1
|
Mogollón García HD, de Andrade Ferrazza R, Ochoa JC, de Athayde FF, Vidigal PMP, Wiltbank M, Kastelic JP, Sartori R, Ferreira JCP. Landscape transcriptomic analysis of bovine follicular cells during key phases of ovarian follicular development. Biol Res 2024; 57:76. [PMID: 39468655 PMCID: PMC11514973 DOI: 10.1186/s40659-024-00558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND There are many gaps in our understanding of the mechanisms involved in ovarian follicular development in cattle, particularly regarding follicular deviation, acquisition of ovulatory capacity, and preovulatory changes. Molecular evaluations of ovarian follicular cells during follicular development in cattle, especially serial transcriptomic analyses across key growth phases, have not been reported. This study aims to address this gap by analyzing gene expression using RNA-seq in granulosa and antral cells recovered from ovarian follicular fluid during critical phases of ovarian follicular development in Holstein cows. RESULTS Integrated analysis of gene ontology (GO), gene set enrichment (GSEA), protein-protein interaction (PPI), and gene topology identified that differentially expressed genes (DEGs) in the largest ovarian follicles at deviation (Dev) were primarily involved in FSH-negative feedback, steroidogenesis, cell proliferation, apoptosis, and the prevention of early follicle rupture. In contrast, DEGs in the second largest follicles (DevF2) were mainly related to loss of cell viability, apoptosis, and immune cell invasion. In the dominant (PostDev) and preovulatory (PreOv) follicles, DEGs were associated with vascular changes and inflammatory responses. CONCLUSIONS The transcriptome of ovarian follicular fluid cells had a predominance of granulosa cells in the dominant follicle at deviation, with upregulation of genes involved in cell viability, steroidogenesis, and apoptosis prevention, whereas in the non-selected follicle there was upregulation of cell death-related transcripts. Immune cell transcripts increased significantly after deviation, particularly in preovulatory follicles, indicating strong intrafollicular chemotactic activity. We inferred that immune cell invasion occurred despite an intact basal lamina, contributing to follicular maturation.
Collapse
Affiliation(s)
- Henry David Mogollón García
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil
- Department of Genetic, Evolution, Microbiology and Immunology. Biology Institute, Campinas State University, Campinas, São Paulo, Brazil
- Computational Systems Biology Laboratory (CSBL), Institut Pasteur, University of São Paulo (USP), São Paulo, Brazil
| | | | - Julian Camilo Ochoa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil
| | - Flávia Florencio de Athayde
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Milo Wiltbank
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, USA
| | | | - Roberto Sartori
- Department of Animal Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - João Carlos Pinheiro Ferreira
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil.
| |
Collapse
|
2
|
Hai L, Maurya VK, DeMayo FJ, Lydon JP. Establishment of Murine Pregnancy Requires the Promyelocytic Leukemia Zinc Finger Transcription Factor. Int J Mol Sci 2024; 25:3451. [PMID: 38542422 PMCID: PMC10970820 DOI: 10.3390/ijms25063451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Using an established human primary cell culture model, we previously demonstrated that the promyelocytic leukemia zinc finger (PLZF) transcription factor is a direct target of the progesterone receptor (PGR) and is essential for progestin-dependent decidualization of human endometrial stromal cells (HESCs). These in vitro findings were supported by immunohistochemical analysis of human endometrial tissue biopsies, which showed that the strongest immunoreactivity for endometrial PLZF is detected during the progesterone (P4)-dominant secretory phase of the menstrual cycle. While these human studies provided critical clinical support for the important role of PLZF in P4-dependent HESC decidualization, functional validation in vivo was not possible due to the absence of suitable animal models. To address this deficiency, we recently generated a conditional knockout mouse model in which PLZF is ablated in PGR-positive cells of the mouse (Plzf d/d). The Plzf d/d female was phenotypically analyzed using immunoblotting, real-time PCR, and immunohistochemistry. Reproductive function was tested using the timed natural pregnancy model as well as the artificial decidual response assay. Even though ovarian activity is not affected, female Plzf d/d mice exhibit an infertility phenotype due to an inability of the embryo to implant into the Plzf d/d endometrium. Initial cellular and molecular phenotyping investigations reveal that the Plzf d/d endometrium is unable to develop a transient receptive state, which is reflected at the molecular level by a blunted response to P4 exposure with a concomitant unopposed response to 17-β estradiol. In addition to a defect in P4-dependent receptivity, the Plzf d/d endometrium fails to undergo decidualization in response to an artificial decidual stimulus, providing the in vivo validation for our earlier HESC culture findings. Collectively, our new Plzf d/d mouse model underscores the physiological importance of the PLZF transcription factor not only in endometrial stromal cell decidualization but also uterine receptivity, two uterine cellular processes that are indispensable for the establishment of pregnancy.
Collapse
Affiliation(s)
- Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| |
Collapse
|
3
|
Dahal S, Chaudhary P, Kim JA. Induction of promyelocytic leukemia zinc finger protein by miR-200c-3p restores sensitivity to anti-androgen therapy in androgen-refractory prostate cancer and inhibits the cancer progression via down-regulation of integrin α3β4. Cell Oncol (Dordr) 2023; 46:1113-1126. [PMID: 36995683 DOI: 10.1007/s13402-023-00803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
PURPOSE Androgen-refractory prostate cancer (ARPC) is one of the aggressive human cancers with metastatic capacity and resistance to androgen deprivation therapy (ADT). The present study investigated the genes responsible for ARPC progression and ADT resistance, and their regulatory mechanisms. METHODS Transcriptome analysis, co-immunoprecipitation, confocal microscopy, and FACS analysis were performed to determine differentially-expressed genes, integrin α3β4 heterodimer, and cancer stem cell (CSC) population. miRNA array, 3'-UTR reporter assay, ChIP assay, qPCR, and immunoblotting were used to determine differentially-expressed microRNAs, their binding to integrin transcripts, and gene expressions. A xenograft tumor model was used to assess tumor growth and metastasis. RESULTS Metastatic ARPC cell lines (PC-3 and DU145) exhibiting significant downregulation of ZBTB16 and AR showed significantly upregulated ITGA3 and ITGB4. Silencing either one of the integrin α3β4 heterodimer significantly suppressed ARPC survival and CSC population. miRNA array and 3'-UTR reporter assay revealed that miR-200c-3p, the most strongly downregulated miRNA in ARPCs, directly bound to 3'-UTR of ITGA3 and ITGB4 to inhibit the gene expression. Concurrently, miR-200c-3p also increased PLZF expression, which, in turn, inhibited integrin α3β4 expression. Combination treatment with miR-200c-3p mimic and AR inhibitor enzalutamide showed synergistic inhibitory effects on ARPC cell survival in vitro and tumour growth and metastasis of ARPC xenografts in vivo, and the combination effect was greater than the mimic alone. CONCLUSION This study demonstrated that miR-200c-3p treatment of ARPC is a promising therapeutic approach to restore the sensitivity to anti-androgen therapy and inhibit tumor growth and metastasis.
