1
|
Nayeem MJ, Yamamura A, Hayashi H, Muramatsu H, Nakamura K, Sassa N, Sato M. Imatinib mesylate inhibits androgen-independent PC-3 cell viability, proliferation, migration, and tumor growth by targeting platelet-derived growth factor receptor-α. Life Sci 2022; 288:120171. [PMID: 34822800 DOI: 10.1016/j.lfs.2021.120171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
AIM The abnormal expression of oncogenic tyrosine kinase receptors such as platelet-derived growth factor receptors (PDGFRs) has been reported in cancer progression. However, the role of PDGFRs in the human androgen-independent prostate cancer PC-3 cell line is not well understood. Thus, this study examined the role of PDGFRs in androgen-independent PC-3 cells. MAIN METHODS PDGFR mRNA and protein expression was determined by quantitative real-time PCR and western blotting, respectively. The effects of the tyrosine kinase inhibitor imatinib (imatinib mesylate) and small interfering RNAs (siRNAs) were determined by a Cell Counting Kit-8 assay, bromodeoxyuridine assay, and Transwell migration assay. The in vivo effect of imatinib was analyzed using a tumor formation assay in nude mice. KEY FINDINGS PDGFRα was upregulated in androgen-independent PC-3 cells compared with normal prostate epithelial cells. PDGF-BB induced the phosphorylation of PDGFRα and downstream signaling molecules, including Akt, in a dose-dependent manner. Imatinib reduced the phosphorylation of the PDGFRα/Akt axis. Imatinib also suppressed the viability, proliferation, migration, and tumor growth of PC-3 cells. PDGFRα knockdown by siRNA decreased the viability and migration of PC-3 cells. SIGNIFICANCE These results demonstrated the distinct contribution of PDGFRα signaling to the proliferation and migration of PC-3 cells and suggested the potential for PDGFRα as a therapeutic target for metastatic and androgen-independent prostate cancer.
Collapse
Affiliation(s)
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, Japan
| | - Hisaki Hayashi
- Department of Physiology, Aichi Medical University, Japan
| | | | | | - Naoto Sassa
- Department of Urology, Aichi Medical University, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, Japan.
| |
Collapse
|
2
|
Yang M, Tian X, Fan Z, Yu W, Li Z, Zhou J, Zhang W, Liang A. Targeting RAD51 enhances chemosensitivity of adult T‑cell leukemia‑lymphoma cells by reducing DNA double‑strand break repair. Oncol Rep 2019; 42:2426-2434. [PMID: 31638261 PMCID: PMC6859462 DOI: 10.3892/or.2019.7384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
RAD51, is a key homologous recombination protein that repairs DNA damage and maintains gene diversity and stability. Previous studies have demonstrated that the over‑expression of RAD51 is associated with chemotherapy resistance of tumor cells to chemotherapy, and enhanced activity of DNA damage repair (DDR) systems contributes to resistance of adult T‑cell leukemia‑lymphoma (ATL) resistance to chemotherapy. Thus, targeting RAD51 is a potential strategy for the sensitization of ATL cells to chemotherapeutic drugs by inducing DNA damage. In general, cells can repair minor DNA damage through DDR; however, serious DNA damage may cause cell toxicity in cells which cannot be restored. In the present, down regulation of RAD51 by shRNA and imatinib sensitized Jurkat cells to etoposide by decreasing the activity of homologous recombination (HR). We found that the suppression of RAD51 by shRNA inhibited tumor cells proliferation and enhanced apoptosis of Jurkat cells after etoposide treatment. Importantly, downregulation of RAD51 by imatinib obviously increased the apoptosis of Jurkat cell after etoposide treatment. These results demonstrated that RAD51 may be of great value to as a novel target for the clinical treatment of adult T‑cell leukemia‑lymphoma (ATL), and it may improve the survival of leukemia patients.
