1
|
Cui R, Liu C, Lin P, Xie H, Wang W, Zhao J, Jiang S, Shi J, Yu X. LncRNA AC245100.4 binds HSP90 to promote the proliferation of prostate cancer. Epigenomics 2020; 12:1257-1271. [PMID: 32811161 DOI: 10.2217/epi-2020-0270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the role and mechanisms of AC245100.4 in prostate cancer. Materials & methods: The expression and location of AC245100.4 were examined using real-time PCR and in situ hybridization. Cell Counting Kit-8, clone formation, flow cytometry and in vivo assays were conducted to determine the role of AC245100.4. RNA antisense purification with mass spectrometry and RNA immunoprecipitation were performed to identify proteins that bind to AC245100.4. Western blotting was performed to quantify the expression of protein. Results: AC245100.4 expression was upregulated in prostate cancer and mainly located in the cytoplasm. Knockdown of AC245100.4 inhibited proliferation of prostate cancer. Mechanistically, AC245100.4 bound to HSP90 and altered its chaperone function, increased the stability of IκB kinase and activated the NFκB signaling pathway. Conclusion: AC245100.4 promotes the proliferation of prostate cancer via binding of HSP90.
Collapse
Affiliation(s)
- Rongjun Cui
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China.,Department of Biochemistry & Molecular Biology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, PR China
| | - Chi Liu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Ping Lin
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Hui Xie
- Teaching Experiment Center of Biotechnology, Harbin Medical University, Harbin, 150086, PR China
| | - Wei Wang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Jiabin Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, PR China
| | - Shan Jiang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Jie Shi
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| | - Xiaoguang Yu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China
| |
Collapse
|
2
|
Kluth M, Scherzai S, Büschek F, Fraune C, Möller K, Höflmayer D, Minner S, Göbel C, Möller-Koop C, Hinsch A, Neubauer E, Tsourlakis MC, Sauter G, Heinzer H, Graefen M, Wilczak W, Luebke AM, Burandt E, Steurer S, Schlomm T, Simon R. 13q deletion is linked to an adverse phenotype and poor prognosis in prostate cancer. Genes Chromosomes Cancer 2018; 57:504-512. [PMID: 29923647 DOI: 10.1002/gcc.22645] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/13/2023] Open
Abstract
Deletions of chromosome arm 13q belong to the most frequent molecular alterations in prostate cancer. To better understand the role of 13q deletion in prostate cancer we took advantage of our large prostate cancer tissue microarray comprising more than 12 000 cancer samples with full pathological and clinical follow-up data. Fluorescence in situ hybridization with probes for ENOX1 (13q14.11) and the retinoblastoma gene (RB1, 13q14.2) was employed. A 13q deletion was found in 21% of 7375 analyzable cancers. Deletions were always heterozygous and associated with high Gleason grade (P < .0001), advanced tumor stage (P < .0001), high preoperative prostate-specific antigen (PSA) levels (P = .0125), lymph node metastasis (P = .0377), positive resection margin (P = .0064), and early biochemical recurrence (P < .0001). 13q deletions were marginally more frequent in prostate cancers with negative ERG status (22.9%) than in ERG-positive tumors (18.7%; P < .0001). Loss of 13q predicted patient prognosis independently from established prognostic parameters that are available at the time of biopsy (P = .0004), including preoperative PSA level, clinical tumor stage, and biopsy Gleason grade. In summary, the results of our study identify 13q deletion as a frequent event in prostate cancer, which is linked to an adverse phenotype and poor prognosis in this disease.