Collapse
Affiliation(s)
- Sadan Dahal
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Prakash Chaudhary
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
4
|
Arlier S, Kayisli UA, Semerci N, Ozmen A, Larsen K, Schatz F, Lockwood CJ, Guzeloglu-Kayisli O. Enhanced ZBTB16 Levels by Progestin-Only Contraceptives Induces Decidualization and Inflammation. Int J Mol Sci 2023; 24:10532. [PMID: 37445713 PMCID: PMC10341894 DOI: 10.3390/ijms241310532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Progestin-only long-acting reversible-contraceptive (pLARC)-exposed endometria displays decidualized human endometrial stromal cells (HESCs) and hyperdilated thin-walled fragile microvessels. The combination of fragile microvessels and enhanced tissue factor levels in decidualized HESCs generates excess thrombin, which contributes to abnormal uterine bleeding (AUB) by inducing inflammation, aberrant angiogenesis, and proteolysis. The- zinc finger and BTB domain containing 16 (ZBTB16) has been reported as an essential regulator of decidualization. Microarray studies have demonstrated that ZBTB16 levels are induced by medroxyprogesterone acetate (MPA) and etonogestrel (ETO) in cultured HESCs. We hypothesized that pLARC-induced ZBTB16 expression contributes to HESC decidualization, whereas prolonged enhancement of ZBTB16 levels triggers an inflammatory milieu by inducing pro-inflammatory gene expression and tissue-factor-mediated thrombin generation in decidualized HESCs. Thus, ZBTB16 immunostaining was performed in paired endometria from pre- and post-depo-MPA (DMPA)-administrated women and oophorectomized guinea pigs exposed to the vehicle, estradiol (E2), MPA, or E2 + MPA. The effect of progestins including MPA, ETO, and levonorgestrel (LNG) and estradiol + MPA + cyclic-AMP (E2 + MPA + cAMP) on ZBTB16 levels were measured in HESC cultures by qPCR and immunoblotting. The regulation of ZBTB16 levels by MPA was evaluated in glucocorticoid-receptor-silenced HESC cultures. ZBTB16 was overexpressed in cultured HESCs for 72 h followed by a ± 1 IU/mL thrombin treatment for 6 h. DMPA administration in women and MPA treatment in guinea pigs enhanced ZBTB16 immunostaining in endometrial stromal and glandular epithelial cells. The in vitro findings indicated that: (1) ZBTB16 levels were significantly elevated by all progestin treatments; (2) MPA exerted the greatest effect on ZBTB16 levels; (3) MPA-induced ZBTB16 expression was inhibited in glucocorticoid-receptor-silenced HESCs. Moreover, ZBTB16 overexpression in HESCs significantly enhanced prolactin (PRL), insulin-like growth factor binding protein 1 (IGFBP1), and tissue factor (F3) levels. Thrombin-induced interleukin 8 (IL-8) and prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA levels in control-vector-transfected HESCs were further increased by ZBTB16 overexpression. In conclusion, these results supported that ZBTB16 is enhanced during decidualization, and long-term induction of ZBTB16 expression by pLARCs contributes to thrombin generation through enhancing tissue factor expression and inflammation by enhancing IL-8 and PTGS2 levels in decidualized HESCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (S.A.); (U.A.K.); (N.S.); (A.O.); (K.L.); (F.S.); (C.J.L.)
| |
Collapse
|
5
|
Transcriptome profiling and proteomic validation reveals targets of the androgen receptor signaling in the BT-474 breast cancer cell line. Clin Proteomics 2022; 19:14. [PMID: 35568821 PMCID: PMC9107748 DOI: 10.1186/s12014-022-09352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that the androgen receptor (AR) and its endogenous ligands influence disease progression in breast cancer (BCa). However, AR-mediated changes in BCa differ among the various BCa subtypes according to their hormone receptor profile [i.e., presence/absence of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2, (HER2)]. Thus, we explored the androgen-regulated transcriptomic changes in the ER+PR+HER2+ BCa cell line, BT-474, and compared them with PR-mediated changes. METHODS We performed RNA sequencing analysis in treated BT-474 cells with dihydrotestosterone (DHT) and progesterone. Validation of the top ten differentially androgen-regulated genes and a number of other genes found in enriched signaling pathways was performed by qRT-PCR in BT-474 and other BCa cell lines. In addition, a parallel reaction monitoring targeted proteomic approach was developed to verify selected transcripts at the protein level. RESULTS In total 19,450 transcripts were detected, of which 224 were differentially regulated after DHT treatment. The increased expression of two well-known androgen-regulated genes, KLK2 (p < 0.05) and KLK3 (p < 0.001), confirmed the successful androgen stimulation in BT-474 cells. The transcription factor, ZBTB16, was the most highly upregulated gene, with ~ 1000-fold change (p < 0.001). Pathway enrichment analysis revealed downregulation of the DNA replication processes (p < 0.05) and upregulation of the androgen signaling and fatty acid metabolism pathways (p < 0.05). Changes related to progesterone treatment showed opposite effects in gene expression than DHT treatment. Similar expression profiles were observed among other BCa cell lines expressing high levels of AR (ZR75.1 and MBA-MB-453). The parallel reaction monitoring targeted proteomic analysis further confirmed that altered protein expression (KLK3, ALOX15B) in the supernatant and cell lysate of DHT-treated BT-474 cells, compared to control cells. DISCUSSION Our findings suggest that AR modulates the metabolism of BT-474 cells by affecting the expression of a large number of genes and proteins. Based on further pathway analysis, we suggest that androgen receptor acts as a tumor suppressor in the BT-474 cells.
Collapse
|
6
|
Gonçalves MFF, Lacerda SMDSN, Lara NDLEM, Oliveira CFAD, Figueiredo AFA, Brener MRG, Cavalcante MA, Santos AK, Campolina-Silva GH, Costa VV, Santana ACC, Lopes RA, Szawka RE, Costa GMJ. GATA-1 mutation alters the spermatogonial phase and steroidogenesis in adult mouse testis. Mol Cell Endocrinol 2022; 542:111519. [PMID: 34843900 DOI: 10.1016/j.mce.2021.111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
GATA-1 is a transcription factor from the GATA family, which features zinc fingers for DNA binding. This protein was initially identified as a crucial regulator of blood cell differentiation, but it is currently known that the Gata-1 gene expression is not limited to this system. Although the testis is also a site of significant GATA-1 expression, its role in testicular cells remains considerably unexplored. In the present study, we evaluated the testicular morphophysiology of adult ΔdblGATA mice with a mutation in the GATA-1 protein. Regarding testicular histology, GATA-1 mutant mice exhibited few changes in the seminiferous tubules, particularly in germ cells. A high proportion of differentiated spermatogonia, an increased number of apoptotic pre-leptotene spermatocytes (Caspase-3-positive), and a high frequency of sperm head defects were observed in ΔdblGATA mice. The main differences were observed in the intertubular compartment, as ΔdblGATA mice showed several morphofunctional changes in Leydig cells. Reduced volume, increased number and down-regulation of steroidogenic enzymes were observed in ΔdblGATA Leydig cells. Moreover, the mutant animal showed lower serum testosterone concentration and high LH levels. These results are consistent with the phenotypic and biometric data of mutant mice, i.e., shorter anogenital index and reduced accessory sexual gland weight. In conclusion, our findings suggest that GATA-1 protein is an important factor for germ cell differentiation as well as for the steroidogenic activity in the testis.
Collapse
Affiliation(s)
- Matheus Felipe Fonseca Gonçalves
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathália de Lima E Martins Lara
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina Felipe Alves de Oliveira
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - André Felipe Almeida Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcos Rocha Gouvêa Brener
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina Alcântara Cavalcante
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson Kenedy Santos
- Laboratory of Cardiac Signaling, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabriel Henrique Campolina-Silva
- Center for Research and Development of Pharmaceuticals, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian Vasconcelos Costa
- Center for Research and Development of Pharmaceuticals, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Clara Campideli Santana
- Laboratory of Endocrinology and Metabolism, Department of Physiology and Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberta Araújo Lopes
- Laboratory of Endocrinology and Metabolism, Department of Physiology and Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael Escorsim Szawka
- Laboratory of Endocrinology and Metabolism, Department of Physiology and Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Discovery proteomics defines androgen-regulated glycoprotein networks in prostate cancer cells, as well as putative biomarkers of prostatic diseases. Sci Rep 2021; 11:22208. [PMID: 34782677 PMCID: PMC8592995 DOI: 10.1038/s41598-021-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Supraphysiologic androgen (SPA) inhibits cell proliferation in prostate cancer (PCa) cells by transcriptional repression of DNA replication and cell-cycle genes. In this study, quantitative glycoprotein profiling identified androgen-regulated glycoprotein networks associated with SPA-mediated inhibition of PCa cell proliferation, and androgen-regulated glycoproteins in clinical prostate tissues. SPA-regulated glycoprotein networks were enriched for translation factors and ribosomal proteins, proteins that are known to be O-GlcNAcylated in response to various cellular stresses. Thus, androgen-regulated glycoproteins are likely to be targeted for O-GlcNAcylation. Comparative analysis of glycosylated proteins in PCa cells and clinical prostate tissue identified androgen-regulated glycoproteins that are differentially expressed prostate tissues at various stages of cancer. Notably, the enzyme ectonucleoside triphosphate diphosphohydrolase 5 was found to be an androgen-regulated glycoprotein in PCa cells, with higher expression in cancerous versus non-cancerous prostate tissue. Our glycoproteomics study provides an experimental framework for characterizing androgen-regulated proteins and glycoprotein networks, toward better understanding how this subproteome leads to physiologic and supraphysiologic proliferation responses in PCa cells, and their potential use as druggable biomarkers of dysregulated AR-dependent signaling in PCa cells.
