1
|
Taylor AM, Sun JM, Yu A, Voicu H, Shen J, Barkauskas DA, Triche TJ, Gastier-Foster JM, Man TK, Lau CC. Integrated DNA Copy Number and Expression Profiling Identifies IGF1R as a Prognostic Biomarker in Pediatric Osteosarcoma. Int J Mol Sci 2022; 23:ijms23148036. [PMID: 35887382 PMCID: PMC9319262 DOI: 10.3390/ijms23148036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is a primary malignant bone tumor arising from bone-forming mesenchymal cells in children and adolescents. Despite efforts to understand the biology of the disease and identify novel therapeutics, the survival of osteosarcoma patients remains dismal. We have concurrently profiled the copy number and gene expression of 226 osteosarcoma samples as part of the Strategic Partnering to Evaluate Cancer Signatures (SPECS) initiative. Our results demonstrate the heterogeneous landscape of osteosarcoma in younger populations by showing the presence of genome-wide copy number abnormalities occurring both recurrently among samples and in a high frequency. Insulin growth factor receptor 1 (IGF1R) is a receptor tyrosine kinase which binds IGF1 and IGF2 to activate downstream pathways involved in cell apoptosis and proliferation. We identify prevalent amplification of IGF1R corresponding with increased gene expression in patients with poor survival outcomes. Our results substantiate previously tenuously associated copy number abnormalities identified in smaller datasets (13q34+, 20p13+, 4q35-, 20q13.33-), and indicate the significance of high fibroblast growth factor receptor 2 (FGFR2) expression in distinguishing patients with poor prognosis. FGFR2 is involved in cellular proliferation processes such as division, growth and angiogenesis. In summary, our findings demonstrate the prognostic significance of several genes associated with osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Aaron M. Taylor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiayi M. Sun
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander Yu
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Horatiu Voicu
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jianhe Shen
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Timothy J. Triche
- Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | | | - Tsz-Kwong Man
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ching C. Lau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-207-288-6000
| |
Collapse
|
2
|
Crowley F, Sterpi M, Buckley C, Margetich L, Handa S, Dovey Z. A Review of the Pathophysiological Mechanisms Underlying Castration-resistant Prostate Cancer. Res Rep Urol 2021; 13:457-472. [PMID: 34235102 PMCID: PMC8256377 DOI: 10.2147/rru.s264722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy or ADT is one of the cornerstones of management of locally advanced or metastatic prostate cancer, alongside radiation therapy. However, despite early response, most advanced prostate cancers progress into an androgen unresponsive or castrate resistant state, which hitherto remains an incurable entity and the second leading cause of cancer-related mortality in men in the US. Recent advances have uncovered multiple complex and intermingled mechanisms underlying this transformation. While most of these mechanisms revolve around androgen receptor (AR) signaling, novel pathways which act independently of the androgen axis are also being discovered. The aim of this article is to review the pathophysiological mechanisms that help bypass the apoptotic effects of ADT to create castrate resistance. The article discusses castrate resistance mechanisms under two categories: 1. Direct AR dependent pathways such as amplification or gain of function mutations in AR, development of functional splice variants, posttranslational regulation, and pro-oncogenic modulation in the expression of coactivators vs corepressors of AR. 2. Ancillary pathways involving RAS/MAP kinase, TGF-beta/SMAD pathway, FGF signaling, JAK/STAT pathway, Wnt-Beta catenin and hedgehog signaling as well as the role of cell adhesion molecules and G-protein coupled receptors. miRNAs are also briefly discussed. Understanding the mechanisms involved in the development and progression of castration-resistant prostate cancer is paramount to the development of targeted agents to overcome these mechanisms. A number of targeted agents are currently in development. As we strive for more personalized treatment across oncology care, treatment regimens will need to be tailored based on the type of CRPC and the underlying mechanism of castration resistance.
Collapse
Affiliation(s)
- Fionnuala Crowley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Michelle Sterpi
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Conor Buckley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Lauren Margetich
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Shivani Handa
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Zach Dovey
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
3
|
Epstein RJ, Tian LJ, Gu YF. 2b or Not 2b: How Opposing FGF Receptor Splice Variants Are Blocking Progress in Precision Oncology. JOURNAL OF ONCOLOGY 2021; 2021:9955456. [PMID: 34007277 PMCID: PMC8110382 DOI: 10.1155/2021/9955456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
More than ten thousand peer-reviewed studies have assessed the role of fibroblast growth factors (FGFs) and their receptors (FGFRs) in cancer, but few patients have yet benefited from drugs targeting this molecular family. Strategizing how best to use FGFR-targeted drugs is complicated by multiple variables, including RNA splicing events that alter the affinity of ligands for FGFRs and hence change the outcomes of stromal-epithelial interactions. The effects of splicing are most relevant to FGFR2; expression of the FGFR2b splice isoform can restore apoptotic sensitivity to cancer cells, whereas switching to FGFR2c may drive tumor progression by triggering epithelial-mesenchymal transition. The differentiating and regulatory actions of wild-type FGFR2b contrast with the proliferative actions of FGFR1 and FGFR3, and may be converted to mitogenicity either by splice switching or by silencing of tumor suppressor genes such as CDH1 or PTEN. Exclusive use of small-molecule pan-FGFR inhibitors may thus cause nonselective blockade of FGFR2 isoforms with opposing actions, undermining the rationale of FGFR2 drug targeting. This splice-dependent ability of FGFR2 to switch between tumor-suppressing and -driving functions highlights an unmet oncologic need for isoform-specific drug targeting, e.g., by antibody inhibition of ligand-FGFR2c binding, as well as for more nuanced molecular pathology prediction of FGFR2 actions in different stromal-tumor contexts.
Collapse
Affiliation(s)
- Richard J. Epstein
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
- Garvan Institute of Medical Research and UNSW Clinical School, 84 Victoria St, Darlinghurst 2010 Sydney, Australia
| | - Li Jun Tian
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| | - Yan Fei Gu
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| |
Collapse
|
4
|
Li Y, Meng L, Shi T, Ren J, Deng Q. Diagnosis and prognosis potential of four gene promoter hypermethylation in prostate cancer. Cell Biol Int 2020; 45:117-126. [PMID: 32991011 DOI: 10.1002/cbin.11474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/01/2020] [Accepted: 09/26/2020] [Indexed: 11/10/2022]
Abstract
The current prostate special antigen (PSA) test causes the overtreatment of indolent prostate cancer (PCa). It also increases the risk of delayed treatment of aggressive PCa. DNA methylation aberrations are important events for gene expression dysregulation during tumorigenesis and have been suggested as novel candidate biomarkers for PCa. This may improve the diagnosis and prognosis of PCa. This study assessed the differential methylation and messenger RNA (mRNA) expression between normal and PCa samples. Correlation between promoter methylation and mRNA expression was estimated using Pearson's correlation coefficients. Moreover, the diagnostic potential of candidate methylation markers was estimated by the receiver operating characteristic (ROC) curve using continuous beta values. Survival and Cox analysis was performed to evaluate the prognostic potential of the candidate methylation markers. A total of 359 hypermethylated sites 3435 hypomethylation sites, 483 upregulated genes, and 1341 downregulated genes were identified from The Cancer Genome Atlas database. Furthermore, 17 hypermethylated sites (covering 13 genes), including known genes associated with hypermethylation in PCa (e.g., AOX1 and C1orf114), showed high discrimination between adjacent normal tissues and PCa samples with the area under the ROC curve from 0.88 to 0.94. Notably, ANXA2, FGFR2, HAAO, and KCNE3 were identified as valuable prognostic markers of PCa through the Kaplan-Meier analysis. Using gene methylation as a continuous variable, four promoter hypermethylation was significantly associated with disease-free survival in univariate Cox regression and multivariate Cox regression. This study identified four novel diagnostic and prognostic markers for PCa. The markers provide important strategies for improving the timely diagnosis and prognosis of PCa.
Collapse
Affiliation(s)
- Yang Li
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingyin Meng
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tao Shi
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Ren
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Jun BG, Lee WC, Jang JY, Jeong SW, Chang Y, Lee SH, Kim YD, Kim SG, Cheon GJ, Kim YS, Kim HS, Jin SY. Relation of fibroblast growth factor receptor 2 expression to hepatocellular carcinoma recurrence after liver resection. PLoS One 2020; 15:e0227440. [PMID: 31940413 PMCID: PMC6961981 DOI: 10.1371/journal.pone.0227440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) recurrence after liver resection depends upon the stage and histological grade of the tumor and the expression of certain biomarkers. However, it remains unclear which of these factors has the highest predictive value regarding HCC recurrence after surgical resection. METHODS This study investigated the associations among clinicopathological characteristics, expression of biomarkers, and HCC recurrence after liver resection. Fifty-four patients having undergone liver resection for HCC were enrolled prospectively, and their data were analyzed retrospectively. Evaluated variables were clinical data, laboratory findings, modified Union for International Cancer Control (UICC) stage, vascular invasion, histological differentiation, and immunohistochemical staining for fibroblast growth factor receptor 2 (FGFR2), vascular endothelial growth factor, and tumor-necrosis-factor-related apoptosis-inducing ligand receptors 1 and 2. RESULTS Mean patient age was 58.6 years (range, 30-71), and the mean and SD for follow-up duration were 51.2 ± 34.8 months. Cumulative 1-, 3-, and 5-year recurrence rates were 32.9%, 53.6%, and 68.1%, respectively. In univariate analysis, FGFR2 (p = 0.026) and Edmonson-Steiner grade (E-S grade) (p = 0.030) were associated with recurrence after resection in HCC patients. In multivariate analyses, increased FGFR2 expression (p = 0.017) was the only significant predictor of HCC recurrence. CONCLUSIONS High FGFR2 expression had marginal association with poor E-S grade (p = 0.056). More intensive surveillance of HCC recurrence is warranted in HCC patients with increased FGFR2 expression.
