüschweiler
- Department of Computational & Structural Biology, Max F. Perutz Laboratories, Campus Vienna Biocenter 5, Vienna, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
18
|
Long-Range Energetic Changes Triggered by a Proline Switch in the Signal Adapter Protein c-CrkII. J Mol Biol 2015; 427:3908-20. [DOI: 10.1016/j.jmb.2015.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/20/2022]
|
19
|
Dynamic multidrug recognition by multidrug transcriptional repressor LmrR. Sci Rep 2014; 4:6922. [PMID: 25403615 PMCID: PMC4235314 DOI: 10.1038/srep06922] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
LmrR is a multidrug transcriptional repressor that controls the expression of a major multidrug transporter, LmrCD, in Lactococcus lactis. However, the molecular mechanism by which LmrR binds to structurally unrelated compounds and is released from the promoter region remains largely unknown. Here, we structurally and dynamically characterized LmrR in the apo, compound-bound and promoter-bound states. The compound-binding site of LmrR exhibits ps–μs dynamics in the apo state, and compound ligation shifts the preexisting conformational equilibrium to varying extents to achieve multidrug recognition. Meanwhile, the compound binding induces redistribution of ps–ns dynamics to the allosteric sites, which entropically favors the high-affinity recognition. Furthermore, the reciprocal compound/promoter binding by LmrR is achieved by the incompatible conformational ensembles between the compound- and promoter-bound states. Collectively, the data show how LmrR can dynamically exert its functions through promiscuous multi-target interactions, in a manner that cannot be understood by a static structural view.
Collapse
|
20
|
Abstract
A key issue in drug discovery is how to reduce drug dosage and increase specificity while retaining or increasing efficacy, as high dosage is often linked to toxicity. There are two types of drugs on the market: orthosteric and allosteric. Orthosteric drugs can be noncovalent or covalent. The latter are advantageous because they may be prescribed in lower doses, but their potential off-target toxicity is a primary concern. The chief advantages of allosteric drugs are their higher specificity and their consequently lower chance of toxic side effects. Covalent allosteric drugs combine the pharmacological merits of covalent drugs with the additional benefit of the higher specificity of allosteric drugs. In a recent promising step in therapeutic drug development, allosteric, disulfide-tethered fragments successfully modulated the activity of a protein kinase and K-Ras.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702;
| | | |
Collapse
|
21
|
Cyclophilin A catalyzes proline isomerization by an electrostatic handle mechanism. Proc Natl Acad Sci U S A 2014; 111:10203-8. [PMID: 24982184 DOI: 10.1073/pnas.1404220111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proline isomerization is a ubiquitous process that plays a key role in the folding of proteins and in the regulation of their functions. Different families of enzymes, known as "peptidyl-prolyl isomerases" (PPIases), catalyze this reaction, which involves the interconversion between the cis and trans isomers of the N-terminal amide bond of the amino acid proline. However, complete descriptions of the mechanisms by which these enzymes function have remained elusive. We show here that cyclophilin A, one of the most common PPIases, provides a catalytic environment that acts on the substrate through an electrostatic handle mechanism. In this mechanism, the electrostatic field in the catalytic site turns the electric dipole associated with the carbonyl group of the amino acid preceding the proline in the substrate, thus causing the rotation of the peptide bond between the two residues. We identified this mechanism using a combination of NMR measurements, molecular dynamics simulations, and density functional theory calculations to simultaneously determine the cis-bound and trans-bound conformations of cyclophilin A and its substrate as the enzymatic reaction takes place. We anticipate that this approach will be helpful in elucidating whether the electrostatic handle mechanism that we describe here is common to other PPIases and, more generally, in characterizing other enzymatic processes.
Collapse
|
22
|
Schmidpeter PAM, Schmid FX. Molecular determinants of a regulatory prolyl isomerization in the signal adapter protein c-CrkII. ACS Chem Biol 2014; 9:1145-52. [PMID: 24571054 DOI: 10.1021/cb500001n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cellular CT10 regulator of kinase protein (c-CrkII) transmits signals from oncogenic tyrosine kinases to cellular targets. Nuclear magnetic resonance studies had suggested that in chicken c-CrkII a native state prolyl cis-trans isomerization is involved in signal propagation. Corresponding evidence for the closely related human c-CrkII was not obtained. Here we analyzed the kinetics of folding and substrate binding of the two homologues and found that cis-trans isomerization of Pro238 determines target binding in chicken but not in human c-CrkII. A reciprocal mutational analysis uncovered residues that determine the isomeric state at Pro238 and transmit it to the binding site for downstream target proteins. The transfer of these key residues to human c-CrkII established a regulatory proline switch in this protein, as well. We suggest that Pro238 isomerization extends the lifetime of the signaling-active state of c-CrkII and thereby functions as a long-term molecular storage device.