Collapse
|
8
|
Bioinformatics Analysis of ZBTB16 as a Prognostic Marker for Ewing's Sarcoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1989917. [PMID: 34660783 PMCID: PMC8514890 DOI: 10.1155/2021/1989917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/19/2022]
Abstract
Objective The purpose of this study is to identify novel biomarkers for the prognosis of Ewing's sarcoma based on bioinformatics analysis. Methods The GSE63157 and GSE17679 datasets contain patient and healthy control microarray data that were downloaded from the Gene Expression Omnibus (GEO) database and analyzed through R language software to obtain differentially expressed genes (DEGs). Firstly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment, protein-protein interaction (PPI) networks, and Cytoscape Molecular Complex Detection (MCODE) plug-in were then used to compute the highest scores of the module. After survival analysis, the hub genes were lastly obtained from the two module genes. Results A total of 1181 DEGs were identified from the two GSEs. Through MCODE and survival analysis, we obtain 53 DEGs from the module and 29 overall survival- (OS-) related genes. ZBTB16 was the only downregulated gene after Venn diagrams. Survival analysis indicates that there was a significant correlation between the high expression of ZBTB16 and the OS of Ewing's sarcoma (ES), and the low expression group had an unfavorable OS when compared to the high expression group. Conclusions High expression of ZBTB16 may serve as a predictor biomarker of poor prognosis in ES patients.
Collapse
|
9
|
Huang CCF, Lingadahalli S, Morova T, Ozturan D, Hu E, Yu IPL, Linder S, Hoogstraat M, Stelloo S, Sar F, van der Poel H, Altintas UB, Saffarzadeh M, Le Bihan S, McConeghy B, Gokbayrak B, Feng FY, Gleave ME, Bergman AM, Collins C, Hach F, Zwart W, Emberly E, Lack NA. Functional mapping of androgen receptor enhancer activity. Genome Biol 2021; 22:149. [PMID: 33975627 PMCID: PMC8112059 DOI: 10.1186/s13059-021-02339-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/02/2021] [Indexed: 01/22/2023] Open
Abstract
Background Androgen receptor (AR) is critical to the initiation, growth, and progression of prostate cancer. Once activated, the AR binds to cis-regulatory enhancer elements on DNA that drive gene expression. Yet, there are 10–100× more binding sites than differentially expressed genes. It is unclear how or if these excess binding sites impact gene transcription. Results To characterize the regulatory logic of AR-mediated transcription, we generated a locus-specific map of enhancer activity by functionally testing all common clinical AR binding sites with Self-Transcribing Active Regulatory Regions sequencing (STARRseq). Only 7% of AR binding sites displayed androgen-dependent enhancer activity. Instead, the vast majority of AR binding sites were either inactive or constitutively active enhancers. These annotations strongly correlated with enhancer-associated features of both in vitro cell lines and clinical prostate cancer samples. Evaluating the effect of each enhancer class on transcription, we found that AR-regulated enhancers frequently interact with promoters and form central chromosomal loops that are required for transcription. Somatic mutations of these critical AR-regulated enhancers often impact enhancer activity. Conclusions Using a functional map of AR enhancer activity, we demonstrated that AR-regulated enhancers act as a regulatory hub that increases interactions with other AR binding sites and gene promoters.
Collapse
Affiliation(s)
- Chia-Chi Flora Huang
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Shreyas Lingadahalli
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Tunc Morova
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Dogancan Ozturan
- School of Medicine, Koç University, Istanbul, Turkey.,Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Eugene Hu
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Ivan Pak Lok Yu
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Simon Linder
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marlous Hoogstraat
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Suzan Stelloo
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Funda Sar
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Henk van der Poel
- Division of Urology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Umut Berkay Altintas
- School of Medicine, Koç University, Istanbul, Turkey.,Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Mohammadali Saffarzadeh
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Stephane Le Bihan
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Brian McConeghy
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Bengul Gokbayrak
- School of Medicine, Koç University, Istanbul, Turkey.,Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, USA
| | - Martin E Gleave
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Colin Collins
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Faraz Hach
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Eldon Emberly
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Nathan A Lack
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada. .,School of Medicine, Koç University, Istanbul, Turkey. .,Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
| |
Collapse
|
10
|
Yang J, Zhao R, Li L, Li G, Yang P, Ma J, Zhao S, Zhao H. Verification of a ZBTB16 variant in polycystic ovary syndrome patients. Reprod Biomed Online 2020; 41:724-728. [PMID: 32773339 PMCID: PMC10730780 DOI: 10.1016/j.rbmo.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/04/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
RESEARCH QUESTION This study investigated whether rs1784692 is a risk factor for polycystic ovary syndrome (PCOS) in Han Chinese women. DESIGN A case-control study was conducted in Han Chinese women, involving 526 PCOS patients and 522 control participants. A TaqMan MGB probe assay was used to genotype the variant rs1784692. Dominant and additive models were employed for genotype-phenotype association analysis in the PCOS and control samples. RESULTS The minor allele C of rs1784692 is protective against PCOS (odds ratio [OR] 0.556, 95% confidence interval [CI] 0.408-0.759, P = 1.83 × 10-4), even after adjustment for body mass index (BMI) and age (ORadj 0.539, 95% CI 0.391-0.743, Padj= 1.62 × 10-4). Genotype-phenotype analysis of the dominant model showed that mean BMI in the CC+CT group was higher than in the TT group in the PCOS group (27.12 ± 5.82 versus 24.57 ± 4.52, P = 1.0 × 10-3), but not in the control groups, indicating that the minor allele C of rs1784692 associates with BMI in women with PCOS. The mean LH (luteinizing hormone) concentration in the CC+CT group was lower than in the TT group in PCOS and control participants (9.33 ± 5.08 versus 10.93 ± 5.91, P = 0.036; 4.39 ± 1.66 versus 4.89 ± 2.07, P = 0.021). Genotype-phenotype analysis of additive model showed that mean BMI in TC group was higher than in the TT group in PCOS patients compared with control participants (27.14 ± 5.81 versus 24.57 ± 4.52, P = 3.06 × 10-3). CONCLUSIONS The SNP rs1784692 in gene ZBTB16 is protective against PCOS but is associated with increased BMI in Han Chinese women with PCOS.
Collapse
Affiliation(s)
- Jie Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Rusong Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame IN, USA
| | - Guangyu Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Ping Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China.
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China.
| |
Collapse
|
11
|
Long noncoding RNA PART1 restrains aggressive gastric cancer through the epigenetic silencing of PDGFB via the PLZF-mediated recruitment of EZH2. Oncogene 2020; 39:6513-6528. [PMID: 32901105 DOI: 10.1038/s41388-020-01442-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/19/2020] [Accepted: 08/21/2020] [Indexed: 01/26/2023]
Abstract
Current reports refer to the role of long noncoding RNA (lncRNA) prostate androgen-regulated transcript 1 (PART1) as a tumor suppressor in some types of cancer but as an oncogene in other kinds of cancer. In gastric cancer, it had been reported to be downregulated. However, the clinical significance and underlying mechanism of PART1 function in gastric cancer remains undefined. Here, seven differential expression levels of noncoding RNAs (DE-lncRNAs) were screened from gastric cancer through a probe reannotation of a human exon array. PART1 was selected for further study because of its high fold change number. In our cohort, PART1 was identified as a significant downregulated lncRNA in gastric cancer tissues by qPCR and in situ hybridization (ISH), and its low expression was significantly correlated with postoperative metastasis and short overall survival time after surgery. Through the results of gain-of-function experiments, PART1 was confirmed as a tumor suppressor that can decrease not only cell viability, migration, and invasion in vitro but also tumorigenesis and tumor metastasis in vivo. Mechanistically, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) showed that PART1 interacts with androgen receptor (AR), and then, promyelocytic leukemia zinc finger (PLZF) is upregulated in an androgen-independent manner. In a chain reaction, chromatin immunoprecipitation (ChIP) assay additionally illustrated that PLZF upregulation increased the enrichment of EZH2 and H3K27 trimethylation in the platelet-derived growth factor (PDGFB) promotor, thereby inhibition of PDGFB and the subsequent PDGFRβ/PI3K/Akt signaling pathway. Based on these findings, we showed PART1 plays a tumor suppressor role by promoting PLZF expression followed by recruitment of EZH2 to mediate epigenetic PDGFB silencing and downstream PI3K/Akt inhibition, suggesting that PART1 has a key role in restraining the aggressive ability of GC cells and providing a novel perspective on lncRNAs in GC progression.