Collapse
Affiliation(s)
- Baek Gyu Jun
- Department of Internal Medicine, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - Woong Cheul Lee
- Institute for Digestive Research, Digestive Disease Center, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Jae Young Jang
- Institute for Digestive Research, Digestive Disease Center, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Soung Won Jeong
- Institute for Digestive Research, Digestive Disease Center, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Young Chang
- Institute for Digestive Research, Digestive Disease Center, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Sae Hwan Lee
- Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Young don Kim
- Department of Internal Medicine, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, College of Medicine, Soonchunhyang University, Bucheon, Korea
| | - Gab Jin Cheon
- Department of Internal Medicine, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - Young Seok Kim
- Department of Internal Medicine, College of Medicine, Soonchunhyang University, Bucheon, Korea
| | - Hong Soo Kim
- Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - So Young Jin
- Department of Pathology, College of Medicine, Soonchunhyang University, Seoul, Korea
| |
Collapse
|
6
|
Teles SP, Oliveira P, Ferreira M, Carvalho J, Ferreira P, Oliveira C. Integrated Analysis of Structural Variation and RNA Expression of FGFR2 and Its Splicing Modulator ESRP1 Highlight the ESRP1amp- FGFR2norm- FGFR2-IIIchigh Axis in Diffuse Gastric Cancer. Cancers (Basel) 2019; 12:cancers12010070. [PMID: 31881796 PMCID: PMC7017189 DOI: 10.3390/cancers12010070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023] Open
Abstract
Gastric Cancer (GC) is one of the most common and deadliest types of cancer in the world. To improve GC prognosis, increasing efforts are being made to develop new targeted therapies. Although FGFR2 genetic amplification and protein overexpression in GC have been targeted in clinical trials, so far no improvement in patient overall survival has been found. To address this issue, we studied genetic and epigenetic events affecting FGFR2 and its splicing regulator ESRP1 in GC that could be used as new therapeutic targets or predictive biomarkers. We performed copy number variation (CNV), DNA methylation, and RNA expression analyses of FGFR2/ESRP1 across several cohorts. We discovered that both genes were frequently amplified and demethylated in GC, resulting in increased ESRP1 expression and of a specific FGFR2 isoform: FGFR2-IIIb. We also showed that ESRP1 amplification in GC correlated with a significant decreased expression of FGFR2-IIIc, an alternative FGFR2 splicing isoform. Furthermore, when we performed a survival analysis, we observed that patients harboring diffuse-type tumors with low FGFR2-IIIc expression revealed a better overall survival than patients with FGFR2-IIIc high-expressing diffuse tumors. Our results encourage further studies on the role of ESRP1 in GC and support FGFR2-IIIc as a relevant biomarker in GC.
Collapse
Affiliation(s)
- Sara Pinto Teles
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Master in Oncology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Patrícia Oliveira
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Marta Ferreira
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Carvalho
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Pedro Ferreira
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Department of Computer Science, Faculty of Sciences, University of Porto, Rua Campo Alegre 1021/1055, 4169-007 Porto, Portugal
| | - Carla Oliveira
- Ipatimup—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Department Pathology and Oncology Faculty of Medicine University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
7
|
Casadei C, Dizman N, Schepisi G, Cursano MC, Basso U, Santini D, Pal SK, De Giorgi U. Targeted therapies for advanced bladder cancer: new strategies with FGFR inhibitors. Ther Adv Med Oncol 2019; 11:1758835919890285. [PMID: 31803255 PMCID: PMC6878604 DOI: 10.1177/1758835919890285] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Inhibitors of fibroblast growth factor receptor (FGFR) represent an outstanding treatment approach for selected patients with urothelial cancer (UC). These agents are changing the clinical approach to a subgroup of UC, the luminal-papillary subtype, characterized by FGFR mutations, fusions, or amplification. In this review, we provide an overview of the results of recent clinical trials on FGFR tyrosine kinase inhibitors (TKIs) currently in clinical development for the treatment of UC: erdafitinib, rogaratinib, infigratinib, and the monoclonal antibody vofatamab. The Food and Drug Administration recently granted accelerated approval to erdafitinib for patients with advanced UC with alterations of FGFR2 or FGFR3 after progression on platinum-based chemotherapy. We also look at future therapeutic options of combination regimens with immune-checkpoint inhibitors as strategies for improving the antitumor effects of this class of drug, and for preventing or delaying the development of resistance.
Collapse
Affiliation(s)
- Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Nazli Dizman
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Umberto Basso
- Medical Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Sumanta K. Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Maroncelli 40, Meldola, 47014, Italy
| |
Collapse
|
8
|
Wang D, Yang L, Yu W, Zhang Y. Investigational fibroblast growth factor receptor 2 antagonists in early phase clinical trials to treat solid tumors. Expert Opin Investig Drugs 2019; 28:903-916. [PMID: 31560229 DOI: 10.1080/13543784.2019.1672655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Fibroblast growth factor receptor 2 (FGFR2) is a highly conserved transmembrane tyrosine kinase receptor. FGFR2 dysregulation occurs in numerous human solid tumors and overexpression is closely associated with tumor progression. FGFR2 has recently been reported as a therapeutic target for cancer. Several targeted therapies are being investigated to disrupt FGFR2 activity; these include multi-target tyrosine kinase inhibitors (TKIs), pan-FGFR targeted TKIs and FGFR2 monoclonal antibodies. Areas: This review examines FGFR2 regulation and function in cancer and its potential as a target for cancer treatment. Expert opinion: Highly specific FGFR2 blockers have not yet been developed and moreover, resistance to FGFR2-targeted therapies is a challenge. More sophisticated patient selection strategies would help improve FGFR2-targeted therapies and combination therapy is considered the most promising approach for cancer patients with FGFR2 alterations.
Collapse
Affiliation(s)
- Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Weina Yu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China.,School of Life Sciences, Zhengzhou University , Zhengzhou , Henan , P.R. China
| |
Collapse
|
9
|
Chen J, Hao P, Zheng T, Zhang Y. miR-628 reduces prostate cancer proliferation and invasion via the FGFR2 signaling pathway. Exp Ther Med 2019; 18:1005-1012. [PMID: 31316598 PMCID: PMC6601141 DOI: 10.3892/etm.2019.7682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
Recently, microRNA (miR)-628 was identified as a potential biomarker for several types of cancer, including prostate cancer (PCa). The aim of the present study was to investigate miR-628 expression and its underlying mechanism in PCa cell proliferation and invasion and the fibroblast growth factor receptor 2 (FGFR2) signaling pathway. The serum expression levels of miR-628, prostate-specific antigen, fibroblast growth factor 1, and FGFR2 were examined in patients with PCa. The relative expression levels of miR-628 and FGFR2 were determined by reverse transcription-quantitative polymerase chain reaction in PCa cells following transfection with miR-628-5p mimic or inhibitor. In addition, the protein expression level of FGFR2 was examined by western blot analysis following transfection with miR-628-5p mimic or inhibitor. Following bioinformatics analysis, dual-luciferase reporter assay was used to confirm the direct interaction between miR-628 and FGFR2. The current study demonstrated that the protein expression level of FGFR2 decreased following transfection with miR-628-5p mimic and increased following transfection with miR-628-5p inhibitor. Similarly, the proliferation and invasion of PCa cells were significantly enhanced following transfection with miR-628-5p inhibitor. By contrast, the proliferation and invasion of PCa cells were significantly inhibited following transfection with miR-628 mimic. Therefore, downregulating the expression level of miR-628 may increase the expression level of FGF in PCa, thereby promoting tumor proliferation and invasion. In conclusion, the FGF signaling pathway may be involved in promoting PCa cell proliferation and invasion. miR-628 may be a potential therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- Jun Chen
- Department of Urology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430033, P.R. China
| | - Peng Hao
- Department of Urology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430033, P.R. China
| | - Tao Zheng
- Department of Urology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430033, P.R. China
| | - Yong Zhang
- Department of Urology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan 430033, P.R. China
| |
Collapse
|
10
|
Patel A, Tripathi G, McTernan P, Gopalakrishnan K, Ali O, Spector E, Williams N, Arasaradnam RP. Fibroblast growth factor 7 signalling is disrupted in colorectal cancer and is a potential marker of field cancerisation. J Gastrointest Oncol 2019; 10:429-436. [PMID: 31183192 DOI: 10.21037/jgo.2019.02.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Field cancerisation proposes that there are pre-malignant genetic mutations in the macroscopically normal mucosal tissue around colorectal cancer. This study aims to evaluate fibroblast growth factor 7 (FGF7) tissue expression in the mucosal field around colorectal cancer. Methods Gene and protein expression of FGF7, its receptor, FGFR2 and its downstream targets; FRS2α, Erk 1/2 and Akt was measured from mucosal samples in 34 control subjects and 17 cancer patients. Serial samples from tumour, adjacent to tumour and at the resection margin were utilised. Results FGF7 gene expression was significantly higher in tumour (2.3-fold), adjacent mucosa (3.2-fold) and resection margin (2.8-fold) of cancer patients compared with control subjects (P<0.01 respectively). However, FGFR2 was down regulated (3.5-fold) in the tumour tissue (P<0.001). Protein expression of FRS2α and Akt was significantly lower in tumour tissue compared with the resection margin in cancer patients (P<0.05 respectively). No differences in protein expression of Erk 1/2 were detected. Conclusions FGF7 was elevated in the mucosal field of cancer patients supporting its potential as a biomarker of field cancerisation. Changes in FRS2α, Akt and Erk 1/2 expression in the tumour tissue indicate that with malignant transformation, FGF7 loses its ability to regulate cellular differentiation.
Collapse
Affiliation(s)
- Abhilasha Patel
- Department of Colorectal Surgery, University Hospitals of Coventry and Warwickshire NHS Trust, Coventry, UK.,Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | - Kishore Gopalakrishnan
- Department of Pathology, University Hospitals of Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Omar Ali
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Emma Spector
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Nigel Williams
- Department of Colorectal Surgery, University Hospitals of Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Ramesh P Arasaradnam
- Warwick Medical School, University of Warwick, Coventry, UK.,Department of Gastroenterology, University Hospitals of Coventry and Warwickshire NHS Trust, Coventry, UK.,University of Coventry, Coventry, UK.,University of Leicester, Leicester, UK
| |
Collapse
|
11
|
Nuclear FGFR2 negatively regulates hypoxia-induced cell invasion in prostate cancer by interacting with HIF-1 and HIF-2. Sci Rep 2019; 9:3480. [PMID: 30837551 PMCID: PMC6401139 DOI: 10.1038/s41598-019-39843-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
The fibroblast growth factor receptor 2 (FGFR2) is a membrane receptor that promotes cell proliferation and differentiation. FGFR2 is also present in the nucleus, which raises a question on a new role of FGFR2 in regulating gene expression. Hypoxia-inducible factors 1 and 2 (HIF-1 and HIF-2) are nuclear proteins that transactivate many genes essential for cancer survival and metastasis under hypoxic conditions. Here, we investigated if nuclear FGFR2 modulates the HIF-driven hypoxic response. Using the TCGA database, we found that FGFR2 downregulation is associated with poor prognosis in prostate cancer. A gene-set enrichment analysis showed that metastasis- and hypoxia-related genes are associated with a low expression of FGFR2 in prostate cancer. Thus, we tested the possibility that FGFR2 negatively regulates the hypoxia-triggered metastasis of prostate cancer. FGFR2 controls migration and invasion of prostate cancer cells under hypoxia by inhibiting the HIF-driven gene expression. FGFR2 and HIF proteins co-localize and associate in the nucleus under hypoxia. FGFR2 interacts with the transactivation domain of HIF-1α and blocks the recruitment of coactivator p300, resulting in repression of HIF target genes. Based on these results, we propose a novel function of FGFR2 as a metastasis suppressor by controlling HIF-mediated hypoxic responses.