Collapse
Affiliation(s)
- Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sekander Scherzai
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Franziska Büschek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Emily Neubauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany.,Department of Urology, Section for Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Germany.,Department of Urology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
3
|
Haddad BR, Gu L, Mirtti T, Dagvadorj A, Vogiatzi P, Hoang DT, Bajaj R, Leiby B, Ellsworth E, Blackmon S, Ruiz C, Curtis M, Fortina P, Ertel A, Liu C, Rui H, Visakorpi T, Bubendorf L, Lallas CD, Trabulsi EJ, McCue P, Gomella L, Nevalainen MT. STAT5A/B gene locus undergoes amplification during human prostate cancer progression. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2264-75. [PMID: 23660011 DOI: 10.1016/j.ajpath.2013.02.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/22/2013] [Accepted: 02/28/2013] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms underlying progression of prostate cancer (PCa) to castrate-resistant (CR) and metastatic disease are poorly understood. Our previous mechanistic work shows that inhibition of transcription factor Stat5 by multiple alternative methods induces extensive rapid apoptotic death of Stat5-positive PCa cells in vitro and inhibits PCa xenograft tumor growth in nude mice. Furthermore, STAT5A/B induces invasive behavior of PCa cells in vitro and in vivo, suggesting involvement of STAT5A/B in PCa progression. Nuclear STAT5A/B protein levels are increased in high-grade PCas, CR PCas, and distant metastases, and high nuclear STAT5A/B expression predicts early disease recurrence and PCa-specific death in clinical PCas. Based on these findings, STAT5A/B represents a therapeutic target protein for advanced PCa. The mechanisms underlying increased Stat5 protein levels in PCa are unclear. Herein, we demonstrate amplification at the STAT5A/B gene locus in a significant fraction of clinical PCa specimens. STAT5A/B gene amplification was more frequently found in PCas of high histologic grades and in CR distant metastases. Quantitative in situ analysis revealed that STAT5A/B gene amplification was associated with increased STAT5A/B protein expression in PCa. Functional studies showed that increased STAT5A/B copy numbers conferred growth advantage in PCa cells in vitro and as xenograft tumors in vivo. The work presented herein provides the first evidence of somatic STAT5A/B gene amplification in clinical PCas.
Collapse
Affiliation(s)
- Bassem R Haddad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Diagnostic value of DNA alteration: loss of heterozygosity or allelic imbalance-promising for molecular staging of prostate cancers. Med Oncol 2013; 30:391. [PMID: 23288724 PMCID: PMC3586396 DOI: 10.1007/s12032-012-0391-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/21/2012] [Indexed: 01/12/2023]
Abstract
The biological behavior of prostate cancer is uncertain, and therefore, search for molecular prognostic markers associated with disease progression seems to be essential. We performed microsatellite allelotyping of DNA isolated from primary prostate tumors biopsies (prostate adenocarcinoma, PCa). We evaluated the frequency of allelic imbalance (AI), including loss of heterozygosity and/or microsatellite imbalance (LOH/MSI) as well as the association of these DNA alterations with clinicopathological variables. We assessed the significance of LOH/MSI alterations in selected imprinted and non-imprinted chromosomal regions (IR and NIR) in PCa. A total of 50 biopsies of prostate tumor (containing >75 % tumor cells) were histologically examined confirming prostate carcinoma. Microsatellite allelotyping using 16 microsatellite markers linked to the following chromosomal regions: 1p31.2, 3p21.3–25.3, 7q32.2, 9p21.3, 11p15.5, 12q23.2, and 16q22.1 was performed. The incidence of LOH/MSI alterations in prostate tumor cells was the highest for chromosomal regions 7q32.2 and 16q22.1 (31.25 and 26.60 %, respectively), followed by 1p31.2 and 3p21.3–25.3 (26.50 and 17.40 %, respectively). Statistically significant increase in LOH/MSI alterations has been observed for markers: D1S2137 (1p region; p = 0.00032), D9S974 (9p region; p = 0.0017), and D16S3025 (16q region; p = 0.0017). Statistically significant differences in frequency of LOH/MSI alterations in particular chromosomal regions have been found for 1p31.2, 7q32.2 and 16q22.1 (p = 0.027, p = 0.012 and p = 0.031, respectively). We documented statistically significant association between Fractional Allele Loss (FAL) index and advanced tumor stage (p < 0.05). We suggest that genomic instability of LOH/MSI type is a frequent event in prostate carcinogenesis and assessed as FAL index has clinical value for the molecular staging of prostate cancer in (TRUS)-guided prostate biopsy material.