Collapse
Affiliation(s)
- Meng Yang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Xiaoxue Tian
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Zhuoyi Fan
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Wenlei Yu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Zheng Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Jie Zhou
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R China
| |
Collapse
|
3
|
Sasaki T, Franco OE, Ohishi K, Filipovich Y, Ishii K, Crawford SE, Takahashi N, Katayama N, Sugimura Y, Hayward SW. Tyrosine kinase inhibitor therapy prescribed for non-urologic diseases can modify PSA titers in urology patients. Prostate 2019; 79:259-264. [PMID: 30370673 DOI: 10.1002/pros.23730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/05/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND The tyrosine kinase inhibitors (TKI), imatinib and nilotinib, are used to treat chronic myelogenous leukemia (CML). In three CML patients being monitored for urologic diseases, we observed that switching of TKI therapy affected prostate-specific antigen (PSA) titers. Urologists and other medical professionals need to be aware of the potential side-effects of drugs that patients may be receiving for other indications to modify this important prostate diseases indicator. TKIs may affect PSA titers independent of prostate growth or volume. MATERIALS AND METHODS We followed PSA levels in urology patients who were also undergoing TKI treatment for CML. We determined the effects of nilotinib and imatinib on proliferation, AR and PSA expression in the LNCaP and 22Rv1 prostate cancer (PCa) cell lines using real-time PCR and Western blotting. RESULTS Clinically, nilotinib and dasatinib reversibly reduced PSA titers compared to imatinib. At high doses nilotinib and imatinib both demonstrated antiproliferative effects in the PCa cells. At low doses expression of AR and PSA was decreased by both drugs, at mRNA and protein levels. Nilotinib exerted greater effects at lower doses than imatinib. CONCLUSIONS Nilotinib down-regulates serum PSA in patients being treated for non-urological indications, potentially masking a clinical useful marker, we cannot exclude a similar but smaller effect of imatinib. Nilotinib and imatinib both decreased AR and PSA expression in PCa cell lines with the nilotinib effect evident at lower doses. Urologists must appreciate the effects of drugs provided for other diseases on PSA titers and be aware that sudden changes may not reflect underlying prostatic disease.
Collapse
MESH Headings
- Aged
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Humans
- Imatinib Mesylate/administration & dosage
- Imatinib Mesylate/adverse effects
- Kallikreins/biosynthesis
- Kallikreins/blood
- Kallikreins/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Male
- Prostate-Specific Antigen/biosynthesis
- Prostate-Specific Antigen/blood
- Prostate-Specific Antigen/genetics
- Prostatic Hyperplasia/blood
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/adverse effects
- Pyrimidines/administration & dosage
- Pyrimidines/adverse effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/genetics
Collapse
Affiliation(s)
- Takeshi Sasaki
- Department of Surgery, NorthShore University HealthSystem, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, Illinois
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Kohshi Ohishi
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu, Mie, Japan
| | - Yana Filipovich
- Department of Surgery, NorthShore University HealthSystem, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Kenichiro Ishii
- Department of Oncologic Pathology, Mie University, Graduate School of Medicine, Tsu, Mie, Japan
| | - Susan E Crawford
- Department of Surgery, NorthShore University HealthSystem, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Naoto Takahashi
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Akita, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshiki Sugimura
- Department of Surgery, NorthShore University HealthSystem, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, Illinois
| |
Collapse
|
4
|
Cardoso HJ, Vaz CV, Carvalho TM, Figueira MI, Socorro S. Tyrosine kinase inhibitor imatinib modulates the viability and apoptosis of castrate-resistant prostate cancer cells dependently on the glycolytic environment. Life Sci 2019; 218:274-283. [DOI: 10.1016/j.lfs.2018.12.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 11/16/2022]
|
5
|
Peres-Filho MJ, dos Santos AP, Nascimento TL, de Ávila RI, Ferreira FS, Valadares MC, Lima EM. Antiproliferative Activity and VEGF Expression Reduction in MCF7 and PC-3 Cancer Cells by Paclitaxel and Imatinib Co-encapsulation in Folate-Targeted Liposomes. AAPS PharmSciTech 2018; 19:201-212. [PMID: 28681330 DOI: 10.1208/s12249-017-0830-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022] Open
Abstract
Co-encapsulation of anticancer drugs paclitaxel and imatinib in nanocarriers is a promising strategy to optimize cancer treatment. Aiming to combine the cytotoxic and antiangiogenic properties of the drugs, a liposome formulation targeted to folate receptor co-encapsulating paclitaxel and imatinib was designed in this work. An efficient method was optimized for the synthesis of the lipid anchor DSPE-PEG(2000)-folic acid (FA). The structure of the obtained product was confirmed by RMN, FT-IR, and ESI-MS techniques. A new analytical method was developed and validated for simultaneous quantification of the drugs by liquid chromatography. Liposomes, composed of phosphatidylcholine, cholesterol, and DSPE-mPEG(2000), were prepared by extrusion. Their surface was modified by post-insertion of DSPE-PEG(2000)-FA. Reaction yield for DSPE-PEG(2000)-FA synthesis was 87%. Liposomes had a mean diameter of 122.85 ± 1.48 nm and polydispersity index of 0.19 ± 0.01. Lyophilized formulations remained stable for 60 days in terms of size and drug loading. FA-targeted liposomes had a higher effect on MCF7 cell viability reduction (p < 0.05) when compared with non-targeted liposomes and free paclitaxel. On PC-3 cells, viability reduction was greater (p < 0.01) when cells were exposed to targeted vesicles co-encapsulating both drugs, compared with the non-targeted formulation. VEGF gene expression was reduced in MCF7 and PC-3 cells (p < 0.0001), with targeted vesicles exhibiting better performance than non-targeted liposomes. Our results demonstrate that multifunctional liposomes associating molecular targeting and multidrug co-encapsulation are an interesting strategy to achieve enhanced internalization and accumulation of drugs in targeted cells, combining multiple antitumor strategies.