Collapse
|
12
|
Wei W, Liu W, Serra S, Asa SL, Ezzat S. The breast cancer susceptibility FGFR2 provides an alternate mode of HER2 activation. Oncogene 2015:onc2014440. [PMID: 25639874 DOI: 10.1038/onc.2014.440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/05/2014] [Accepted: 12/05/2014] [Indexed: 01/22/2023]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) has been shown reproducibly in genome-wide association studies to be associated with increased breast cancer risk. Here we show that mouse mammary tumor virus-neu mice develop breast carcinomas with FGFR2 immunoreactivity that parallels HER2 expression. FGFR2 signaling promotes HER2 shedding through the metalloprotease ADAM10 leading to intracellular accumulation of the truncated p95HER2 protein. This is accompanied by enhanced HER2 signaling and diminished sensitivity to trastuzumab. Functionally, FGFR2 facilitates HER2-mediated cell proliferation, acinar growth in three-dimensional morphogenesis assays and promotes tumor progression in mouse xenografts. These data implicate FGFR2 in a novel mechanism of ErbB activation and demonstrate an important interaction between FGFR2 and HER2 in promoting breast cancer progression.Oncogene advance online publication, 2 February 2015; doi:10.1038/onc.2014.440.
Collapse
Affiliation(s)
- W Wei
- 1] Department of Medicine, University Health Network, Toronto, Ontario, Canada [2] Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - W Liu
- 1] Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada [2] Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - S Serra
- 1] Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada [2] Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - S L Asa
- 1] Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada [2] Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - S Ezzat
- 1] Department of Medicine, University Health Network, Toronto, Ontario, Canada [2] Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Lee JY, Kim SY, Mo EY, Kim ES, Han JH, Maeng LS, Lee AH, Eun JW, Nam SW, Moon SD. Upregulation of FGFR1 expression is associated with parathyroid carcinogenesis in HPT-JT syndrome due to an HRPT2 splicing mutation. Int J Oncol 2014; 45:641-50. [PMID: 24889687 DOI: 10.3892/ijo.2014.2477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/26/2014] [Indexed: 11/06/2022] Open
Abstract
Mutations of the HRPT2 gene, which are responsible for hyperparathyroidism-jaw tumor (HPT-JT) syndrome, have been implicated in the development of a high proportion of parathyroid carcinomas. The aim of this study was to investigate differences in expression of the most important genes connected with parathyroid carcinoma between HPT-JT syndrome due to an HRPT2 splicing mutation, normal parathyroid tissue and sporadic parathyroid adenoma. Total RNAs were extracted from parathyroid carcinoma in HPT-JT syndrome harbouring HRPT2 splicing mutation or sporadic parathyroid adenoma and normal parathyroid gland, and subjected to Illumina DASL-based gene expression assay. Unsupervised hierarchical clustering analysis was used to compare gene expression in HPT-JT syndrome, sporadic parathyroid adenoma and normal parathyroid glands. We identified differentially regulated genes in HPT-JT syndrome and sporadic parathyroid adenoma relative to normal parathyroid glands using a combination of Welch's t-test and fold-change analysis. Quantitative PCR, RT-PCR and IHC were used for validation. Sixteen genes differentially regulated in the parathyroid carcinoma were associated with signal pathways, MAPK, regulation of actin cytoskeleton, prostate cancer and apoptosis. FGFR1 expression was confirmed to be significantly upregulated by validation experiments. Our gene expression profiling experiments suggest that upregulated FGFR1 expression appears to be associated with parathyroid carcinoma in HPT-JT syndrome due to an HRPT2 splicing mutation.
Collapse
Affiliation(s)
- Ji-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Su Yeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Eun-Yeong Mo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Eun-Sook Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Je-Ho Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Lee-So Maeng
- Department of Hospital Pathology, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - An-Hee Lee
- Department of Hospital Pathology, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Jung Woo Eun
- Department of Pathology, Microdissection Genomics Research Center, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Suk Woo Nam
- Department of Pathology, Microdissection Genomics Research Center, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Sung-Dae Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| |
Collapse
|
14
|
Shoji K, Teishima J, Hayashi T, Ohara S, Mckeehan WL, Matsubara A. Restoration of fibroblast growth factor receptor 2IIIb enhances the chemosensitivity of human prostate cancer cells. Oncol Rep 2014; 32:65-70. [PMID: 24839986 DOI: 10.3892/or.2014.3200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/23/2014] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is thought to mediate an important signaling pathway between prostate epithelial cells and stromal cells for maintenance of homeostasis in normal prostate tissue. Abnormalities of FGFR2 have been shown in advanced prostate cancer or prostate cancer cell lines, and we previously demonstrated the tumor-suppressive effects of the restoration of FGFR2IIIb in prostate cancer cells. The aim of the present study was to determine whether FGFR2IIIb plays a role in the chemosensitivity of castration-resistant prostate cancer cells. A clonal line of PC-3 cells expressing FGFR2IIIb (PC-3R2IIIb) was established by transfection with an IRESneo2-expressing vector bearing FGFR2IIIb cDNA. The effects of chemotherapeutic agents (docetaxel, cisplatin, 5-fluorouracil and zoledronic acid) on cell viability and apoptosis were examined by MTT assay and western blot analysis, respectively. Expression levels of molecules that were markers of epithelial-to-mesenchymal transition and chemosensitivity-related proteins were assessed by western blot analysis. Viability of the PC-3R2IIIb cells was significantly lower than that of the control PC-3 cells transfected with the vector alone (PC-3neo), and viability was further suppressed by treatment with chemotherapeutic agents, particularly docetaxel. Induced expression of caspase-3 was evident in the PC-3R2IIIb cells and was further enhanced by treatment with docetaxel. Expression of N-cadherin, vimentin, survivin and XIAP was lower in the PC-3R2IIIb cells than that in the PC-3neo cells. In contrast, expression of p21 was higher in the PC-3R2IIIb cells than that in the control PC-3neo cells. These data indicate that restoration of FGFR2IIIb in castration-resistant prostate cancer cells may reverse some of the epithelial-to-mesenchymal cell properties characteristic of tumor cells and induce in part mesenchymal-to-epithelial transition properties. This together with enhancement of apoptotic pathways involving caspase-3 may enhance chemosensitivity particularly to docetaxel which is widely used in the treatment of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Koichi Shoji
- Department of Urology, Institute of Biomedical and Health Sciences, Integrated Health Science, Hiroshima University, Hiroshima 734-8551, Japan
| | - Jun Teishima
- Department of Urology, Institute of Biomedical and Health Sciences, Integrated Health Science, Hiroshima University, Hiroshima 734-8551, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Institute of Biomedical and Health Sciences, Integrated Health Science, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shinya Ohara
- Department of Urology, Institute of Biomedical and Health Sciences, Integrated Health Science, Hiroshima University, Hiroshima 734-8551, Japan
| | - Wallace L Mckeehan
- Center for Cancer and Stem Cell Biology, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Akio Matsubara
- Department of Urology, Institute of Biomedical and Health Sciences, Integrated Health Science, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
15
|
Meyer AN, Drafahl KA, McAndrew CW, Gilda JE, Gallo LH, Haas M, Brill LM, Donoghue DJ. Tyrosine phosphorylation allows integration of multiple signaling inputs by IKKβ. PLoS One 2014; 8:e84497. [PMID: 24386391 PMCID: PMC3873999 DOI: 10.1371/journal.pone.0084497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
Signaling regulated by NFκB and related transcription factors is centrally important to many inflammatory and autoimmune diseases, cancer, and stress responses. The kinase that directly regulates the canonical NFκB transcriptional pathway, Inhibitor of κB kinase β (IKKβ), undergoes activation by Ser phosphorylation mediated by NIK or TAK1 in response to inflammatory signals. Using titanium dioxide-based phosphopeptide enrichment (TiO2)-liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS), we analyzed IKKβ phosphorylation in human HEK293 cells expressing IKKβ and FGFR2, a Receptor tyrosine kinase (RTK) essential for embryonic differentiation and dysregulated in several cancers. We attained unusually high coverage of IKKβ, identifying an abundant site of Tyr phosphorylation at Tyr169 within the Activation Loop. The phosphomimic at this site confers a level of kinase activation and NFκB nuclear localization exceeding the iconic mutant S177E/S181E, demonstrating that RTK-mediated Tyr phosphorylation of IKKβ has the potential to directly regulate NFκB transcriptional activation.
Collapse
Affiliation(s)
- April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Kristine A. Drafahl
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Christopher W. McAndrew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Jennifer E. Gilda
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Leandro H. Gallo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Martin Haas
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Laurence M. Brill
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
- *
| |
Collapse
|
16
|
Zhou D, Jiang X, Ding W, Zheng L, Yang L, Zheng C, Lu L. siRNA-participated chemotherapy: an efficient and specific therapeutic against gastric cancer. J Cancer Res Clin Oncol 2013; 139:2057-70. [PMID: 24077839 DOI: 10.1007/s00432-013-1492-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE This study aims to investigate the role of siRNA silencing fibroblast growth factor receptor (FGFR) expression in promoting chemotherapy effect of gastric cancer and to explore its mechanism. METHODS Human gastric cancer cells MGC80-3 were divided into four groups: control group, cisplatin group (2 μg/L), cisplatin (2 μg/L) + siRNA group and siRNA group. The expressions of FGFR in four groups were detected by immunofluorescence. The cell proliferation and apoptosis were detected by MTT assay and flow cytometry. The protein expression levels of vascular endothelial growth factor receptor (VEGFR), caspase-3 and Bax were detected by Western blot. Further, animal model of gastric cancer was established and divided into four groups as in vitro experiment. The expression of FGFR mRNA in tumor tissue was detected by the real-time fluorescence quantitative polymerase chain reaction. The size of tumor was measured to analyze the effects of treatment. Histopathological detections were performed by hematoxylin and eosin staining and immunohistochemistry. RESULTS For in vitro experiment, significant decrease inFGFR expression, inhibition of proliferation and promotion of apoptosis were observed in siRNA-treated cells, so as cisplatin group. siRNA also resulted in the reduction of VEGFR and rise in apoptosis-related protein (caspase-3). As for the experiment in vivo, siRNA also suppressed the expression of FGFR and enhanced tumor shrink. Furthermore, the co-administration of siRNA and cisplatin revealed a more excellent antitumor effect than other therapies. CONCLUSIONS siRNA can effectively suppress FGFR expression and cell proliferation, but promote apoptosis in vitro and also inhibit tumor growth and FGFR production in vivo. siRNA-participated chemotherapy may provide an efficient therapeutic approach to treat gastric cancer.