Collapse
|
12
|
Advances of Zinc Signaling Studies in Prostate Cancer. Int J Mol Sci 2020; 21:ijms21020667. [PMID: 31963946 PMCID: PMC7014440 DOI: 10.3390/ijms21020667] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers and the second leading cause of cancer-related death among men worldwide. Despite progresses in early diagnosis and therapeutic strategies, prognosis for patients with advanced PCa remains poor. Noteworthily, a unique feature of healthy prostate is its highest level of zinc content among all soft tissues in the human body, which dramatically decreases during prostate tumorigenesis. To date, several reviews have suggested antitumor activities of zinc and its potential as a therapeutic strategy of PCa. However, an overview about the role of zinc and its signaling in PCa is needed. Here, we review literature related to the content, biological function, compounds and clinical application of zinc in PCa. We first summarize zinc content in prostate tissue and sera of PCa patients with their clinical relevance. We then elaborate biological functions of zinc signaling in PCa on three main aspects, including cell proliferation, death and tumor metastasis. Finally, we discuss clinical applications of zinc-containing compounds and proteins involved in PCa signaling pathways. Based on currently available studies, we conclude that zinc plays a tumor suppressive role and can serve as a biomarker in PCa diagnosis and therapies.
Collapse
|
13
|
Wang J, Li J, Xu W, Xia Q, Gu Y, Song W, Zhang X, Yang Y, Wang W, Li H, Zou K. Androgen promotes differentiation of PLZF + spermatogonia pool via indirect regulatory pattern. Cell Commun Signal 2019; 17:57. [PMID: 31142324 PMCID: PMC6542041 DOI: 10.1186/s12964-019-0369-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Background Androgen plays a pivotal role in spermatogenesis, accompanying a question how androgen acts on germ cells in testis since germ cells lack of androgen receptors (AR). Promyelocytic leukemia zinc-finger (PLZF) is essential for maintenance of undifferentiated spermatogonia population which is terminologically called spermatogonia progenitor cells (SPCs). Aims We aim to figure out the molecular connections between androgen and fates of PLZF+ SPCs population. Method Immunohistochemistry was conducted to confirm that postnatal testicular germ cells lacked endogenous AR. Subsequently, total cells were isolated from 5 dpp (day post partum) mouse testes, and dihydrotestosterone (DHT) and/or bicalutamide treatment manifested that Plzf was indirectly regulated by androgen. Then, Sertoli cells were purified to screen downstream targets of AR using ChIP-seq, and gene silence and overexpression were used to attest these interactions in Sertoli cells or SPCs-Sertoli cells co-culture system. Finally, these connections were further verified in vivo using androgen pharmacological deprivation mouse model. Results Gata2 is identified as a target of AR, and β1-integrin is a target of Wilms’ tumor 1 (WT1) in Sertoli cells. Androgen signal negatively regulate β1-integrin on Sertoli cells via Gata2 and WT1, and β1-integrin on Sertoli cells interacts with E-cadherin on SPCs to regulate SPCs fates. Conclusion Androgen promotes differentiation of PLZF+ spermatogonia pool via indirect regulatory pattern. Electronic supplementary material The online version of this article (10.1186/s12964-019-0369-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingjing Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Weigang NO.1, Xuanwu District, Nanjing, 210095, China
| | - Jinmei Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Weigang NO.1, Xuanwu District, Nanjing, 210095, China
| | - Wei Xu
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Xia
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Weigang NO.1, Xuanwu District, Nanjing, 210095, China
| | - Yunzhao Gu
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weixiang Song
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Weigang NO.1, Xuanwu District, Nanjing, 210095, China
| | - Xiaoyu Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Weigang NO.1, Xuanwu District, Nanjing, 210095, China
| | - Yang Yang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Weigang NO.1, Xuanwu District, Nanjing, 210095, China
| | - Wei Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Weigang NO.1, Xuanwu District, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Weigang NO.1, Xuanwu District, Nanjing, 210095, China.
| |
Collapse
|
14
|
Stopsack KH, Gerke T, Tyekucheva S, Mazzu YZ, Lee GSM, Chakraborty G, Abida W, Mucci LA, Kantoff PW. Low Expression of the Androgen-Induced Tumor Suppressor Gene PLZF and Lethal Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2019; 28:707-714. [PMID: 30602500 PMCID: PMC6532645 DOI: 10.1158/1055-9965.epi-18-1014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND 4%-9% of prostate cancers harbor homozygous deletions of the androgen-induced tumor suppressor gene, promyelocytic leukemia zinc finger (PLZF, ZBTB16). PLZF loss induces an in vitro phenotype of castration resistance and enzalutamide resistance. The association of low expression of PLZF and clinical outcomes is unclear. METHODS We assessed PLZF mRNA expression in patients diagnosed with primary prostate cancer during prospective follow-up of the Health Professionals Follow-up Study (HPFS; n = 254) and the Physicians' Health Study (PHS; n = 150), as well as in The Cancer Genome Atlas (n = 333). We measured PTEN status (using copy numbers and IHC) and transcriptional activation of the MAPK pathway. Patients from HPFS and PHS were followed for metastases and prostate cancer-specific mortality (median, 15.3 years; 113 lethal events). RESULTS PLZF mRNA expression was lower in tumors with PLZF deletions. There was a strong, positive association between intratumoral androgen receptor (AR) signaling and PLZF expression. PLZF expression was also lower in tumors with PTEN loss. Low PLZF expression was associated with higher MAPK signaling. Patients in the lowest quartile of PLZF expression compared with those in the highest quartile were more likely to develop lethal prostate cancer, independent of clinicopathologic features, Gleason score, and AR signaling (odds ratio, 3.17; 95% confidence interval, 1.32-7.60). CONCLUSIONS Low expression of the tumor suppressor gene PLZF is associated with a worse prognosis in primary prostate cancer. IMPACT Suppression of PLZF as a consequence of androgen deprivation may be undesirable. PLZF should be tested as a predictive marker for resistance to androgen deprivation therapy.
Collapse
Affiliation(s)
- Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Travis Gerke
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Svitlana Tyekucheva
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ying Z Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
15
|
Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet 2018; 14:e1007813. [PMID: 30566500 PMCID: PMC6300389 DOI: 10.1371/journal.pgen.1007813] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/06/2018] [Indexed: 11/19/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. Affected women frequently have metabolic disturbances including insulin resistance and dysregulation of glucose homeostasis. PCOS is diagnosed with two different sets of diagnostic criteria, resulting in a phenotypic spectrum of PCOS cases. The genetic similarities between cases diagnosed based on the two criteria have been largely unknown. Previous studies in Chinese and European subjects have identified 16 loci associated with risk of PCOS. We report a fixed-effect, inverse-weighted-variance meta-analysis from 10,074 PCOS cases and 103,164 controls of European ancestry and characterisation of PCOS related traits. We identified 3 novel loci (near PLGRKT, ZBTB16 and MAPRE1), and provide replication of 11 previously reported loci. Only one locus differed significantly in its association by diagnostic criteria; otherwise the genetic architecture was similar between PCOS diagnosed by self-report and PCOS diagnosed by NIH or non-NIH Rotterdam criteria across common variants at 13 loci. Identified variants were associated with hyperandrogenism, gonadotropin regulation and testosterone levels in affected women. Linkage disequilibrium score regression analysis revealed genetic correlations with obesity, fasting insulin, type 2 diabetes, lipid levels and coronary artery disease, indicating shared genetic architecture between metabolic traits and PCOS. Mendelian randomization analyses suggested variants associated with body mass index, fasting insulin, menopause timing, depression and male-pattern balding play a causal role in PCOS. The data thus demonstrate 3 novel loci associated with PCOS and similar genetic architecture for all diagnostic criteria. The data also provide the first genetic evidence for a male phenotype for PCOS and a causal link to depression, a previously hypothesized comorbid disease. Thus, the genetics provide a comprehensive view of PCOS that encompasses multiple diagnostic criteria, gender, reproductive potential and mental health. We performed an international meta-analysis of genome-wide association studies combining over 10,000,000 genetic markers in more than 10,000 European women with polycystic ovary syndrome (PCOS) and 100,000 controls. We found three new risk variants associated with PCOS. Our data demonstrate that the genetic architecture does not differ based on the diagnostic criteria used for PCOS. We also demonstrate a genetic pathway shared with male pattern baldness, representing the first evidence for shared disease biology in men, and shared genetics with depression, previously postulated based only on observational studies.