Collapse
|
6
|
Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S. The stem cell factor (SCF)/c-KIT system in carcinogenesis of reproductive tissues: What does the hormonal regulation tell us? Cancer Lett 2017; 405:10-21. [DOI: 10.1016/j.canlet.2017.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
|
7
|
Chen Q, Cai D, Li M, Wu X. The homologous recombination protein RAD51 is a promising therapeutic target for cervical carcinoma. Oncol Rep 2017. [PMID: 28627709 PMCID: PMC5561999 DOI: 10.3892/or.2017.5724] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RAD51 is one of the pivotal enzymes for DNA double-strand break (DSB) repair by the homologous recombination (HR) pathway, which implies it as a promising and novel target for cancer therapy. Recent findings have indicated RAD51 protein is overexpressed in a variety of tumors. The high-expression of RAD51 is related to poor prognosis. RAD51 is involved in the repair of DNA damage and the generation of genetic diversity by an evolutionarily conserved mechanism. However, the exact mechanism of Rad51 in the progression of cervical cancer remains unclear. RI-1 is a small molecule that inhibits the central recombination protein RAD51. In this study, we found that RAD51 was highly expressed in invasive squamous cervical cancer (SCC). The administration of RI-1 inhibited cell growth in vitro and reduced growth of tumor xenografts in vivo with cervical cancer cells (HeLa and SiHa). Further investigation suggested that RAD51 protein significantly promoted the cell cycle transition from the G0/G1 to S phase. In addition, the inhibition of RAD51 reduced the level of the cell cycle related protein cyclin D1, but increased the levels of p21 mRNA and protein. As a DNA DSB repair enzyme, the expression of RAD51 in tumor cells possibly affects their sensitivity to anti-cancer agents. Additionally, in experiments using cisplatin and ionizing radiation, RI-1 treated cervical cancer cells, HeLa and SiHa, were sensitized to a greater extent than the untreated control. Thus, HR inhibition of RAD51 may provide yet another mechanism of therapeutic target for the chemosensitization and radiosensitization of cervical cancer with RI-1. Collectively, our data demonstrated for the first time that inhibition of RAD51 suppressed the cervical cancer cell proliferation and the growth of cervical cancer xenografts by attenuating cell cycle transition, which could be a functional link between RAD51 and cyclin D1 and p21.