Collapse
Affiliation(s)
- Donglei Zhou
- General Surgery Department, The Tenth People's Hospital Affiliated to Tongji University, No. 301 Yanchang Middle Road, Zhabei District, Shanghai 200072, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Micocci KC, Martin ACBM, Montenegro CDF, Durante AC, Pouliot N, Cominetti MR, Selistre-de-Araujo HS. ADAM9 silencing inhibits breast tumor cell invasion in vitro. Biochimie 2013; 95:1371-8. [PMID: 23499592 DOI: 10.1016/j.biochi.2013.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/03/2013] [Indexed: 11/18/2022]
Abstract
ADAM9 (A Disintegrin And Metalloproteinase 9) is a member of the ADAM protein family which contains a disintegrin domain. This protein family plays key roles in many physiological processes, including fertilization, migration, and cell survival. The ADAM proteins have also been implicated in various diseases, including cancer. Specifically, ADAM9 has been suggested to be involved in metastasis. To address this question, we generated ADAM9 knockdown clones of MDA-MB-231 breast tumor cells using silencing RNAs that were tested for cell adhesion, proliferation, migration and invasion assays. In RNAi-mediated ADAM9 silenced MDA-MB-231 cells, the expression of ADAM9 was lower from the third to the sixth day after silencing and inhibited tumor cell invasion in matrigel by approximately 72% when compared to control cells, without affecting cell adhesion, proliferation or migration. In conclusion, the generation of MDA-MB-231 knockdown clones lacking ADAM9 expression inhibited tumor cell invasion in vitro, suggesting that ADAM9 is an important molecule in the processes of invasion and metastasis.
Collapse
Affiliation(s)
- Kelli Cristina Micocci
- Departamento de Ciências Fisiológicas, Rodovia Washington Luís, Km 235, CEP 13565-905, São Carlos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Transcriptome-wide detection of differentially expressed coding and non-coding transcripts and their clinical significance in prostate cancer. JOURNAL OF ONCOLOGY 2012; 2012:541353. [PMID: 22956952 PMCID: PMC3431106 DOI: 10.1155/2012/541353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/30/2012] [Indexed: 12/22/2022]
Abstract
Prostate cancer is a clinically and biologically heterogeneous disease. Deregulation of splice variants has been shown to contribute significantly to this complexity. High-throughput technologies such as oligonucleotide microarrays allow for the detection of transcripts that play a role in disease progression in a transcriptome-wide level. In this study, we use a publicly available dataset of normal adjacent, primary tumor, and metastatic prostate cancer samples (GSE21034) to detect differentially expressed coding and non-coding transcripts between these disease states. To achieve this, we focus on transcript-specific probe selection regions, that is, those probe sets that correspond unambiguously to a single transcript. Based on this, we are able to pinpoint at the transcript-specific level transcripts that are differentially expressed throughout prostate cancer progression. We confirm previously reported cases and find novel transcripts for which no prior implication in prostate cancer progression has been made. Furthermore, we show that transcript-specific differential expression has unique prognostic potential and provides a clinically significant source of biomarker signatures for prostate cancer risk stratification. The results presented here serve as a catalog of differentially expressed transcript-specific markers throughout prostate cancer progression that can be used as basis for further development and translation into the clinic.
Collapse
|
19
|
Feng S, Shao L, Yu W, Gavine P, Ittmann M. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression. Clin Cancer Res 2012; 18:3880-8. [PMID: 22573348 DOI: 10.1158/1078-0432.ccr-11-3214] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. EXPERIMENTAL DESIGN Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. RESULTS AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. CONCLUSIONS Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.
Collapse
Affiliation(s)
- Shu Feng
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
20
|
Guo M, Liu W, Serra S, Asa SL, Ezzat S. FGFR2 isoforms support epithelial-stromal interactions in thyroid cancer progression. Cancer Res 2012; 72:2017-27. [PMID: 22345151 DOI: 10.1158/0008-5472.can-11-3985] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alternate splicing yields two distinct isoforms of the fibroblast growth factor (FGF) receptor FGFR2-IIIb and FGFR2-IIIc varying their extracellular structure in human thyroid cancer, in which FGFR expression is commonly dysregulated. In this study, we characterized the function of these variants in modulating thyroid cancer behavior. Enforced expression of either FGFR2-IIIb or FGFR2-IIIc in thyroid epithelial cancer cells reduced expression of fibronectin, MAGE-A3 and MMP9, while increasing p21 and enhancing Rb dephosphorylation. Consistent with these tumor-suppressive properties, FGFR2-IIIb and FGFR2-IIIc each diminished invasive behavior in vitro and reduced tumor growth and metastasis in vivo. Notably, these effects contrasted with those produced by expression of these FGFR isoforms in fibroblasts, in which they both stimulated cell growth. Moreover, in xenograft tumors generated by coimplantation of epithelial and fibroblast cells expressing that same isoform, there was no significant effect on tumor progression. Conversely, FGFR2-IIIb expression in epithelial cells yielded higher FGF4/FGF7 expression that, in the presence of FGFR2-IIIc-expressing fibroblasts, enhanced tumor progression. Together, our findings highlight the importance of cellular context in assigning growth properties to growth factor receptor isoforms. More specifically, they show how alternative splicing of FGFR2 yields heteroisoforms critical to the growth-promoting actions of FGFs that exert distinct epithelial-stromal effects in thyroid cancer.
Collapse
Affiliation(s)
- Miao Guo
- The Ontario Cancer Institute, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Ahmad I, Iwata T, Leung HY. Mechanisms of FGFR-mediated carcinogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:850-60. [PMID: 22273505 DOI: 10.1016/j.bbamcr.2012.01.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 12/11/2022]
Abstract
In this review, the evidence for a role of fibroblast growth factor receptor (FGFR) mediated signalling in carcinogenesis are considered and relevant underlying mechanisms highlighted. FGF signalling mediated by FGFR follows a classic receptor tyrosine kinase signalling pathway and its deregulation at various points of its cascade could result in malignancy. Here we review the accumulating reports that revealed the association of FGF/FGFRs to various types of cancer at a genetic level, along with in vitro and in vivo evidences available so far, which indicates the functional involvement of FGF signalling in tumour formation and progression. An increasing number of drugs against the FGF pathways is currently in clinical testing. We will discuss the strategies for future FGF research in cancer and translational approaches.
Collapse
Affiliation(s)
- Imran Ahmad
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
22
|
Valencia T, Joseph A, Kachroo N, Darby S, Meakin S, Gnanapragasam VJ. Role and expression of FRS2 and FRS3 in prostate cancer. BMC Cancer 2011; 11:484. [PMID: 22078327 PMCID: PMC3231952 DOI: 10.1186/1471-2407-11-484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/11/2011] [Indexed: 12/25/2022] Open
Abstract
Background FGF receptor substrates (FRS2 and FRS3) are key adaptor proteins that mediate FGF-FGFR signalling in benign as well as malignant tissue. Here we investigated FRS2 and FRS3 as a means of disrupting global FGF signalling in prostate cancer. Methods FRS2 and FRS3 manipulation was investigated in vitro using over-expression, knockdown and functional assays. FRS2 and FRS3 expression was profiled in cell lines and clinical tumors of different grades. Results In a panel of cell lines we observed ubiquitous FRS2 and FRS3 transcript and protein expression in both benign and malignant cells. We next tested functional redundancy of FRS2 and FRS3 in prostate cancer cells. In DU145 cells, specific FRS2 suppression inhibited FGF induced signalling. This effect was not apparent in cells stably over-expressing FRS3. Indeed FRS3 over-expression resulted in enhanced proliferation (p = 0.005) compared to control cells. Given this functional redundancy, we tested the therapeutic principle of dual targeting of FRS2 and FRS3 in prostate cancer. Co-suppression of FRS2 and FRS3 significantly inhibited ERK activation with a concomitant reduction in cell proliferation (p < 0.05), migration and invasion (p < 0.05). Synchronous knockdown of FRS2 and FRS3 with exposure to cytotoxic irradiation resulted in a significant reduction in prostate cancer cell survival compared to irradiation alone (p < 0.05). Importantly, this synergistic effect was not observed in benign cells. Finally, we investigated expression of FRS2 and FRS3 transcript in a cohort of micro-dissected tumors of different grades as well as by immunohistochemistry in clinical biopsies. Here, we did not observe any difference in expression between benign and malignant biopsies. Conclusions These results suggest functional overlap of FRS2 and FRS3 in mediating mitogenic FGF signalling in the prostate. FRS2 and FRS3 are not over-expressed in tumours but targeted dual inhibition may selectively adversely affect malignant but not benign prostate cells.
Collapse
Affiliation(s)
- Tania Valencia
- Translational Prostate Cancer Group, Department of Oncology, Hutchison/MRC research centre, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
23
|
Kobayashi M, Huang Y, Jin C, Luo Y, Okamoto T, Wang F, McKeehan WL. FGFR1 abrogates inhibitory effect of androgen receptor concurrent with induction of androgen-receptor variants in androgen receptor-negative prostate tumor epithelial cells. Prostate 2011; 71:1691-700. [PMID: 21446013 PMCID: PMC3513346 DOI: 10.1002/pros.21386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/24/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND Despite dramatic positive effects, there is evidence that the androgen receptor (AR) may negatively influence prostate tumor progression. Understanding the AR repressor function and how it is subverted is of particular importance in anti-androgen and AR intervention strategies. METHODS AR, resident FGFR2IIIb, and ectopic FGFR1 were expressed by transfection in the AR-negative epithelial cell line DTE that predominates in cell culture of AR-positive androgen-responsive model Dunning R3327 rat prostate tumors. Androgen-responsiveness at transcription was measured by a luciferase reporter. Cell population growth rates were assessed by cell counts, DNA synthesis, and expression of cell cycle genes. AR variants (ARVs) were assessed by immunochemistry and nuclease protection of mRNA. RESULTS Expression of AR inhibited cell population growth of AR-negative DTE cells at the G1-S phase of the cell cycle. Ectopic FGFR1, but not resident FGFR2IIIb abrogated the growth inhibitory effects of AR. Appearance of ARVs was coincident with co-expression of FGFR1 and AR and abrogation of the AR-dependent inhibition of cell growth. CONCLUSIONS DTE cells may represent non-malignant AR-negative progenitors whose population is restricted by activation of AR in vivo. Ectopic expression of epithelial FGFR1, a common observation in tumors, overrides the inhibition of AR and thus may contribute to evolution of androgen and AR independent tumors. These results are consistent with the notion that some tumor cells are negatively restricted by AR and are unleased by androgen-deprivation or ectopic expression of FGFR1. ARV's may play a role in the bypass of the negative restrictions of AR.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic
- Genetic Variation
- Immunohistochemistry
- Male
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Protein Isoforms
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Rats
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Masashi Kobayashi
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yanqing Huang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Chengliu Jin
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Yongde Luo
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Wallace L. McKeehan
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| |
Collapse
|
24
|
Kasaian K, Jones SJ. A new frontier in personalized cancer therapy: mapping molecular changes. Future Oncol 2011; 7:873-94. [PMID: 21732758 DOI: 10.2217/fon.11.63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in the genome of a normal cell can affect the function of its many genes and pathways. These alterations could eventually transform the cell from a normal to a malignant state by allowing an uncontrolled proliferation of the cell and formation of a cancer tumor. Each tumor in an individual patient can have hundreds of mutated genes and perturbed pathways. Cancers clinically presenting as the same type or subtype could potentially be very different at the molecular level and thus behave differently in response to therapy. The challenge is to distinguish the key mutations driving the cancer from the background of mutational noise and find ways to effectively target them. The promise is that such a molecular approach to classifying cancer will lead to better diagnostic, prognostic and personalized treatment strategies. This article provides an overview of advances in the molecular characterization of cancers and their applications in therapy.