Collapse
|
5
|
Tan SH, Nevalainen MT. Signal transducer and activator of transcription 5A/B in prostate and breast cancers. Endocr Relat Cancer 2008; 15:367-90. [PMID: 18508994 PMCID: PMC6036917 DOI: 10.1677/erc-08-0013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinase signaling pathways, such as Janus kinase 2-Signal transducer and activator of transcription 5A/B (JAK2-STAT5A/B), are of significant interest in the search for new therapeutic strategies in both breast and prostate cancers. In prostate cancer, the components of the JAK2-STAT5A/B signaling pathway provide molecular targets for small-molecule inhibition of survival and growth signals of the cells. At the same time, new evidence suggests that the STAT5A/B signaling pathway is involved in the transition of organ-confined prostate cancer to hormone-refractory disease. This implies that the active JAK2-STAT5A/B signaling pathway potentially provides the means for pharmacological intervention of clinical prostate cancer progression. In addition, active STAT5A/B may serve as a prognostic marker for identification of those primary prostate cancers that are likely to progress to aggressive disease. In breast cancer, the role of STAT5A/B is more complex. STAT5A/B may have a dual role in the regulation of malignant mammary epithelium. Data accumulated from mouse models of breast cancer suggest that in early stages of breast cancer STAT5A/B may promote malignant transformation and enhance growth of the tumor. This is in contrast to established breast cancer, where STAT5A/B may mediate the critical cues for maintaining the differentiation of mammary epithelium. In addition, present data suggest that activation of STAT5A/B in breast cancer predicts favorable clinical outcome. The dual nature of STAT5A/B action in breast cancer makes the therapeutic use of STAT5 A/B more complex.
Collapse
Affiliation(s)
- Shyh-Han Tan
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, BLSB 309, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
6
|
Transcription Factors STAT5 and STAT3. Prostate Cancer 2008. [DOI: 10.1007/978-1-60327-079-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
von Knobloch R, Konrad L, Barth PJ, Brandt H, Wille S, Heidenreich A, Moll R, Hofmann R. Genetic pathways and new progression markers for prostate cancer suggested by microsatellite allelotyping. Clin Cancer Res 2004; 10:1064-73. [PMID: 14871986 DOI: 10.1158/1078-0432.ccr-03-0070] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE At diagnosis, the biological behavior of prostate cancer is uncertain, making the choice of an adequate therapy option difficult. Performing microsatellite allelotyping on a large series of consecutive prostate cancers procured during radical prostatectomy at our institution, we sought to identify molecular markers associated with disease progression. EXPERIMENTAL DESIGN A total of 156 consecutive fresh tumor samples was prospectively collected and macroscopically dissected from the whole prostatectomy specimen immediately after operation. Histologically 100 samples contained >75% tumor cells and were therefore enrolled in the microsatellite allelotyping, using a total of 24 polymorphic markers for the chromosomal regions 5p, 5q, 7q, 8p, 9p, 9q, 13q, 17p, 17q, and 18q. Fresh paired normal and tumor DNA was investigated in fluorescent microsatellite analysis with automated laser product detection. RESULTS The incidence of tumor-DNA alterations [loss of heterozygosity or allelic imbalance (AI)] was highest for chromosomal regions 13q and 8p with 72 and 71%, respectively, followed by chromosomes 7q, 18q, 5q, and 17p with 57, 53, 41, and 39%, respectively. Alterations at chromosomes 8p, 9p, 13q, and 17p were significantly (P < 0.05) associated with advanced tumor stage, whereas AI at 8p and 17p was also associated with high Gleason score (P < 0.05). AI at 5q and 9p was associated with regional lymph node metastasis (P < 0.05). The combination of AI at 8p and 13q was strongly associated with advanced tumor stage (P < 0.0001). CONCLUSIONS With the obtained results, we are able to postulate three distinct pathways in prostate carcinogenesis, and we identified microsatellite markers of prognostic value.