Collapse
|
16
|
The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol 2018; 21:126-144. [DOI: 10.1007/s12094-018-1910-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/18/2018] [Indexed: 01/27/2023]
|
17
|
Mohammad OS, Nyquist MD, Schweizer MT, Balk SP, Corey E, Plymate S, Nelson PS, Mostaghel EA. Supraphysiologic Testosterone Therapy in the Treatment of Prostate Cancer: Models, Mechanisms and Questions. Cancers (Basel) 2017; 9:E166. [PMID: 29210989 PMCID: PMC5742814 DOI: 10.3390/cancers9120166] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Since Huggins defined the androgen-sensitive nature of prostate cancer (PCa), suppression of systemic testosterone (T) has remained the most effective initial therapy for advanced disease although progression inevitably occurs. From the inception of clinical efforts to suppress androgen receptor (AR) signaling by reducing AR ligands, it was also recognized that administration of T in men with castration-resistant prostate cancer (CRPC) could result in substantial clinical responses. Data from preclinical models have reproducibly shown biphasic responses to T administration, with proliferation at low androgen concentrations and growth inhibition at supraphysiological T concentrations. Many questions regarding the biphasic response of PCa to androgen treatment remain, primarily regarding the mechanisms driving these responses and how best to exploit the biphasic phenomenon clinically. Here we review the preclinical and clinical data on high dose androgen growth repression and discuss cellular pathways and mechanisms likely to be involved in mediating this response. Although meaningful clinical responses have now been observed in men with PCa treated with high dose T, not all men respond, leading to questions regarding which tumor characteristics promote response or resistance, and highlighting the need for studies designed to determine the molecular mechanism(s) driving these responses and identify predictive biomarkers.
Collapse
Affiliation(s)
- Osama S Mohammad
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | | | - Michael T Schweizer
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- School of Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Stephen P Balk
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA.
| | - Stephen Plymate
- School of Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Elahe A Mostaghel
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- School of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
18
|
Jin Y, Nenseth HZ, Saatcioglu F. Role of PLZF as a tumor suppressor in prostate cancer. Oncotarget 2017; 8:71317-71324. [PMID: 29050363 PMCID: PMC5642638 DOI: 10.18632/oncotarget.19813] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
The promyelocytic leukemia zinc finger (PLZF), also known as ZBTB16 (Zinc Finger And BTB Domain Containing 16), is a transcription factor involved in the regulation of diverse biological processes, including cell proliferation, differentiation, organ development, stem cell maintenance and innate immune cell development. A number of recent studies have now implicated PLZF in cancer progression as a tumor suppressor. However, in certain cancer types, PLZF may function as an oncoprotein. Here, we summarize our current knowledge on the role of PLZF in various cancer types, in particular prostate cancer, including its deregulation, genomic alterations and potential functions in prostate cancer progression.
Collapse
Affiliation(s)
- Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | | | - Fahri Saatcioglu
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Kommagani R, Szwarc MM, Vasquez YM, Peavey MC, Mazur EC, Gibbons WE, Lanz RB, DeMayo FJ, Lydon JP. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization. PLoS Genet 2016; 12:e1005937. [PMID: 27035670 PMCID: PMC4817989 DOI: 10.1371/journal.pgen.1005937] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/24/2016] [Indexed: 11/17/2022] Open
Abstract
Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights into the molecular mechanisms by which progesterone drives hESC decidualization, our findings provide a new conceptual framework that could lead to new avenues for diagnosis and/or treatment of adverse reproductive outcomes associated with a dysfunctional uterus.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yasmin M. Vasquez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary C. Peavey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Erik C. Mazur
- Houston Fertility Specialists, Houston, Texas, United States of America
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rainer B. Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
20
|
Hsieh CL, Botta G, Gao S, Li T, Van Allen EM, Treacy DJ, Cai C, He HH, Sweeney CJ, Brown M, Balk SP, Nelson PS, Garraway LA, Kantoff PW. PLZF, a tumor suppressor genetically lost in metastatic castration-resistant prostate cancer, is a mediator of resistance to androgen deprivation therapy. Cancer Res 2015; 75:1944-8. [PMID: 25808865 DOI: 10.1158/0008-5472.can-14-3602] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/16/2015] [Indexed: 01/18/2023]
Abstract
Whole-exome sequencing of metastatic castration-resistant prostate cancer (mCRPC) reveals that 5% to 7% of tumors harbor promyelocytic leukemia zinc finger (PLZF) protein homozygous deletions. PLZF is a canonical androgen-regulated putative tumor suppressor gene whose expression is inhibited by androgen deprivation therapy (ADT). Here, we demonstrate that knockdown of PLZF expression promotes a CRPC and enzalutamide-resistant phenotype in prostate cancer cells. Reintroduction of PLZF expression is sufficient to reverse androgen-independent growth mediated by PLZF depletion. PLZF loss enhances CRPC tumor growth in a xenograft model. Bioinformatic analysis of the PLZF cistrome shows that PLZF negatively regulates multiple pathways, including the MAPK pathway. Accordingly, our data support an oncogenic program activated by ADT. This acquired mechanism together with the finding of genetic loss in CRPC implicates PLZF inactivation as a mechanism promoting ADT resistance and the CRPC phenotype.
Collapse
Affiliation(s)
| | - Ginevra Botta
- Department of Medical Oncology, and Broad Institute, Cambridge, Massachusetts
| | - Shuai Gao
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | | | - Eliezer M Van Allen
- Department of Medical Oncology, and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | | | - Changmeng Cai
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Myles Brown
- Department of Medical Oncology, and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Peter S Nelson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Levi A Garraway
- Department of Medical Oncology, and Broad Institute, Cambridge, Massachusetts.
| | | |
Collapse
|
21
|
Xiao GQ, Unger P, Yang Q, Kinoshita Y, Singh K, McMahon L, Nastiuk K, Sha K, Krolewski J, Burstein D. Loss of PLZF expression in prostate cancer by immunohistochemistry correlates with tumor aggressiveness and metastasis. PLoS One 2015; 10:e0121318. [PMID: 25807461 PMCID: PMC4373907 DOI: 10.1371/journal.pone.0121318] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
PLZF is a transcription repressor, which plays a critical role in development, spermatogenesis and oncogenesis. Down-regulation of PLZF has been found in various tumor cell lines. There has been virtually no tissue study on the expression of PLZF in prostate cancer (PCa). PCa is a heterogeneous disease, most of which are indolent and non-lethal. Currently there are no biomarkers that distinguish indolent from aggressive PCa; therefore there is an urgent need for such markers to provide clinical decision support. This study aimed to investigate the expression of PLZF by immunohistochemistry in different grade as well as metastatic PCa and to correlate the alteration of PLZF expression with PCa aggressiveness. We studied a total of 83 primary PCa from biopsies, 43 metastatic PCa and 8 paired primary and metastatic PCa from radical prostatectomies with lymph node dissection. Our results demonstrated that PLZF was strongly expressed in almost all (~100%) benign luminal cells (n=77) and low grade (Gleason pattern 3) PCa (n=70) and weak or absent (100%) in basal cells (n=70). Decreased or lost expression of PLZF was evidenced in 26% of high-grade (Gleason 4 and 5) primary PCa (n=70) and 84% metastatic PCa (n=43). The primary high grade PCa in the prostatectomies shared similar PLZF loss/decrease and histomorphology to that of paired parallel lymph node metastases. These data demonstrated that down-regulation of PLZF is an important molecular process for tumor progression and loss of PLZF expression detected by routine immunohistochemistry is a promising and valuable biomarker for PCa aggressiveness and metastasis in the personalized care of PCa.