Collapse
Affiliation(s)
- Katayoon Kasaian
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | |
Collapse
|
25
|
Zuiverloon TCM, Boormans JL, Trapman J, van Leenders GJLH, Zwarthoff EC. No evidence of FGFR3 mutations in prostate cancer. Prostate 2011; 71:637-41. [PMID: 20957671 DOI: 10.1002/pros.21279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/27/2010] [Indexed: 11/09/2022]
Abstract
BACKGROUND FGFR3 mutations are associated with a good clinical disease course in bladder tumors. Currently, prognostic markers to stratify prostate cancer (PCa) patients for conservative management are lacking. Conflicting results have been found on the presence of FGFR3 mutations in PCa. Our objective was to determine the prevalence of FGFR3 mutations in a subset of prostate tumors. Next, determine the prevalence of FGFR3 mutations in PCa patients with coexistent tumors in other tissues. METHODS Primary and locally advanced prostate tumors (n =132) were collected at our medical center. From the 132 PCa patients, 28 (21%) were diagnosed with coexistent primary tumors (bladder, skin, pancreas, renal cell, gastric, colon, hepatic, and lung). Tumors were analyzed by FGFR3 mutation analysis on exon 7, 10, and 15, known to harbor the most frequent mutations. RESULTS The prevalence of FGFR3 mutations in patients with only PCa was 0%. Most PCa patients presented with coexistent bladder (n=12) and bladder and skin tumors (n =7). Other coexistent tumors in PCa patients included: bladder and pancreatic cancer (n=1); bladder and renal cell carcinoma (n=1); bladder and gastric carcinoma (n=1); skin cancer (n=1); colon cancer (n= 3); hepatic carcinoma (n=1); and lung cancer (n = 1). FGFR3 mutations were detected in 9/15 (60%) analyzed bladder tumors. CONCLUSIONS FGFR3 mutations were absent in the investigated prostate tumors, suggesting a minor role of these mutations in tumorigenesis. Hence, FGFR3 mutation analysis is not suitable to select patients for conservative management. Interestingly, if a prostate tumor coincided with other tumors these were mostly bladder and skin.
Collapse
|
26
|
Fernandez-Costa JM, Llamusi MB, Garcia-Lopez A, Artero R. Alternative splicing regulation by Muscleblind proteins: from development to disease. Biol Rev Camb Philos Soc 2011; 86:947-58. [PMID: 21489124 DOI: 10.1111/j.1469-185x.2011.00180.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulated use of exons in pre-mRNAs, a process known as alternative splicing, strongly contributes to proteome diversity. Alternative splicing is finely regulated by factors that bind specific sequences within the precursor mRNAs. Members of the Muscleblind (Mbl) family of splicing factors control critical exon use changes during the development of specific tissues, particularly heart and skeletal muscle. Muscleblind homologs are only found in metazoans from Nematoda to mammals. Splicing targets and recognition mechanisms are also conserved through evolution. In this recognition, Muscleblind CCCH-type zinc finger domains bind to intronic motifs in pre-mRNA targets in which the protein can either activate or repress splicing of nearby exons, depending on the localization of the binding motifs relative to the regulated alternative exon. In humans, the Muscleblind-like 1 (MBNL1) proteins play a critical role in hereditary diseases caused by microsatellite expansions, particularly myotonic dystrophy type 1 (DM1), in which depletion of MBNL1 activity through sequestration explains most misregulated alternative splicing events, at least in murine models. Because of the involvement of these proteins in human diseases, further understanding of the molecular mechanisms by which MBNL1 regulates splicing will help design therapies to revert pathological splicing alterations. Here we summarize the most relevant findings on this family of proteins in recent years, focusing on recently described functional motifs, transcriptional regulation of Muscleblind, regulatory activity on splicing, and involvement in human diseases.
Collapse
|
27
|
Haugsten EM, Wiedlocha A, Olsnes S, Wesche J. Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res 2010; 8:1439-52. [PMID: 21047773 DOI: 10.1158/1541-7786.mcr-10-0168] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fibroblast growth factor receptors (FGFR) play essential roles both during development and in the adult. Upon ligand binding, FGFRs induce intracellular signaling networks that tightly regulate key biological processes, such as cell proliferation, survival, migration, and differentiation. Deregulation of FGFR signaling can thus alter tissue homeostasis and has been associated with several developmental syndromes as well as with many types of cancer. In human cancer, FGFRs have been found to be deregulated by multiple mechanisms, including aberrant expression, mutations, chromosomal rearrangements, and amplifications. In this review, we will give an overview of the main FGFR alterations described in human cancer to date and discuss their contribution to cancer progression.
Collapse
Affiliation(s)
- Ellen Margrethe Haugsten
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | | | | | |
Collapse
|
28
|
Zhang K, Hansen PJ, Ealy AD. Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro. Reproduction 2010; 140:815-26. [PMID: 20876224 DOI: 10.1530/rep-10-0190] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability of oocytes to resume meiosis, become fertilized, and generate viable pregnancies is controlled during folliculogenesis by several endocrine and paracrine factors. The aim of this work is to determine whether fibroblast growth factor 10 (FGF10) is an oocyte competent factor. Transcripts for each of the four FGF receptor types (FGFR) were present in cumulus and oocytes after their extraction from the follicles. FGFR1 transcripts predominated in cumulus cells whereas FGFR2 was most abundant in oocytes. Exposing the cumulus-oocyte complexes to FGF10 during in vitro maturation did not affect cleavage rates, but increases (P<0.05) in the percentage of embryos at the 8-16-cell stage on day 3 and at the blastocyst stage on day 7, which were evident in FGF10-supplemented oocytes. The progression of oocytes through meiosis and cumulus expansion was increased (P<0.05) by FGF10. The importance of the endogenous sources of FGFs was examined by adding anti-FGF10 IgG during oocyte maturation. Blocking endogenous FGF10 activity decreased (P<0.05) the percentage of oocytes developing into blastocysts and limited (P<0.05) cumulus expansion. Expression profiles of putative cumulus and oocyte competency markers were examined for their involvement in FGF10-mediated responses. FGF10 influenced the expression of CTSB and SPRY2 in cumulus cells and BMP15 in oocytes. In summary, this work provides new insight into the importance of FGFRs and locally derived FGF10 during oocyte maturation in cattle. Its subsequent impact on in vitro embryo development implicates it as a noteworthy oocyte competent factor.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, PO Box 110910, Gainesville, Florida 32611-0910, USA
| | | | | |
Collapse
|
29
|
Abstract
The FGFs (fibroblast growth factors) regulate a broad spectrum of biological activities by activating transmembrane FGFR (FGF receptor) tyrosine kinases and their coupled intracellular signalling pathways. In the prostate, the mesenchymal-epithelial interactions mediated by androgen signalling and paracrine factors are essential for gland organogenesis, homoeostasis and tumorigenesis. FGFs mediate these mesenchymal-epithelial interactions in the prostate by paracrinal crosstalk through a diverse set of ligands and receptors. Gain- and loss-of-function studies in mouse models have demonstrated the requirement for the FGF signalling axis in prostate development and homoeostasis. The aberrant induction of this axis in either compartment of the prostate results in developmental disorders, disrupts the homoeostatic balance and leads to prostate carcinogenesis. FGFs are also implicated in mediating androgen signalling in the prostate between mesenchymal and epithelial compartments. Therefore studying FGF signalling in the prostate will help us to better understand the underlying molecular mechanisms by which the gland develops, maintains homoeostasis and undergoes carcinogenesis; as well as yield clues on how androgens mediate these processes and how advanced-tumour prostate cells escape strict androgen regulations.