Collapse
Affiliation(s)
- Philipp A. M. Schmidpeter
- Laboratorium für Biochemie
und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Franz X. Schmid
- Laboratorium für Biochemie
und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
23
|
Piazza F. Nonlinear excitations match correlated motions unveiled by NMR in proteins: a new perspective on allosteric cross-talk. Phys Biol 2014; 11:036003. [PMID: 24732881 DOI: 10.1088/1478-3975/11/3/036003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this paper we propose a novel theoretical framework for interpreting long-range dynamical correlations unveiled in proteins through NMR measurements. The theoretical rationale relies on the hypothesis that correlated motions in proteins may be reconstructed as large-scale, collective modes sustained by long-lived nonlinear vibrations known as discrete breathers (DB) localized at key, hot-spot sites. DBs are spatially localized modes, whose nonlinear nature hinders resonant coupling with the normal modes, thus conferring them long lifetimes as compared to normal modes. DBs have been predicted to exist in proteins, localized at few hot-spot residues typically within the stiffest portions of the structure. We compute DB modes analytically in the framework of the nonlinear network model, showing that the displacement patterns of many DBs localized at key sites match to a remarkable extent the experimentally uncovered correlation blueprint. The computed dispersion relations prove that it is physically possible for some of these DBs to be excited out of thermal fluctuations at room temperature. Based on our calculations, we speculate that transient energy redistribution among the vibrational modes in a protein might favor the emergence of DB-like bursts of long-lived energy at hot-spot sites with lifetimes in the ns range, able to sustain critical, function-encoding correlated motions. More generally, our calculations provide a novel quantitative tool to predict fold-spanning dynamical pathways of correlated residues that may be central to allosteric cross-talk in proteins.
Collapse
Affiliation(s)
- Francesco Piazza
- Université d'Orléans, Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C Sadron, F-45071, Orléans, France
| |
Collapse
|
24
|
Montalvao R, Camilloni C, De Simone A, Vendruscolo M. New opportunities for tensor-free calculations of residual dipolar couplings for the study of protein dynamics. JOURNAL OF BIOMOLECULAR NMR 2014; 58:233-238. [PMID: 24477919 DOI: 10.1007/s10858-013-9801-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
Residual dipolar couplings (RDCs) can provide exquisitely detailed information about the structure and dynamics of proteins. It is challenging, however, to extract such information from RDC measurements in conformationally heterogeneous states of proteins because of the complex relationship between RDCs and protein structures. To obtain new insights into this problem, we discuss methods of calculating the RDCs that do not require the definition of an alignment tensor. These methods can help in particular in the search of effective ways to use RDCs to characterise disordered or partially disordered states of proteins.