Collapse
Affiliation(s)
- Guang-Qian Xiao
- Departments of Pathology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| | - Pamela Unger
- Departments of Pathology, Lenox Hill Hospital, New York, New York, United States of America
| | - Qi Yang
- Departments of Pathology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Yayoi Kinoshita
- Departments of Pathology, Mount Sinai Medical Center, New York, New York, United States of America
| | - Kyra Singh
- Departments of Pathology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Loralee McMahon
- Departments of Pathology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kent Nastiuk
- Departments of Pathology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kai Sha
- Departments of Pathology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - John Krolewski
- Departments of Pathology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - David Burstein
- Departments of Pathology, Mount Sinai Medical Center, New York, New York, United States of America
| |
Collapse
|
22
|
Molecular circuit involving KLK4 integrates androgen and mTOR signaling in prostate cancer. Proc Natl Acad Sci U S A 2013; 110:E2572-81. [PMID: 23798432 DOI: 10.1073/pnas.1304318110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The androgen receptor (AR) and the phosphoinositide 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin (mTOR) signaling are two of the major proliferative pathways in a number of tissues and are the main therapeutic targets in various disorders, including prostate cancer (PCa). Previous work has shown that there is reciprocal feedback regulation of PI3K and AR signaling in PCa, suggesting that cotargeting both pathways may enhance therapeutic efficacy. Here we show that proteins encoded by two androgen-regulated genes, kallikrein related peptidase 4 (KLK4) and promyelocytic leukemia zinc finger (PLZF), integrate optimal functioning of AR and mTOR signaling in PCa cells. KLK4 interacts with PLZF and decreases its stability. PLZF in turn interacts with AR and inhibits its function as a transcription factor. PLZF also activates expression of regulated in development and DNA damage responses 1, an inhibitor of mTORC1. Thus, a unique molecular switch is generated that regulates both AR and PI3K signaling. Consistently, KLK4 knockdown results in a significant decline in PCa cell proliferation in vitro and in vivo, decreases anchorage-independent growth, induces apoptosis, and dramatically sensitizes PCa cells to apoptosis-inducing agents. Furthermore, in vivo nanoliposomal KLK4 siRNA delivery in mice bearing PCa tumors results in profound remission. These results demonstrate that the activities of AR and mTOR pathways are maintained by KLK4, which may thus be a viable target for therapy.
Collapse
|
23
|
Sun T, Wang X, He HH, Sweeney CJ, Liu SX, Brown M, Balk S, Lee GS, Kantoff PW. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene 2013; 33:2790-800. [PMID: 23770851 DOI: 10.1038/onc.2013.230] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 12/18/2022]
Abstract
Hormone-sensitive prostate cancer typically progresses to castration resistant prostate cancer (CRPC) after the androgen deprivation therapy. We investigated the impact of microRNAs (miRs) in the transition of prostate cancer to CRPC. MiR-221/-222 was highly expressed in bone metastatic CRPC tumor specimens. We previously demonstrated that transient overexpression of miR-221/-222 in LNCaP promoted the development of the CRPC phenotype. In current study, we show that stably overexpressing miR-221 confers androgen independent (AI) cell growth in LNCaP by rescuing LNCaP cells from growth arrest at G1 phase due to the lack of androgen. Overexpressing of miR-221 in LNCaP reduced the transcription of a subgroup of androgen-responsive genes without affecting the androgen receptor (AR) or AR-androgen integrity. By performing systematic biochemical and bioinformatical analyses, we identified two miR-221 targets, HECTD2 and RAB1A, which could mediate the development of CRPC phenotype in multiple prostate cancer cell lines. Downregulation of HECTD2 significantly affected the androgen-induced and AR-mediated transcription, and downregulation of HECTD2 or RAB1A enhances AI cell growth. As a result of the elevated expression of miR-221, expression of many cell cycle genes was altered and pathways promoting epithelial to mesenchymal transition/tumor metastasis were activated. We hypothesize that a major biological consequence of upregulation of miR-221 is reprogramming of AR signaling, which in turn may mediate the transition to the CRPC phenotype.
Collapse
Affiliation(s)
- T Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - X Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - H H He
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C J Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S X Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Balk
- Cancer Biology Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - G-Sm Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Cui J, Yang Y, Zhang C, Hu P, Kan W, Bai X, Liu X, Song H. FBI-1 functions as a novel AR co-repressor in prostate cancer cells. Cell Mol Life Sci 2011; 68:1091-103. [PMID: 20812024 PMCID: PMC11114496 DOI: 10.1007/s00018-010-0511-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 08/12/2010] [Accepted: 08/16/2010] [Indexed: 01/25/2023]
Abstract
The pro-oncogene FBI-1, encoded by Zbtb7a, is a transcriptional repressor that belongs to the POK (POZ/BTB and Krüppel) protein family. In this study, we investigated a potential interaction between androgen receptor (AR) signaling and FBI-1 and demonstrated that overexpression of FBI-1 inhibited ligand-dependent AR activation. A protein-protein interaction was identified between FBI-1 and AR in a ligand-dependent manner. Furthermore, FBI-1, AR and SMRT formed a ternary complex and FBI-1 enhanced the recruitment of NCoR and SMRT to endogenous PSA upstream sequences. Our data also indicated that the FBI-1-mediated inhibition of AR transcriptional activity is partially dependent on HDAC. Interestingly, FBI-1 plays distinct roles in regulating LNCaP (androgen-dependent) and PC-3 cell (androgen-independent) proliferation.
Collapse
Affiliation(s)
- Jiajun Cui
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
- Biotech Pharmaceuticals Co., Ltd, 100176 Beijing, People’s Republic of China
| | - Yutao Yang
- Beijing Institute for Neuroscience, Capital Medical University, 100069 Beijing, People’s Republic of China
| | - Chuanfu Zhang
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| | - Pinliang Hu
- Biotech Pharmaceuticals Co., Ltd, 100176 Beijing, People’s Republic of China
| | - Wei Kan
- Biotech Pharmaceuticals Co., Ltd, 100176 Beijing, People’s Republic of China
| | - Xianhong Bai
- Biotech Pharmaceuticals Co., Ltd, 100176 Beijing, People’s Republic of China
| | - Xuelin Liu
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| | - Hongbin Song
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| |
Collapse
|
25
|
A corticosteroid-responsive transcription factor, promyelocytic leukemia zinc finger protein, mediates protection of the cochlea from acoustic trauma. J Neurosci 2011; 31:735-41. [PMID: 21228182 DOI: 10.1523/jneurosci.3955-10.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Animals can be induced to resist cochlear damage associated with acoustic trauma by exposure to a variety of "conditioning" stimuli, including restraint stress, moderate level sound, heat stress, hypoxia, and corticosteroids. Here we identify in mice a corticosteroid-responsive transcription factor, PLZF (promyelocytic leukemia zinc finger protein), which mediates conditioned protection of the cochlea from acoustic trauma. PLZF mRNA levels in the cochlea are increased following conditioning stimuli, including restraint stress, dexamethasone administration, and moderate-to-high level acoustic stimulation. Heterozygous mutant (luxoid.Zbtb16(LU)/J) mice deficient in PLZF have hearing and responses to acoustic trauma similar to their wild type littermates but are unable to generate conditioning-induced protection from acoustic trauma. PLZF immunoreactivity is present in the spiral ganglion, lateral wall of the cochlea, and organ of Corti, all targets for acoustic trauma. PLZF is also present in the brain and PLZF mRNA in brain is elevated following conditioning stimuli. The identification of a transcription factor that mediates conditioned protection from trauma provides a tool for understanding the protective action of corticosteroids, which are widely used in treating acute hearing loss, and has relevance to understanding the role of corticosteroids in trauma protection.