Collapse
Affiliation(s)
- Rolf von Knobloch
- Department of Urology, Philipps-University Marburg Medical School, Baldingerstrasse, D-35043 Marburg/Lahn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Watson JEV, Doggett NA, Albertson DG, Andaya A, Chinnaiyan A, van Dekken H, Ginzinger D, Haqq C, James K, Kamkar S, Kowbel D, Pinkel D, Schmitt L, Simko JP, Volik S, Weinberg VK, Paris PL, Collins C. Integration of high-resolution array comparative genomic hybridization analysis of chromosome 16q with expression array data refines common regions of loss at 16q23–qter and identifies underlying candidate tumor suppressor genes in prostate cancer. Oncogene 2004; 23:3487-94. [PMID: 15007382 DOI: 10.1038/sj.onc.1207474] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have constructed a high-resolution genomic microarray of human chromosome 16q, and used it for comparative genomic hybridization analysis of 16 prostate tumors. We demarcated 10 regions of genomic loss between 16q23.1 and 16qter that occurred in five or more samples. Mining expression array data from four independent studies allowed us to identify 11 genes that were frequently underexpressed in prostate cancer and that co-localized with a region of genomic loss. Quantitative expression analyses of these genes in matched tumor and benign tissue from 13 patients showed that six of these 11 (WWOX, WFDC1, MAF, FOXF1, MVD and the predicted novel transcript Q9H0B8 (NM_031476)) had significant and consistent downregulation in the tumors relative to normal prostate tissue expression making them candidate tumor suppressor genes.
Collapse
Affiliation(s)
- J E Vivienne Watson
- Collins Lab, UCSF Comprehensive Cancer Center, University of California, 2340 Sutter Street, San Francisco, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
A genetic component in prostate cancer has been recognized since decades. Through numerous epidemiological and molecular biological studies, much evidence has accumulated in favor of a significant but heterogeneous hereditary component in prostate cancer (PCa) susceptibility. Since the mapping of a high-penetrant PCa susceptibility locus at 1q24-25, much attention has been paid to the identification of PCa susceptibility genes. So far, seven loci have been mapped, and at three of these loci, genes have been cloned and mutations identified. Yet their role in hereditary and sporadic disease is still under debate and probably very modest. Although research on hereditary prostate cancer has improved our knowledge of the genetic etiology of the disease, still a lot of questions remain unanswered. Here, we aim to review the genetic epidemiological and molecular biological research in the field of hereditary prostate cancer and the problems that are encountered with this research.
Collapse
Affiliation(s)
- Bas A J Verhage
- Department of Epidemiology and Urology (252 EPIB), University Medical Centre, St. Radboud, Nijmegen, The Netherlands
| | | |
Collapse
|
10
|
Abstract
Recent advances in molecular techniques have given the opportunity to assess genomic and proteomic alterations comprehensively and rapidly in routinely acquired tissue samples. In particular, new markers derived from qualitative and quantitative DNA, RNA, and protein analysis have provided additional objective information to supplant and extend the morphologic interpretations and have been increasingly integrated into the final surgical pathology diagnosis. In this review several recently developed molecular techniques are described and illustrated. The focus is on prostate cancer diagnostics, as an example of their application.
Collapse
Affiliation(s)
- Rodolfo Montironi
- Institute of Pathological Anatomy and Histopathology, School of Medicine, Polytechnic University of the Marche Region (Ancona), Azienda Ospedaliera Umberto I degrees, I-60020, Ancona, Torrette, Italy.
| | | | | |
Collapse
|