Collapse
Affiliation(s)
- Rinaldo Montalvao
- São Carlos Institute of Physics, University of São Paulo, São Carlos, CEP 13566-590, Brazil
| | | | | | | |
Collapse
|
25
|
Borkar AN, De Simone A, Montalvao RW, Vendruscolo M. A method of determining RNA conformational ensembles using structure-based calculations of residual dipolar couplings. J Chem Phys 2014; 138:215103. [PMID: 23758399 DOI: 10.1063/1.4804301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We describe a method of determining the conformational fluctuations of RNA based on the incorporation of nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) as replica-averaged structural restraints in molecular dynamics simulations. In this approach, the alignment tensor required to calculate the RDCs corresponding to a given conformation is estimated from its shape, and multiple replicas of the RNA molecule are simulated simultaneously to reproduce in silico the ensemble-averaging procedure performed in the NMR measurements. We provide initial evidence that with this approach it is possible to determine accurately structural ensembles representing the conformational fluctuations of RNA by applying the reference ensemble test to the trans-activation response element of the human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Aditi N Borkar
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
26
|
De Simone A, Gustavsson M, Montalvao RW, Shi L, Veglia G, Vendruscolo M. Structures of the excited states of phospholamban and shifts in their populations upon phosphorylation. Biochemistry 2013; 52:6684-94. [PMID: 23968132 DOI: 10.1021/bi400517b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phospholamban is an integral membrane protein that controls the calcium balance in cardiac muscle cells. As the function and regulation of this protein require the active involvement of low populated states in equilibrium with the native state, it is of great interest to acquire structural information about them. In this work, we calculate the conformations and populations of the ground state and the three main excited states of phospholamban by incorporating nuclear magnetic resonance residual dipolar couplings as replica-averaged structural restraints in molecular dynamics simulations. We then provide a description of the manner in which phosphorylation at Ser16 modulates the activity of the protein by increasing the sizes of the populations of its excited states. These results demonstrate that the approach that we describe provides a detailed characterization of the different states of phospholamban that determine the function and regulation of this membrane protein. We anticipate that the knowledge of conformational ensembles enable the design of new dominant negative mutants of phospholamban by modulating the relative populations of its conformational substates.
Collapse
Affiliation(s)
- Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London , London SW7 2AZ, U.K
| | | | | | | | | | | |
Collapse
|
27
|
De Simone A, Montalvao RW, Dobson CM, Vendruscolo M. Characterization of the interdomain motions in hen lysozyme using residual dipolar couplings as replica-averaged structural restraints in molecular dynamics simulations. Biochemistry 2013; 52:6480-6. [PMID: 23941501 DOI: 10.1021/bi4007513] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hen lysozyme is an enzyme characterized by the presence of two domains whose relative motions are involved in the mechanism of binding and release of the substrates. By using residual dipolar couplings as replica-averaged structural restraints in molecular dynamics simulations, we characterize the breathing motions describing the interdomain fluctuations of this protein. We found that the ensemble of conformations that we determined spans the entire range of structures of hen lysozyme deposited in the Protein Data Bank, including both the free and bound states, suggesting that the thermal motions in the free state provide access to the structures populated upon binding. The approach that we present illustrates how the use of residual dipolar couplings as replica-averaged structural restraints in molecular dynamics simulations makes it possible to explore conformational fluctuations of a relatively large amplitude in proteins.
Collapse
Affiliation(s)
- Alfonso De Simone
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, United Kingdom
| | | | | | | |
Collapse
|
28
|
Cavalli A, Camilloni C, Vendruscolo M. Molecular dynamics simulations with replica-averaged structural restraints generate structural ensembles according to the maximum entropy principle. J Chem Phys 2013; 138:094112. [PMID: 23485282 DOI: 10.1063/1.4793625] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In order to characterise the dynamics of proteins, a well-established method is to incorporate experimental parameters as replica-averaged structural restraints into molecular dynamics simulations. Here, we justify this approach in the case of interproton distance information provided by nuclear Overhauser effects by showing that it generates ensembles of conformations according to the maximum entropy principle. These results indicate that the use of replica-averaged structural restraints in molecular dynamics simulations, given a force field and a set of experimental data, can provide an accurate approximation of the unknown Boltzmann distribution of a system.
Collapse
Affiliation(s)
- Andrea Cavalli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | | | | |
Collapse
|
29
|
Aykaç Fas B, Tutar Y, Haliloğlu T. Dynamic fluctuations provide the basis of a conformational switch mechanism in apo cyclic AMP receptor protein. PLoS Comput Biol 2013; 9:e1003141. [PMID: 23874183 PMCID: PMC3715548 DOI: 10.1371/journal.pcbi.1003141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 05/31/2013] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli cyclic AMP Receptor Protein (CRP) undergoes conformational changes with cAMP binding and allosterically promotes CRP to bind specifically to the DNA. In that, the structural and dynamic properties of apo CRP prior to cAMP binding are of interest for the comprehension of the activation mechanism. Here, the dynamics of apo CRP monomer/dimer and holo CRP dimer were studied by Molecular Dynamics (MD) simulations and Gaussian Network Model (GNM). The interplay of the inter-domain hinge with the cAMP and DNA binding domains are pre-disposed in the apo state as a conformational switch in the CRP's allosteric communication mechanism. The hinge at L134-D138 displaying intra- and inter-subunit coupled fluctuations with the cAMP and DNA binding domains leads to the emergence of stronger coupled fluctuations between the two domains and describes an on state. The flexible regions at K52-E58, P154/D155 and I175 maintain the dynamic coupling of the two domains. With a shift in the inter-domain hinge position towards the N terminus, nevertheless, the latter correlations between the domains loosen and become disordered; L134-D138 dynamically interacts only with the cAMP and DNA binding domains of its own subunit, and an off state is assumed. We present a mechanistic view on how the structural dynamic units are hierarchically built for the allosteric functional mechanism; from apo CRP monomer to apo-to-holo CRP dimers.