Collapse
|
30
|
Zhu X, Asa SL, Ezzat S. Genetic and epigenetic mechanisms down-regulate FGF receptor 2 to induce melanoma-associated antigen A in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2333-43. [PMID: 20348248 DOI: 10.2353/ajpath.2010.091049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) in the gene encoding fibroblast growth factor receptor 2 (FGFR2) as a risk factor for breast cancer. We examined the relationship between these intron 2 SNPs and gene expression in breast carcinomas. Primary breast tissue showed a common occurrence of these SNPs accompanied by FGFR2 expression in normal ductal epithelium. Unexpectedly, we found that FGFR2 mRNA and protein levels were reduced in microdissected cancer cells when compared with paired normal breast epithelium. FGFR2 down-regulation was associated with DNA methylation and loss-of-heterozygosity. Where FGFR2-IIIb was expressed in tumor cells, it was accompanied by up-regulation of the RNA-binding proteins ESRP1/2, consistent with splicing of this isoform. Reduction in FGFR2 was associated with re-expression of its putative target melanoma-associated antigen (MAGE-A) in primary carcinoma cells. Conversely, forced expression or activation of FGFR2-IIIb resulted in MAGE-A silencing. These data provide the first evidence for FGFR2 down-regulation in breast carcinomas harboring intron 2 SNPs. Our findings underscore the significance of epigenetic and somatic changes that can potentially modify the effects of germline polymorphisms in determining FGFR2 gene expression.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
Amann T, Bataille F, Spruss T, Dettmer K, Wild P, Liedtke C, Mühlbauer M, Kiefer P, Oefner PJ, Trautwein C, Bosserhoff AK, Hellerbrand C. Reduced expression of fibroblast growth factor receptor 2IIIb in hepatocellular carcinoma induces a more aggressive growth. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1433-42. [PMID: 20093481 DOI: 10.2353/ajpath.2010.090356] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor receptor 2 isoform b (FGFR2-IIIb) is highly expressed in hepatocytes and plays an important role in liver homeostasis and regeneration. Here, we analyzed the expression and function of FGFR2-IIIb in hepatocellular carcinoma (HCC). FGFR2-IIIb expression in HCC tissues and cell lines was lower than in primary human hepatocytes and nontumorous tissue. FGFR2-IIIb-negative HCCs showed a significantly higher Ki-67 labeling index, and loss of FGFR2-IIIb expression correlated significantly with vascular invasion and more advanced tumor stages. A decrease in FGFR-2IIIb expression in HCC cell lines was not related to promoter hypermethylation. However, PCR analysis indicated that chromosomal deletion at 10q accounted for the loss of FGFR2 expression in a subset of HCC cells. FGFR2-IIIb re-expression in stable transfected HCC cell lines induced a higher basal apoptosis rate and a significantly reduced proliferation and migratory potential in vitro. In nude mice, FGFR2-IIIb re-expressing HCC cells grew significantly slower, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay revealed higher apoptosis rates. The antitumorigenic effects of FGFR2-IIIb expression in HCC cells were not affected by keratinocyte growth factor or an inhibitor of FGFR-phosphorylation, indicating that they are independent of tyrosine kinase activation. In conclusion, our data indicate that FGFR2-IIIb inhibits tumorigenicity of HCC cells. Identification of the molecular mechanisms promoting regeneration in normal tissue while suppressing malignancy may lead to novel therapeutic targets of this highly aggressive tumor.
Collapse
Affiliation(s)
- Thomas Amann
- University of Regensburg, Department of Internal Medicine I, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 2009; 9:639-51. [PMID: 19508171 DOI: 10.2174/156800909789057006] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 05/02/2009] [Indexed: 12/13/2022]
Abstract
Biological processes that drive cell growth are exciting targets for cancer therapy. The fibroblast growth factor (FGF) signaling network plays a ubiquitous role in normal cell growth, survival, differentiation, and angiogenesis, but has also been implicated in tumor development. Elucidation of the roles and relationships within the diverse FGF family and of their links to tumor growth and progression will be critical in designing new drug therapies to target FGF receptor (FGFR) pathways. Recent studies have shown that FGF can act synergistically with vascular endothelial growth factor (VEGF) to amplify tumor angiogenesis, highlighting that targeting of both the FGF and VEGF pathways may be more efficient in suppressing tumor growth and angiogenesis than targeting either factor alone. In addition, through inducing tumor cell survival, FGF has the potential to overcome chemotherapy resistance highlighting that chemotherapy may be more effective when used in combination with FGF inhibitor therapy. Furthermore, FGFRs have variable activity in promoting angiogenesis, with the FGFR-1 subgroup being associated with tumor progression and the FGFR-2 subgroup being associated with either early tumor development or decreased tumor progression. This review highlights the growing knowledge of FGFs in tumor cell growth and survival, including an overview of FGF intracellular signaling pathways, the role of FGFs in angiogenesis, patterns of FGF and FGFR expression in various tumor types, and the role of FGFs in tumor progression.
Collapse
Affiliation(s)
- M Korc
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | | |
Collapse
|
33
|
Zhu X, Asa SL, Ezzat S. Histone-acetylated control of fibroblast growth factor receptor 2 intron 2 polymorphisms and isoform splicing in breast cancer. Mol Endocrinol 2009; 23:1397-405. [PMID: 19497954 DOI: 10.1210/me.2009-0071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent genome-wide association studies have identified fibroblast growth factor receptor (FGFR)2 as one of a few candidate genes linked with breast cancer susceptibility. In particular, the disease-predisposing allele of FGFR2 is inherited as a 7.5-kb region within intron 2 that harbors eight single nucleotide polymorphisms. The relationship between these single nucleotide polymorphisms and FGFR2 gene expression remains unclear. Here we show the common occurrence of polymorphisms within the intron 2 region in a panel of 10 breast cancer cell lines. High FGFR2-expressing cell lines such as MCF-7 cells displayed polymorphic sequences with constitutive histone acetylation at multiple intron 2 sequences harboring putative transcription binding sites. Knockdown of Runx2 or CCAAT enhancer binding protein beta in these cells resulted in diminished endogenous FGFR2 gene expression. In contrast FGFR2-negative MDA-231 cells were wild type and showed evidence of histone 3/4 deacetylation at the rs2981578, rs10736303, and rs7895676 disease-associated alleles that harbor binding sites for Runx2, estrogen receptor, and CCAAT enhancer binding protein beta, respectively. Histone deacetylation inhibition with trichostatin A resulted in enhanced acetylation at these intron 2 sites, an effect associated with robust FGFR2 reexpression. Isoform analysis proved reexpression of the FGFR2-IIIc variant the splicing of which was positively influenced by trichostatin A-mediated recruitment of the Fas-activated serine/threonine phosphoprotein survival protein. Our findings highlight the potential role of histone acetylation in modulating access to selected polymorphic sites within intron 2 as well as downstream splicing sites in generating variable FGFR2 levels and isoforms in breast cancer.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, and the Endocrine Oncology Site Group, Princess Margaret Hospital, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | | | | |
Collapse
|
34
|
Gartside MG, Chen H, Ibrahimi OA, Byron SA, Curtis AV, Wellens CL, Bengston A, Yudt LM, Eliseenkova AV, Ma J, Curtin JA, Hyder P, Harper UL, Riedesel E, Mann GJ, Trent JM, Bastian BC, Meltzer PS, Mohammadi M, Pollock PM. Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Mol Cancer Res 2009; 7:41-54. [PMID: 19147536 DOI: 10.1158/1541-7786.mcr-08-0021] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.
Collapse
Affiliation(s)
- Michael G Gartside
- Division of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Epigenetically-mediated gene dysregulation is a common feature associated with human pituitary tumorigenesis. The mechanisms leading to these changes, however, remain largely unknown. In this review, we examine changes responsible for DNA and histone modifications as independent, butpotentially interrlated modes of communication effecting chromatin remodeling. The dynamic properties of the enzymes involved in these reactions is highlighted. We use the fibroblast growth factor receptor 2 (FGFR2) as a model through which the p53-regulating melanoma-associated antigen (MAGE) system is governing in pituitary cells. The pathogenetic and potential therapeutic implications are discussed.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Modulation of the expression of the FGFR2-IIIb and FGFR2-IIIc molecules in dermatofibroma. J Dermatol Sci 2008; 51:53-7. [DOI: 10.1016/j.jdermsci.2008.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/30/2008] [Accepted: 02/06/2008] [Indexed: 11/21/2022]
|
37
|
Zhu X, Asa SL, Ezzat S. Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer Res 2008; 14:1984-96. [PMID: 18381936 DOI: 10.1158/1078-0432.ccr-07-2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Four members of the fibroblast growth factor receptor (FGFR) family transduce signals of a diverse group of FGF ligands. The FGFR2-IIIb isoform is abundantly present in the normal pituitary gland with contrasting down-regulation in neoplastic pituitary cells. cDNA profiling identified the cancer-testis antigen melanoma-associated antigen A3 (MAGE-A3) as a putative target negatively regulated by FGFR2. EXPERIMENTAL DESIGN Comparisons were made between normal and neoplastic human and mouse pituitary cells. Gene expression was examined by reverse transcription-PCR, DNA methylation was determined by methylation-specific PCR and combined bisulfite restriction analysis, and histone modification marks were identified by chromatin immunoprecipitation. RESULTS Normal human pituitary tissue that expresses FGFR2-IIIb does not express MAGE-A3; in contrast, pituitary tumors that are FGFR2 negative show abundant MAGE-A3 mRNA expression. MAGE-A3 expression correlates with the presence and extent of DNA promoter methylation; more frequent and higher-degree methylation is present in the normal gland compared with pituitary tumors. Conversely, pituitary tumors are hypomethylated, particularly in females where MAGE-A3 expression is nearly thrice higher than in males. Estradiol treatment induces MAGE-A3 through enhanced histone 3 acetylation and diminished methylation. The effects of estradiol are directly opposed by FGF7/FGFR2-IIIb. Down-regulation of MAGE-A3 results in p53 transcriptional induction, also through reciprocal histone acetylation and methylation modifications. CONCLUSIONS These findings highlight MAGE-A3 as a target of FGFR2-IIIb and estrogen action and provide evidence for a common histone-modifying network in the control of the balance between opposing signals.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
38
|
McCabe CD, Spyropoulos DD, Martin D, Moreno CS. Genome-wide analysis of the homeobox C6 transcriptional network in prostate cancer. Cancer Res 2008; 68:1988-96. [PMID: 18339881 DOI: 10.1158/0008-5472.can-07-5843] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Homeobox transcription factors are developmentally regulated genes that play crucial roles in tissue patterning. Homeobox C6 (HOXC6) is overexpressed in prostate cancers and correlated with cancer progression, but the downstream targets of HOXC6 are largely unknown. We have performed genome-wide localization analysis to identify promoters bound by HOXC6 in prostate cancer cells. This analysis identified 468 reproducibly bound promoters whose associated genes are involved in functions such as cell proliferation and apoptosis. We have complemented these data with expression profiling of prostates from mice with homozygous disruption of the Hoxc6 gene to identify 31 direct regulatory target genes of HOXC6. We show that HOXC6 directly regulates expression of bone morphogenic protein 7, fibroblast growth factor receptor 2, insulin-like growth factor binding protein 3, and platelet-derived growth factor receptor alpha (PDGFRA) in prostate cells and indirectly influences the Notch and Wnt signaling pathways in vivo. We further show that inhibition of PDGFRA reduces proliferation of prostate cancer cells, and that overexpression of HOXC6 can overcome the effects of PDGFRA inhibition. HOXC6 regulates genes with both oncogenic and tumor suppressor activities as well as several genes such as CD44 that are important for prostate branching morphogenesis and metastasis to the bone microenvironment.