Collapse
|
26
|
Chen H, Libertini SJ, George M, Dandekar S, Tepper CG, Al-Bataina B, Kung HJ, Ghosh PM, Mudryj M. Genome-wide analysis of androgen receptor binding and gene regulation in two CWR22-derived prostate cancer cell lines. Endocr Relat Cancer 2010; 17:857-73. [PMID: 20634343 PMCID: PMC3539310 DOI: 10.1677/erc-10-0081] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Prostate carcinoma (CaP) is a heterogeneous multifocal disease where gene expression and regulation are altered not only with disease progression but also between metastatic lesions. The androgen receptor (AR) regulates the growth of metastatic CaPs; however, sensitivity to androgen ablation is short lived, yielding to emergence of castrate-resistant CaP (CRCaP). CRCaP prostate cancers continue to express the AR, a pivotal prostate regulator, but it is not known whether the AR targets similar or different genes in different castrate-resistant cells. In this study, we investigated AR binding and AR-dependent transcription in two related castrate-resistant cell lines derived from androgen-dependent CWR22-relapsed tumors: CWR22Rv1 (Rv1) and CWR-R1 (R1). Expression microarray analysis revealed that R1 and Rv1 cells had significantly different gene expression profiles individually and in response to androgen. In contrast, AR chromatin immunoprecipitation (ChIP) combined with promoter DNA microarrays (ChIP-on-chip) studies showed that they have a similar AR-binding profile. Coupling of the microarray study with ChIP-on-chip analysis identified direct AR targets. The most prominent function of transcripts that were direct AR targets was transcriptional regulation, although only one transcriptional regulator, CCAAT/enhancer binding protein δ, was commonly regulated in both lines. Our results indicate that the AR regulates the expression of different transcripts in the two lines, and demonstrate the versatility of the AR-regulated gene expression program in prostate tumors.
Collapse
Affiliation(s)
- Honglin Chen
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gupta S, Wang Y, Ramos-Garcia R, Shevrin D, Nelson JB, Wang Z. Inhibition of 5alpha-reductase enhances testosterone-induced expression of U19/Eaf2 tumor suppressor during the regrowth of LNCaP xenograft tumor in nude mice. Prostate 2010; 70:1575-85. [PMID: 20564326 PMCID: PMC3076187 DOI: 10.1002/pros.21193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Intermittent androgen deprivation therapy (IADT) was developed to improve the quality of life and retard prostate cancer progression to castration resistance. IADT involves regrowth of the tumor during the off cycle upon testosterone recovery. Our previous studies showed that testosterone is more potent than dihydrotestosterone (DHT) in the induction of a subset of androgen-responsive genes during rat prostate regrowth. However, it is not clear if the same phenomenon would occur during androgen-induced regrowth of prostate tumors. Understanding the differences between testosterone and DHT in inducing androgen-responsive genes during prostate tumor regrowth may provide new insight for improving IADT. METHODS Nude mice bearing androgen-sensitive LNCaP xenograft were castrated and followed up for 7-10 days before being randomized into various androgen manipulations, consisting of continuous castration (C) or testosterone replacement (T) in the absence or presence of dutasteride (D), a 5alpha-reductase inhibitor that blocks the conversion of testosterone to DHT. Testes-intact animals in the absence or presence of D were used as controls. The expression of five androgen-responsive genes, including the tumor suppressor U19/Eaf2, was determined using real-time RT-PCR, 3 days after randomization. RESULTS In LNCaP tumors, the expression of U19/Eaf2 was higher in the T+D group as compared with T alone (2.87-fold, P < 0.05). In contrast, dutasteride treatment in testes-intact animals inhibited the expression of U19/Eaf2. CONCLUSIONS Inhibition of 5alpha-reductase during LNCaP tumor regrowth enhanced the expression of U19/Eaf2, an androgen-regulated tumor suppressor. This finding suggests that off cycle 5alpha-reductase inhibition may enhance the efficacy of IADT.
Collapse
Affiliation(s)
- Shubham Gupta
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yujuan Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Daniel Shevrin
- North Shore University Health System Medical Group, Evanston, Illinois
| | - Joel B Nelson
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhou Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Abstract
LYRIC/AEG-1 and its altered expression have been linked to carcinogenesis in prostate, brain and melanoma as well as promoting chemoresistance and metastasis in breast cancer. LYRIC/AEG-1 function remains unclear, although LYRIC/AEG-1 is activated by oncogenic HA-RAS, through binding of c-myc to its promoter, which in turn regulates the key components of the PI3-kinase and nuclear factor-kappaB pathways. We have identified the transcriptional repressor PLZF as an interacting protein of LYRIC/AEG through a yeast two-hybrid screen. PLZF regulates the expression of genes involved in cell growth and apoptosis including c-myc. Coexpression of LYRIC/AEG-1 with PLZF leads to a reduction in PLZF-mediated repression by reducing PLZF binding to promoters. We have confirmed that nuclear LYRIC/AEG-1 and PLZF interact in mammalian cells via the N- and C termini of LYRIC/AEG-1 and a region C terminal to the RD2 domain of PLZF. Both proteins colocalize to nuclear bodies containing histone deacetylases, which are known to promote PLZF-mediated repression. Our data suggest one mechanism for cells with altered LYRIC/AEG-1 expression to evade apoptosis and increase cell growth during tumourigenesis through the regulation of PLZF repression.
Collapse
|
29
|
The GTPase domain of Galphao contributes to the functional interaction of Galphao with the promyelocytic leukemia zinc finger protein. Cell Mol Biol Lett 2008; 14:46-56. [PMID: 18953495 PMCID: PMC6275613 DOI: 10.2478/s11658-008-0033-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/11/2008] [Indexed: 11/23/2022] Open
Abstract
Go, one of the most abundant heterotrimeric G proteins in the brain, is classified as a member of the Gi/Go family based on its homology to Gi proteins. Recently, we identified promyelocytic leukemia zinc finger protein (PLZF) as a candidate downstream effector for the alpha subunit of Go (Gαo). Activated Gαo interacts with PLZF and augments its function as a repressor of transcription and cell growth. G protein-coupled receptor-mediated Gαo activation also enhanced PLZF function. In this study, we determined that the GTPase domain of Gαo contributes to Gαo:PLZF interaction. We also showed that the Gαo GTPase domain is important in modulating the function of PLZF. This data indicates that the GTPase domain of Gαo may be necessary for the functional interaction of Gαo with PLZF.
Collapse
|
30
|
|
31
|
Náray-Fejes-Tóth A, Boyd C, Fejes-Tóth G. Regulation of epithelial sodium transport by promyelocytic leukemia zinc finger protein. Am J Physiol Renal Physiol 2008; 295:F18-26. [PMID: 18448589 DOI: 10.1152/ajprenal.00573.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aldosterone is the principal regulator of Na homeostasis, and thereby blood pressure. One of the main targets of aldosterone is the epithelial Na channel (ENaC) located in the apical membrane of target cells. Previous studies identified several genes involved in the regulation of ENaC such as SGK1; however, SGK1 knockout mice have only a mild salt-losing phenotype, indicating that further genes must be involved in the action of aldosterone. In our search for further aldosterone-regulated genes, we discovered that aldosterone, at physiological concentrations, induces the expression of the promyelocytic leukemia zinc finger protein (PLZF) in renal cortical collecting duct (CCD) cell lines that stably express mineralocorticoid receptors (MRs). This effect is rapid and does not require de novo protein synthesis, suggesting a direct action. Surprisingly, stable overexpression of human or mouse PLZF isoforms significantly decreased transepithelial Na transport in CCD cells while having no effect on the integrity of the monolayers. In parallel with the decline in Na transport, PLZF suppressed the mRNA levels of beta- and gamma-ENaC subunits. These observations suggest that PLZF is a negative regulator of ENaC in renal epithelial cells and might be part of a negative feedback loop that limits aldosterone's stimulatory effects on sodium reabsorption.