Collapse
Affiliation(s)
- Burcu Aykaç Fas
- Department of Chemical Engineering and Polymer Research Center, Boğaziçi University, Bebek, İstanbul, Turkey
| | - Yusuf Tutar
- Department of Chemistry, Department of Biochemistry and CUTFAM Research Center, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Türkan Haliloğlu
- Department of Chemical Engineering and Polymer Research Center, Boğaziçi University, Bebek, İstanbul, Turkey
- * E-mail:
| |
Collapse
|
30
|
Phosphorylation of the retinoic acid receptor alpha induces a mechanical allosteric regulation and changes in internal dynamics. PLoS Comput Biol 2013; 9:e1003012. [PMID: 23637584 PMCID: PMC3630199 DOI: 10.1371/journal.pcbi.1003012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/13/2013] [Indexed: 12/28/2022] Open
Abstract
Nuclear receptor proteins constitute a superfamily of proteins that function as ligand dependent transcription factors. They are implicated in the transcriptional cascades underlying many physiological phenomena, such as embryogenesis, cell growth and differentiation, and apoptosis, making them one of the major signal transduction paradigms in metazoans. Regulation of these receptors occurs through the binding of hormones, and in the case of the retinoic acid receptor (RAR), through the binding of retinoic acid (RA). In addition to this canonical scenario of RAR activity, recent discoveries have shown that RAR regulation also occurs as a result of phosphorylation. In fact, RA induces non-genomic effects, such as the activation of kinase signaling pathways, resulting in the phosphorylation of several targets including RARs themselves. In the case of RARα, phosphorylation of Ser369 located in loop L9–10 of the ligand-binding domain leads to an increase in the affinity for the protein cyclin H, which is part of the Cdk-activating kinase complex of the general transcription factor TFIIH. The cyclin H binding site in RARα is situated more than 40 Å from the phosphorylated serine. Using molecular dynamics simulations of the unphosphorylated and phosphorylated forms of the receptor RARα, we analyzed the structural implications of receptor phosphorylation, which led to the identification of a structural mechanism for the allosteric coupling between the two remote sites of interest. The results show that phosphorylation leads to a reorganization of a local salt bridge network, which induces changes in helix extension and orientation that affects the cyclin H binding site. This results in changes in conformation and flexibility of the latter. The high conservation of the residues implicated in this signal transduction suggests a mechanism that could be applied to other nuclear receptor proteins. Allosteric regulation of proteins is critically important in many biological processes. Here we focused on the allosteric pathway of communication within a ligand-regulated transcription factor, the Retinoic Acid Receptor (RAR). Recent experimental studies performed with the RARα subtype have shown that phosphorylation of a residue located at one extremity of an α-helix in RAR, leads to a changes in binding affinity at the other extremity of the same helix for cyclin H, a binding partner that is necessary for gene transcription activation. The purpose of our study was to understand the conformational changes occurring within the receptor upon phosphorylation. Molecular dynamics simulations are well suited for this sort of study. Through this approach, we were able to show that although the overall structure of the phosphorylated RAR shows no distinct difference from the unphosphorylated form, evidence is provided for an allosteric regulation pathway that implicates more subtle changes, such as changes in side chain orientations, which affect the internal dynamics of the receptor.