Collapse
Affiliation(s)
- Colleen D McCabe
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
39
|
Sahadevan K, Darby S, Leung HY, Mathers ME, Robson CN, Gnanapragasam VJ. Selective over-expression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer. J Pathol 2007; 213:82-90. [PMID: 17607666 DOI: 10.1002/path.2205] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) mediate the tumourigenic effects of FGFs in prostate cancer. These receptors are therefore potential therapeutic targets in the development of inhibitors to this pathway. To identify the most relevant targets, we simultaneously investigated FGFR1-4 expression using a prostate cancer tissue microarray (TMA) and in laser capture microdissected (LCM) prostate epithelial cells. In malignant prostates (n = 138) we observed significant FGFR1 and FGFR4 protein over-expression in comparison with benign prostates (n = 58; p < 0.0001). FGFR1 was expressed at high levels in the majority of tumours (69% of grade 3 or less, 74% of grade 4 and 70% of grade 5), while FGFR4 was strongly expressed in 83% of grade 5 cancers but in only 25% of grade 1-3 cancers (p < 0.0001). At the transcript level we observed a similar pattern, with FGFR1 and FGFR4 mRNA over-expressed in malignant epithelial cells compared to benign cells (p < 0.0005 and p < 0.05, respectively). While total FGFR2 was increased in some cancers, there was no association between expression and tumour grade or stage. Transcript analysis, however, revealed a switch in the predominant isoform expressed from FGFR2IIIb to FGFR2IIIc among malignant epithelial cells. In contrast, protein and transcript expression of FGFR3 was very similar between benign and cancer biopsies. The functional effect of targeting FGFR4 in prostate cancer cells has not previously been investigated. In in vitro experiments, suppression of FGFR4 by RNA interference effectively blocked prostate cancer cell proliferation (p < 0.0001) and invasion (p < 0.001) in response to exogenous stimulation. This effect was evident regardless of whether the cells expressed the FGFR4 Arg388 or Gly388 allele. In parallel experiments, FGFR3 suppression had no discernible effect on cancer cell behaviour. These results suggest evidence of selective over-expression of FGFR1 and FGFR4 in clinical prostate cancer and support the notion of targeted inhibition of these receptors to disrupt FGF signalling.
Collapse
MESH Headings
- Case-Control Studies
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Male
- Microdissection
- Microscopy, Confocal
- Oligonucleotide Array Sequence Analysis
- Polymorphism, Single Nucleotide
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Protein Isoforms/genetics
- RNA Interference
- RNA, Small Interfering/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/analysis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/analysis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/analysis
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/analysis
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptors, Fibroblast Growth Factor/analysis
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- K Sahadevan
- Urology Research Group, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
40
|
Acevedo VD, Gangula RD, Freeman KW, Li R, Zhang Y, Wang F, Ayala GE, Peterson LE, Ittmann M, Spencer DM. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 2007; 12:559-71. [PMID: 18068632 DOI: 10.1016/j.ccr.2007.11.004] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/03/2007] [Accepted: 11/01/2007] [Indexed: 11/15/2022]
Abstract
Fibroblast Growth Factor Receptor-1 (FGFR1) is commonly overexpressed in advanced prostate cancer (PCa). To investigate causality, we utilized an inducible FGFR1 (iFGFR1) prostate mouse model. Activation of iFGFR1 with chemical inducers of dimerization (CID) led to highly synchronous, step-wise progression to adenocarcinoma that is linked to an epithelial-to-mesenchymal transition (EMT). iFGFR1 inactivation by CID withdrawal led to full reversion of prostatic intraepithelial neoplasia, whereas PCa lesions became iFGFR1-independent. Gene expression profiling at distinct stages of tumor progression revealed an increase in EMT-associated Sox9 and changes in the Wnt signaling pathway, including Fzd4, which was validated in human PCa. The iFGFR1 model clearly implicates FGFR1 in PCa progression and demonstrates how CID-inducible models can help evaluate candidate molecules in tumor progression and maintenance.
Collapse
Affiliation(s)
- Victor D Acevedo
- Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shidaifat F. Development-related expression of KGF and FGF-10 mRNA in the canine prostate gland. JOURNAL OF VETERINARY MEDICINE. A, PHYSIOLOGY, PATHOLOGY, CLINICAL MEDICINE 2007; 54:549-52. [PMID: 18045337 DOI: 10.1111/j.1439-0442.2007.00983.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Keratinocyte growth factor (KGF) and fibroblast growth factor 10 (FGF-10) are stromal-derived growth factors that interact with their epithelial FGFR2 receptors to mediate stromal--epithelial cell interaction within the prostate gland. This study was conducted to compare the development-related mRNA expression of KGF, FGF-10 and their receptor FGFR2 in immature and mature canine prostate glands. In addition, their expression levels were correlated with the differentiation of stromal cells using vimentin as a mesenchymal cell marker. Quantitative mRNA expression was assessed by real-time polymerase chain reaction (PCR) and the results were expressed as relative mRNA expression of the target gene, which was normalized to the GAPDH reference gene. mRNA analysis revealed a differential expression of KGF, FGF-10 and FGFR2 receptor by the prostate glands of immature and mature dogs. The results showed a 7.3- and 9-fold decrease in mRNA expression of KGF and FGF-10 by mature and immature prostate glands respectively. However, there was no significant change in FGFR2 receptor mRNA expression by mature or immature prostate glands. This downregulation of KGF and FGF-10 expression was associated with a 15-fold decrease in vimentin expression. These results indicate that KGF and FGF-10 expression varied according to the differentiation status of stromal cells and might reflect differential developmental requirements of immature and mature canine prostate glands.
Collapse
Affiliation(s)
- F Shidaifat
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110 Jordan.
| |
Collapse
|
42
|
Zhu X, Lee K, Asa SL, Ezzat S. Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1618-28. [PMID: 17456767 PMCID: PMC1854956 DOI: 10.2353/ajpath.2007.061111] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2007] [Indexed: 01/07/2023]
Abstract
Four members of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases transduce signals of a diverse group of more than 23 fibroblast growth factor (FGF) ligands. Each prototypic receptor is composed of three immunoglobulin-like extracellular domains, two of which are involved in ligand binding. Alternative RNA splicing of one of two exons results in two different forms of the second half of the third immunoglobulin-like domain, the IIIb or IIIc isoforms. The contribution of each receptor and their isoforms in tumorigenesis remains unknown. In the pituitary, FGFR2 is expressed primarily as the IIIb isoform in normal adenohypophysial cells. In contrast, FGFR2 is significantly down-regulated in mouse corticotroph AtT20 tumor cells where the 5' promoter is methylated. Treatment of AtT20 cells with 5'-azacytidine resulted in FGFR2 re-expression, mainly as the FGFR2-IIIb isoform. Chromatin immunoprecipitation revealed evidence of histone methylation, but not of deacetylation, in the silencing of FGFR2 in AtT20 cells. Exposure of these cells to the cognate FGFR2-IIIb ligand FGF-7 resulted in diminished Rb phosphorylation and accumulation of p21 and p27, indicating diminished cell cycle progression. Examination of primary human pituitary adenomas revealed FGFR2 down-regulation in 52% (11 of 21) of samples and FGFR2 promoter DNA methylation in 45% (10 of 22) of samples. These data highlight the contribution from DNA and histone methylation as epigenetic mechanisms responsible for FGFR2 silencing in pituitary neoplasia.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, Mount Sinai Hospital and University of Toronto, Canada
| | | | | | | |
Collapse
|
43
|
Park S, Kim JH, Jang JH. Aberrant hypermethylation of the FGFR2 gene in human gastric cancer cell lines. Biochem Biophys Res Commun 2007; 357:1011-5. [PMID: 17459342 DOI: 10.1016/j.bbrc.2007.04.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
We have previously shown that fibroblast growth factor receptor 2 (FGFR2) plays an important role in gastric carcinogenesis. In this study, we assessed DNA methylation status in the promoter region of FGFR2 gene in gastric cancer cell lines, and indicated that this region was highly methylated, compared with FGFR2-expressing gastric cancer cell lines. Moreover, the restoration of FGFR2 expression by treating methylated cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine strongly suggests that the loss of FGFR2 expression may be due to the aberrant hypermethylation in the promoter region of the FGFR2 gene. Thus, our results suggest that the epigenetic silencing of FGFR2 through DNA methylation in gastric cancer may contribute to tumor progression.
Collapse
Affiliation(s)
- Soonok Park
- Department of Biochemistry and BK21 Center for Advanced Medical Education, Inha University School of Medicine, Incheon 400-712, Republic of Korea
| | | | | |
Collapse
|
44
|
Nelson EC, Cambio AJ, Yang JC, Lara PN, Evans CP. Biologic agents as adjunctive therapy for prostate cancer: a rationale for use with androgen deprivation. ACTA ACUST UNITED AC 2007; 4:82-94. [PMID: 17287869 DOI: 10.1038/ncpuro0700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 11/15/2006] [Indexed: 12/26/2022]
Abstract
The prevalence of prostate cancer emphasizes the need for improved therapeutic options, particularly for metastatic disease. Current treatment includes medical or surgical castration, which initially induces apoptosis of prostate cancer cells, but ultimately an androgen-independent subpopulation emerges. In addition to a transient therapeutic effect, androgen-deprivation therapy (ADT) can initiate biochemical events that may contribute to the development of and progression to an androgen-independent state. This transition involves multiple signal transduction pathways that are accompanied by many biochemical changes resulting from ADT. These molecular events themselves are therapeutic targets and serve as a rationale for adjunctive treatment at the time of ADT.
Collapse
|
45
|
Bertolani C, Sancho-Bru P, Failli P, Bataller R, Aleffi S, DeFranco R, Mazzinghi B, Romagnani P, Milani S, Ginés P, Colmenero J, Parola M, Gelmini S, Tarquini R, Laffi G, Pinzani M, Marra F. Resistin as an intrahepatic cytokine: overexpression during chronic injury and induction of proinflammatory actions in hepatic stellate cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007. [PMID: 17148667 DOI: 10.2353/ajpath] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity and insulin resistance accelerate the progression of fibrosis during chronic liver disease. Resistin antagonizes insulin action in rodents, but its role in humans is still controversial. The aims of this study were to investigate resistin expression in human liver and to evaluate whether resistin may affect the biology of activated human hepatic stellate cells (HSCs), key modulators of hepatic fibrogenesis. Resistin gene expression was low in normal human liver but was increased in conditions of severe fibrosis. Up-regulation of resistin during chronic liver damage was confirmed by immunohistochemistry. In a group of patients with alcoholic hepatitis, resistin expression correlated with inflammation and fibrosis, suggesting a possible action on HSCs. Exposure of cultured HSCs to recombinant resistin resulted in increased expression of the proinflammatory chemokines monocyte chemoattractant protein-1 and interleukin-8, through activation of nuclear factor (NF)-kappaB. Resistin induced a rapid increase in intracellular calcium concentration, mainly through calcium release from intracellular inositol triphosphate-sensitive pools. The intracellular calcium chelator BAPTA-AM blocked resistin-induced NF-kappaB activation and monocyte chemoattractant protein-1 expression. In conclusion, this study shows a role for resistin as an intrahepatic cytokine exerting proinflammatory actions in HSCs, via a Ca2+/NF-kappaB-dependent pathway and suggests involvement of this adipokine in the pathophysiology of liver fibrosis.