Collapse
|
32
|
Won JH, Park JS, Ju HH, Kim S, Suh-Kim H, Ghil SH. The alpha subunit of Go interacts with promyelocytic leukemia zinc finger protein and modulates its functions. Cell Signal 2008; 20:884-91. [PMID: 18262754 DOI: 10.1016/j.cellsig.2007.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 12/21/2007] [Accepted: 12/21/2007] [Indexed: 12/01/2022]
Abstract
Heterotrimeric GTP-binding proteins (G proteins) mediate signal transduction generated by neurotransmitters and hormones. Go, a member of the Go/Gi family, is the most abundant heterotrimeric G protein in the brain. Most mechanistic analyses on Go activation demonstrate that its action is mediated by the Gbetagamma dimer; downstream effectors for its alpha subunit (Goalpha) have not been clearly defined. Here, we employ the yeast two-hybrid system to screen for Goalpha-interacting partners in a cDNA library from human fetal brain. The transcription factor promyelocytic leukemia zinc finger protein (PLZF) specifically bound to Goalpha. Interactions between PLZF and Goalpha were confirmed using in vitro and in vivo affinity binding assays. Activated Goalpha interacted directly with PLZF, and enhanced its function as a transcriptional and cell growth suppressor. Notably, PLZF activity was additionally promoted by the Go/ialpha-coupled cannabinoid receptor (CB) in HL60 cells endogenously expressing CB and PLZF. These results collectively suggest that Goalpha modulates the function of PLZF via direct interactions. Our novel findings provide insights into the diverse cellular roles of Goalpha and its coupled receptor.
Collapse
Affiliation(s)
- Jung Hee Won
- Department of Life Science, Kyonggi University, Suwon 443-760, South Korea
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The PLZF gene is one of five partners fused to the retinoic acid receptor alpha in acute promyelocytic leukemia. PLZF encodes a DNA-binding transcriptional repressor and the PLZF-RARalpha fusion protein like other RARalpha fusions can inhibit the genetic program mediated by the wild tpe retinoic acid receptor. However an increasing body of literature indicates an important role for the PLZF gene in growth control and development. This information suggests that loss of PLZF function might also contribute to leukemogenesis.
Collapse
Affiliation(s)
- M J McConnell
- Division of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, 303 E Superior St, Chicago, IL 60611, USA
| | | |
Collapse
|
34
|
Chen S, Xu Y, Yuan X, Bubley GJ, Balk SP. Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci U S A 2006; 103:15969-74. [PMID: 17043241 PMCID: PMC1635111 DOI: 10.1073/pnas.0604193103] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Androgen receptors (ARs) are phosphorylated at multiple sites in response to ligand binding, but the kinases mediating AR phosphorylation and the importance of these kinases in AR function have not been established. Here we show that cyclin-dependent kinase 1 (Cdk1) mediates AR phosphorylation at Ser-81 and increases AR protein expression, and that Cdk1 inhibitors decrease AR Ser-81 phosphorylation, protein expression, and transcriptional activity in prostate cancer (PCa) cells. The decline in AR protein expression mediated by the Cdk inhibitor roscovitine was prevented by proteosome inhibitors, indicating that Cdk1 stabilizes AR protein, although roscovitine also decreased AR message levels. Analysis of an S81A AR mutant demonstrated that this site is not required for transcriptional activity or Cdk1-mediated AR stabilization in transfected cells. The AR is active and seems to be stabilized by low levels of androgen in "androgen-independent" PCas that relapse subsequent to androgen-deprivation therapy. Significantly, the expression of cyclin B and Cdk1 was increased in these tumors, and treatment with roscovitine abrogated responses to low levels of androgen in the androgen-independent C4-2 PCa cell line. Taken together, these findings identify Cdk1 as a Ser-81 kinase and indicate that Cdk1 stabilizes AR protein by phosphorylation at a site(s) distinct from Ser-81. Moreover, these results indicate that increased Cdk1 activity is a mechanism for increasing AR expression and stability in response to low androgen levels in androgen-independent PCas, and that Cdk1 antagonists may enhance responses to androgen-deprivation therapy.
Collapse
Affiliation(s)
- Shaoyong Chen
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Youyuan Xu
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Xin Yuan
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Glenn J. Bubley
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Steven P. Balk
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Kikugawa T, Kinugasa Y, Shiraishi K, Nanba D, Nakashiro KI, Tanji N, Yokoyama M, Higashiyama S. PLZF regulates Pbx1 transcription and Pbx1-HoxC8 complex leads to androgen-independent prostate cancer proliferation. Prostate 2006; 66:1092-9. [PMID: 16637071 DOI: 10.1002/pros.20443] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Promyelocytic leukemia zinc finger (PLZF) protein, a transcriptional repressor and negative regulator of the cell cycle, has been characterized as a prostatic androgen-responsive gene. DU145 cells show androgen-independent growth and lack PLZF gene expression. METHODS We analyzed PLZF-regulating genes by DNA microarray using DU145 cells infected with LacZ- or PLZF-carrying adenoviruses. RESULTS DNA microarray revealed that Pbx1 is a prominent suppressed gene in PLZF-overexpressing DU145 cells. Androgen receptor (AR)-expressing DU145 cells recovered androgen-dependent PLZF expression and subsequent repression of Pbx1 expression. Immunoprecipitation of Pbx1 in DU145 cells revealed a Pbx1-HoxC8 heterocomplex. siRNAs for Pbx1 and HoxC8 knocked downexpression of each, and this suppressed androgen-independent cell growth. Double knockdown of both Pbx1 and HoxC8 suppressed cell growth much more significantly. CONCLUSIONS Androgen-independent cell line DU145 cells lack PLZF gene expression, resulting in the upregulation of Pbx1 and HoxC8 expression. The Pbx1-HoxC8 heterocomplex may lead to androgen-independent growth in prostate cancer.
Collapse
MESH Headings
- Androgens/physiology
- Blotting, Western
- Cell Cycle/genetics
- Cell Cycle/physiology
- Cell Line, Tumor
- Cell Proliferation
- DNA, Neoplasm/analysis
- DNA, Neoplasm/genetics
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Down-Regulation
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Genes, Tumor Suppressor/physiology
- Homeodomain Proteins/analysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Humans
- Kruppel-Like Transcription Factors
- Male
- Neoplasms, Hormone-Dependent/chemistry
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/pathology
- Neoplasms, Hormone-Dependent/physiopathology
- Oligonucleotide Array Sequence Analysis
- Pre-B-Cell Leukemia Transcription Factor 1
- Promyelocytic Leukemia Zinc Finger Protein
- Prostatic Neoplasms/chemistry
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/physiopathology
- Protein Binding
- Proto-Oncogene Proteins/analysis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/analysis
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic/physiology
- Transfection
Collapse
Affiliation(s)
- Tadahiko Kikugawa
- Department of Biochemistry and Molecular Genetics, Ehime University School of Medicine, Shitsukawa, To-on, Ehime, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gao YK, Jiang M, Yang T, Chen JY. Analysis of the interaction between hPFTAIRE1 and PLZF in a yeast two-hybrid system. Acta Biochim Biophys Sin (Shanghai) 2006; 38:164-70. [PMID: 16518540 DOI: 10.1111/j.1745-7270.2006.00145.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
hPFTAIRE1 is a Cdc2-related kinase family member. To search its substrates and regulatory proteins, hPFTAIRE1 was fused to LexA and used as a bait to screen a human brain LexA two-hybrid library. In this screening, seven hPFTAIRE1 interacting proteins, including promyelocytic leukemia zinc finger (PLZF), were obtained. The interaction between PLZF and hPFTAIRE1 was confirmed by beta-galactosidase assay and Leu growth activity. PLZF encodes a transcription factor belonging to the POZ/BTB domain and Krüpel zinc finger (POK) family. The highly conserved POZ/BTB domain plays a critical role in protein-protein interaction. We deleted the POZ/BTB and Krüpel zinc finger domains, respectively, and observed the interaction between hPFTAIRE1 and truncated PLZFs by liquid beta-galactosidase activity assay. A weak interaction was detected between hPFTAIRE1 and PLZF. We also observed the interaction between PLZF and another Cdc2-related kinase, PCTAIRE1. A similar result was observed. The interaction between PLZF and hPFTAIRE1 or PCTAIRE1 was confirmed by co-immunoprecipitation assay in a yeast system. PLZF is a phosphoprotein and plays multiple roles during cell growth. Our results suggest that hPFTAIRE1 and PCTAIRE1 may play important roles in the functional regulation of PLZF.
Collapse
Affiliation(s)
- Yan-Kun Gao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|