Collapse
|
31
|
Mitkevich VA, Shyp V, Petrushanko IY, Soosaar A, Atkinson GC, Tenson T, Makarov AA, Hauryliuk V. GTPases IF2 and EF-G bind GDP and the SRL RNA in a mutually exclusive manner. Sci Rep 2012; 2:843. [PMID: 23150791 PMCID: PMC3496166 DOI: 10.1038/srep00843] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/17/2012] [Indexed: 01/05/2023] Open
Abstract
Translational GTPases (trGTPases) are involved in all four stages of protein biosynthesis: initiation, elongation, termination and ribosome recycling. The trGTPases Initiation Factor 2 (IF2) and Elongation Factor G (EF-G) respectively orchestrate initiation complex formation and translocation of the peptidyl-tRNA:mRNA complex through the bacterial ribosome. The ribosome regulates the GTPase cycle and efficiently discriminates between the GDP- and GTP-bound forms of these proteins. Using Isothermal Titration Calorimetry, we have investigated interactions of IF2 and EF-G with the sarcin-ricin loop of the 23S rRNA, a crucial element of the GTPase-associated center of the ribosome. We show that binding of IF2 and EF-G to a 27 nucleotide RNA fragment mimicking the sarcin-ricin loop is mutually exclusive with that of GDP, but not of GTP, providing a mechanism for destabilization of the ribosome-bound GDP forms of translational GTPases.
Collapse
Affiliation(s)
- Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Montalvao RW, De Simone A, Vendruscolo M. Determination of structural fluctuations of proteins from structure-based calculations of residual dipolar couplings. JOURNAL OF BIOMOLECULAR NMR 2012; 53:281-292. [PMID: 22729708 DOI: 10.1007/s10858-012-9644-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 05/19/2012] [Indexed: 05/27/2023]
Abstract
Residual dipolar couplings (RDCs) have the potential of providing detailed information about the conformational fluctuations of proteins. It is very challenging, however, to extract such information because of the complex relationship between RDCs and protein structures. A promising approach to decode this relationship involves structure-based calculations of the alignment tensors of protein conformations. By implementing this strategy to generate structural restraints in molecular dynamics simulations we show that it is possible to extract effectively the information provided by RDCs about the conformational fluctuations in the native states of proteins. The approach that we present can be used in a wide range of alignment media, including Pf1, charged bicelles and gels. The accuracy of the method is demonstrated by the analysis of the Q factors for RDCs not used as restraints in the calculations, which are significantly lower than those corresponding to existing high-resolution structures and structural ensembles, hence showing that we capture effectively the contributions to RDCs from conformational fluctuations.
Collapse
Affiliation(s)
- Rinaldo W Montalvao
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
33
|
Abstract
Allostery is a fundamental process by which distant sites within a protein system sense each other. Allosteric regulation is such an efficient mechanism that it is used to control protein activity in most biological processes, including signal transduction, metabolism, catalysis, and gene regulation. Over recent years, our view and understanding of the fundamental principles underlying allostery have been enriched and often utterly reshaped. This has been especially so for powerful techniques such as nuclear magnetic resonance spectroscopy, which offers an atomic view of the intrinsic motions of proteins. Here, I discuss recent results on the catabolite activator protein (CAP) that have drastically revised our view about how allosteric interactions are modulated. CAP has provided the first experimentally identified system showing that (i) allostery can be mediated through changes in protein motions, in the absence of changes in the mean structure of the protein, and (ii) favorable changes in protein motions may activate allosteric proteins that are otherwise structurally inactive.
Collapse
Affiliation(s)
- Charalampos G Kalodimos
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA.
| |
Collapse
|
34
|
Masterson LR, Cembran A, Shi L, Veglia G. Allostery and binding cooperativity of the catalytic subunit of protein kinase A by NMR spectroscopy and molecular dynamics simulations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 87:363-89. [PMID: 22607761 DOI: 10.1016/b978-0-12-398312-1.00012-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The catalytic subunit of cAMP-dependent protein kinase A (PKA-C) is an exquisite example of a single molecule allosteric enzyme, where classical and modern views of allosteric signaling merge. In this chapter, we describe the mapping of PKA-C conformational dynamics and allosteric signaling in the free and bound states using a combination of NMR spectroscopy and molecular dynamics simulations. We show that ligand binding affects the enzyme's conformational dynamics, shaping the free-energy landscape toward the next stage of the catalytic cycle. While nucleotide and substrate binding enhance the enzyme's conformational entropy and define dynamically committed states, inhibitor binding attenuates the internal dynamics in favor of enthalpic interactions and delineates dynamically quenched states. These studies support a central role of conformational dynamics in many aspects of enzymatic turnover and suggest future avenues for controlling enzymatic function.