Collapse
Affiliation(s)
- Cristiana Bertolani
- Dipartimento di Medicina Interna, University of Florence, Viale Morgagni, 85, I-50134 Florence, Italy, and the Liver Unit, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bastian PJ, Ellinger J, Heukamp LC, Kahl P, Müller SC, von Rücker A. Prognostic value of CpG island hypermethylation at PTGS2, RAR-beta, EDNRB, and other gene loci in patients undergoing radical prostatectomy. Eur Urol 2006; 51:665-74; discussion 674. [PMID: 16956712 DOI: 10.1016/j.eururo.2006.08.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To evaluate CpG island hypermethylation in a set of candidate genes in prostate cancer (pCA) and its relationship to clinicopathologic parameters and a nomogram predicting prostate-specific antigen (PSA) recurrence after radical prostatectomy. MATERIALS AND METHODS Tissues of 78 prostate carcinomas, 32 benign prostate hyperplasias (BPHs), and prostate cell lines (LNCaP, DU145, PC3, BPH-1) were examined with MethyLight polymerase chain reaction at 13 gene loci (APC, CDC6, CTNNB1, E-Cadherin, EDNRB, FGFR2, GSTP1, NAB2, PKCmu, PTGS2, RAR-beta, RASL11A, WWOX). RESULTS APC, RAR-beta, PTGS2, GSTP1, EDNRB, and CTNNB1 (83%, 71%, 65%, 33%, 14%, 9%, respectively) were methylated in pCA but rarely or not methylated in BPH. NAB2 and CDC6 were hypermethylated frequently in pCA (92%, 67%, respectively) and in BPH (91%, 59%, respectively). FGFR2, WWOX, E-Cadherin, PKCmu, and RASLL1A did not display noteworthy methylation in pCA (0-1%) or in BPH. CpG island hypermethylation at APC, retinoic acid receptor beta (RAR-beta), and PTGS2 discriminated with a sensitivity of 65-83% and a specificity of 97-100% between BPH and pCA. The combination of various genes increased the diagnostic expressiveness. PTGS2 hypermethylation correlated with seminal vesicle infiltration (p=0.047), capsular penetration (p=0.004), and pT stage (p=0.014). RAR-beta methylation was accompanied by a higher cumulative Gleason score (p=0.042). The probability of PSA-free-survival calculated with a Kattan nomogram correlated inversely with CpG island hypermethylation at EDNRB, RAR-beta, and PTGS2. All prostate cancer cell lines displayed a varying degree of demethylation after 5-aza-2'deoxycytidine treatment. CONCLUSIONS CpG island hypermethylation at various gene loci is frequent in prostate cancer and can distinguish between neoplastic and noncancerous tissue. Furthermore, hypermethylation at PTGS2, RAR-beta, and EDNRB inversely correlated with PSA-free-survival according to a Kattan nomogram and has potential prognostic value.
Collapse
Affiliation(s)
- Patrick J Bastian
- Klinik und Poliklinik für Urologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms Universität Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Tomlinson DC, L'Hôte CG, Kennedy W, Pitt E, Knowles MA. Alternative splicing of fibroblast growth factor receptor 3 produces a secreted isoform that inhibits fibroblast growth factor-induced proliferation and is repressed in urothelial carcinoma cell lines. Cancer Res 2006; 65:10441-9. [PMID: 16288035 DOI: 10.1158/0008-5472.can-05-1718] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that play key roles in proliferation, differentiation, and tumorigenesis. FGFR3 was identified as the major family member expressed in both normal human urothelium and cultured normal human urothelial (NHU) cells and was expressed as the IIIb isoform. We also identified a splice variant, FGFR3 Delta8-10, lacking exons encoding the COOH-terminal half of immunoglobulin-like domain III and the transmembrane domain. Previous reports have assumed that this is a cancer-specific splice variant. We showed that FGFR3 Delta8-10 is a normal transcript in NHU cells and is translated, N-glycosylated, and secreted. Primary urothelium expressed high levels of FGFR3 transcripts. In culture, levels were reduced in actively proliferating cells but increased at confluence and as cells approached senescence. Cells overexpressing FGFR3 IIIb showed FGF1-induced proliferation, which was inhibited by the addition of FGFR3 Delta8-10. In bladder tumor cell lines derived from aggressive carcinomas, there were significant alterations in the relative expression of isoforms including an overall decrease in the proportion of FGFR3 Delta8-10 and predominant expression of FGFR3 IIIc in some cases. In summary, alternative splicing of FGFR3 IIIb in NHU cells represents a normal mechanism to generate a transcript that regulates proliferation and in bladder cancer, the ratio of FGFR3 isoforms is significantly altered.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alternative Splicing
- Base Sequence
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Cell Line, Tumor
- Cloning, Molecular
- Female
- Fibroblast Growth Factors/antagonists & inhibitors
- Glycosylation
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Male
- Middle Aged
- Molecular Sequence Data
- Protein Isoforms
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Fibroblast Growth Factor, Type 3/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urologic Neoplasms/genetics
- Urologic Neoplasms/metabolism
- Urothelium/metabolism
- Urothelium/pathology
Collapse
Affiliation(s)
- Darren C Tomlinson
- Cancer Research UK Clinical Centre, St. James's University Hospital, Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Peduto L, Reuter VE, Shaffer DR, Scher HI, Blobel CP. Critical function for ADAM9 in mouse prostate cancer. Cancer Res 2005; 65:9312-9. [PMID: 16230393 DOI: 10.1158/0008-5472.can-05-1063] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ADAM9 is a membrane-anchored metalloprotease that is markedly up-regulated in several human carcinomas. Here, we show that ADAM9 is similarly up-regulated in mouse models for prostate, breast, and intestinal carcinoma. To assess whether ADAM9 is critical for the pathogenesis of prostate carcinoma, one of the most common cancers in men, we evaluated how loss of ADAM9 affects tumorigenesis in W(10) mice, a mouse model for this disease. In the absence of ADAM9, most tumors in 50-week-old W(10) mice were well differentiated, whereas littermate controls expressing wild-type ADAM9 had predominantly poorly differentiated, and in some cases significantly larger, tumors. Moreover, gain-of-function experiments in which ADAM9 was overexpressed in mouse prostate epithelium resulted in significant abnormalities, including epithelial hyperplasia at 4 to 6 months of age, and prostatic intraepithelial neoplasia after 1 year. A potential underlying mechanism for the role of ADAM9 in prostate cancer emerged from cell-based assays: ADAM9 can cleave and release epidermal growth factor and FGFR2iiib from cells, both of which have pivotal functions in the pathogenesis of this disease. Taken together, these results suggest that ADAM9 contributes to the pathogenesis of prostate cancer and potentially also other carcinomas, raising the possibility that ADAM9 might be a good target for antitumor drugs.
Collapse
Affiliation(s)
- Lucie Peduto
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | | | | | | | | |
Collapse
|
49
|
Bernard-Pierrot I, Ricol D, Cassidy A, Graham A, Elvin P, Caillault A, Lair S, Broët P, Thiery JP, Radvanyi F. Inhibition of human bladder tumour cell growth by fibroblast growth factor receptor 2b is independent of its kinase activity. Involvement of the carboxy-terminal region of the receptor. Oncogene 2005; 23:9201-11. [PMID: 15516981 DOI: 10.1038/sj.onc.1208150] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The b isoform of fibroblast growth factor receptor 2, FGFR2b/FGFR2-IIIb/Ksam-IIC1/KGFR, a tyrosine kinase receptor, is expressed in a wide variety of epithelia and is downregulated in several human carcinomas including prostate, salivary and urothelial cell carcinomas. FGFR2b has been shown to inhibit growth in tumour cell lines derived from these carcinomas. Here, we investigated the molecular mechanisms underlying the inhibition of human urothelial carcinoma cell growth following FGFR2b expression. Using a nylon DNA array, we analysed the gene expression profile of the T24 bladder tumour cell line, transfected or not with a construct encoding FGFR2b. The expression of FGFR2b in T24 cells decreased insulin-like growth factor (IGF)-II mRNA levels. This decrease was correlated with a decrease in IGF-II secretion and may have been responsible for the observed inhibition of cell growth because the addition of exogenous IGF-II restored growth rates to normal levels. Using SU5402, an inhibitor of FGFR tyrosine kinase activity, and a kinase dead mutant of the receptor, FGFR2b Y659F/Y660F, we also demonstrated that the growth inhibition and decrease in IGF-II secretion induced by FGFR2b did not require tyrosine kinase activity. Finally, we demonstrated the involvement of the distal carboxy-terminal domain of the receptor in decreasing IGF-II expression and inhibiting T24 cell growth, as Ksam-IIC3, a variant of FGFR2b carrying a short carboxy-terminus, neither downregulated IGF-II nor inhibited cell proliferation. Our data suggest that FGFR2b inhibits the growth of bladder carcinoma cells by reducing IGF-II levels via its carboxy-terminal domain, independent of its tyrosine kinase activity.
Collapse
|
50
|
Bibikova M, Talantov D, Chudin E, Yeakley JM, Chen J, Doucet D, Wickham E, Atkins D, Barker D, Chee M, Wang Y, Fan JB. Quantitative gene expression profiling in formalin-fixed, paraffin-embedded tissues using universal bead arrays. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1799-807. [PMID: 15509548 PMCID: PMC1618650 DOI: 10.1016/s0002-9440(10)63435-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We recently developed a sensitive and flexible gene expression profiling system that is not dependent on an intact poly-A tail and showed that it could be used to analyze degraded RNA samples. We hypothesized that the DASL (cDNA-mediated annealing, selection, extension and ligation) assay might be suitable for the analysis of formalin-fixed, paraffin-embedded tissues, an important source of archival tissue material. We now show that, using the DASL assay system, highly reproducible tissue- and cancer-specific gene expression profiles can be obtained with as little as 50 ng of total RNA isolated from formalin-fixed tissues that had been stored from 1 to over 10 years. Further, tissue- and cancer-specific markers derived from previous genome-wide expression profiling studies of fresh-frozen samples were validated in the formalin-fixed samples. The DASL assay system should prove useful for high-throughput expression profiling of archived clinical samples.
Collapse
Affiliation(s)
- Marina Bibikova
- Genetic Analysis, Illumina, Inc., 9885 Towne Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|