Collapse
Affiliation(s)
- Larry R Masterson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
35
|
De Simone A, Montalvao RW, Vendruscolo M. Determination of Conformational Equilibria in Proteins Using Residual Dipolar Couplings. J Chem Theory Comput 2011; 7:4189-4195. [PMID: 22180735 PMCID: PMC3236604 DOI: 10.1021/ct200361b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Indexed: 01/05/2023]
Abstract
In order to carry out their functions, proteins often undergo significant conformational fluctuations that enable them to interact with their partners. The accurate characterization of these motions is key in order to understand the mechanisms by which macromolecular recognition events take place. Nuclear magnetic resonance spectroscopy offers a variety of powerful methods to achieve this result. We discuss a method of using residual dipolar couplings as replica-averaged restraints in molecular dynamics simulations to determine large amplitude motions of proteins, including those involved in the conformational equilibria that are established through interconversions between different states. By applying this method to ribonuclease A, we show that it enables one to characterize the ample fluctuations in interdomain orientations expected to play an important functional role.
Collapse
|
36
|
|
37
|
Li P, Martins IRS, Rosen MK. The feasibility of parameterizing four-state equilibria using relaxation dispersion measurements. JOURNAL OF BIOMOLECULAR NMR 2011; 51:57-70. [PMID: 21947915 PMCID: PMC3229927 DOI: 10.1007/s10858-011-9541-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/07/2011] [Indexed: 05/03/2023]
Abstract
Coupled equilibria play important roles in controlling information flow in biochemical systems, including allosteric molecules and multidomain proteins. In the simplest case, two equilibria are coupled to produce four interconverting states. In this study, we assessed the feasibility of determining the degree of coupling between two equilibria in a four-state system via relaxation dispersion measurements. A major bottleneck in this effort is the lack of efficient approaches to data analysis. To this end, we designed a strategy to efficiently evaluate the smoothness of the target function surface (TFS). Using this approach, we found that the TFS is very rough when fitting benchmark CPMG data to all adjustable variables of the four-state equilibria. After constraining a portion of the adjustable variables, which can often be achieved through independent biochemical manipulation of the system, the smoothness of TFS improves dramatically, although it is still insufficient to pinpoint the solution. The four-state equilibria can be finally solved with further incorporation of independent chemical shift information that is readily available. We also used Monte Carlo simulations to evaluate how well each adjustable parameter can be determined in a large kinetic and thermodynamic parameter space and how much improvement can be achieved in defining the parameters through additional measurements. The results show that in favorable conditions the combination of relaxation dispersion and biochemical manipulation allow the four-state equilibrium to be parameterized, and thus coupling strength between two processes to be determined.
Collapse
Affiliation(s)
- Pilong Li
- Department of Biochemistry and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA.
| | | | | |
Collapse
|
38
|
Ma B, Tsai CJ, Haliloğlu T, Nussinov R. Dynamic allostery: linkers are not merely flexible. Structure 2011; 19:907-17. [PMID: 21742258 PMCID: PMC6361528 DOI: 10.1016/j.str.2011.06.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/05/2011] [Accepted: 06/07/2011] [Indexed: 12/19/2022]
Abstract
Most proteins consist of multiple domains. How do linkers efficiently transfer information between sites that are on different domains to activate the protein? Mere flexibility only implies that the conformations would be sampled. For fast timescales between triggering events and cellular response, which often involves large conformational change, flexibility on its own may not constitute a good solution. We posit that successive conformational states along major allosteric propagation pathways are pre-encoded in linker sequences where each state is encoded by the previous one. The barriers between these states that are hierarchically populated are lower, achieving faster timescales even for large conformational changes. We further propose that evolution has optimized the linker sequences and lengths for efficiency, which explains why mutations in linkers may affect protein function and review the literature in this light.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | - Türkan Haliloğlu
- Polymer Research Center and Chemical Engineering Department, Bogazici University, Bebek-Istanbul 34342, Turkey
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
39
|
Cavalli A, Montalvao RW, Vendruscolo M. Using Chemical Shifts to Determine Structural Changes in Proteins upon Complex Formation. J Phys Chem B 2011; 115:9491-4. [DOI: 10.1021/jp202647q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Andrea Cavalli
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Rinaldo W. Montalvao
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
40
|
|