Collapse
Affiliation(s)
- Qian Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Dongge Cai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Mu Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
8
|
Assessment of the genotoxicity of the tyrosine kinase inhibitor imatinib mesylate in cultured fish and human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 814:14-21. [DOI: 10.1016/j.mrgentox.2016.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022]
|
9
|
Lo Iacono M, Buttigliero C, Monica V, Bollito E, Garrou D, Cappia S, Rapa I, Vignani F, Bertaglia V, Fiori C, Papotti M, Volante M, Scagliotti GV, Porpiglia F, Tucci M. Retrospective study testing next generation sequencing of selected cancer-associated genes in resected prostate cancer. Oncotarget 2016; 7:14394-404. [PMID: 26887047 PMCID: PMC4924723 DOI: 10.18632/oncotarget.7343] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/25/2016] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Prostate cancer (PCa) has a highly heterogeneous outcome. Beyond Gleason Score, Prostate Serum Antigen and tumor stage, nowadays there are no biological prognostic factors to discriminate between indolent and aggressive tumors.The most common known genomic alterations are the TMPRSS-ETS translocation and mutations in the PI3K, MAPK pathways and in p53, RB and c-MYC genes.The aim of this retrospective study was to identify by next generation sequencing the most frequent genetic variations (GVs) in localized and locally advanced PCa underwent prostatectomy and to investigate their correlation with clinical-pathological variables and disease progression. RESULTS Identified non-synonymous GVs included TP53 p.P72R (78% of tumors), two CSFR1 SNPs, rs2066934 and rs2066933 (70%), KDR p.Q472H (67%), KIT p.M541L (28%), PIK3CA p.I391M (19%), MET p.V378I (10%) and FGFR3 p.F384L/p.F386L (8%). TP53 p.P72R, MET p.V378I and CSFR1 SNPs were significantly associated with the HI risk group, TP53 and MET variations with T≥T2c. FGFR3 p.F384L/p.F386L was correlated with T≤T2b. MET p.V378I mutation, detected in 20% of HI risk patients, was associated with early biochemical recurrence. EXPERIMENTAL DESIGN Nucleic acids were obtained from tissue samples of 30 high (HI) and 30 low-intermediate (LM) risk patients, according to D'Amico criteria. Genomic DNA was explored with the Ion_AmpliSeq_Cancer_Hotspot_Panel_v.2 including 50 cancer-associated genes. GVs with allelic frequency (AF) ≥10%, affecting protein function or previously associated with cancer, were correlated with clinical-pathological variables. CONCLUSION Our results confirm a complex mutational profile in PCa, supporting the involvement of TP53, MET, FGFR3, CSF1R GVs in tumor progression and aggressiveness.
Collapse
Affiliation(s)
- Marco Lo Iacono
- University of Turin, Department of Oncology, Orbassano, Italy
| | | | | | - Enrico Bollito
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Diletta Garrou
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Susanna Cappia
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Ida Rapa
- University of Turin, Department of Oncology, Orbassano, Italy
| | | | | | - Cristian Fiori
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Mauro Papotti
- University of Turin, Department of Oncology, Orbassano, Italy
| | - Marco Volante
- University of Turin, Department of Oncology, Orbassano, Italy
| | | | | | - Marcello Tucci
- University of Turin, Department of Oncology, Orbassano, Italy
| |
Collapse
|
10
|
Cardoso HJ, Vaz CV, Correia S, Figueira MI, Marques R, Maia CJ, Socorro S. Paradoxical and contradictory effects of imatinib in two cell line models of hormone-refractory prostate cancer. Prostate 2015; 75:923-35. [PMID: 25786656 DOI: 10.1002/pros.22976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/13/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Imatinib mesylate is a chemotherapeutic drug that inhibits the tyrosine kinase activity of c-KIT and has been successfully used to treat leukemias and some solid tumors. However, its application for treatment of hormone-refractory prostate cancer (HRPC) has shown modest effectiveness and did not follow the outcomes in cultured cells or animal models. Moreover, the molecular pathways by which imatinib induces cytotoxicity in prostate cancer cells are poorly characterized. METHODS Two cell line models of HRPC (DU145 and PC3) were exposed to 20 μM of imatinib for 6-72 hr. MTS assay was used to assess cell viability during the course of experiment. Gene expression analysis of c-KIT, cell-cycle and apoptosis regulators, and angiogenic factors was determined by means of real-time PCR, western blot, and/or immunocytochemistry. The enzymatic activity of the apoptosis effector, caspase-3, was determined by a colorimetric assay. RESULTS Imatinib significantly decreased the viability of DU145 cells but paradoxically augmented the viability of PC3 cells. DU145 cells displayed diminished expression of anti-apoptotic Bcl-2 protein and augmented levels of caspase-8 and -9, as well as, increased enzymatic activity of caspase-3 in response to imatinib. No differences existed on the expression levels of apoptosis-related proteins in PC3 cells treated with imatinib, though the activity of caspase-3 was decreased. The mRNA levels of angiogenic factor VEGF were decreased in DU145-treated cells, whereas an opposite effect was seen in PC3. In addition, it was shown that DU145 and PC3 cells present a differential expression of c-KIT protein variants. CONCLUSION DU145 and PC3 cells displayed a contradictory behavior in response to imatinib, which was underpinned by a distinct expression pattern (or activity) of target regulators of cell-cycle, apoptosis, and angiogenesis. The paradoxical effect of imatinib in PC3 cells may be related with the differential expression of c-KIT protein variants. Moreover, the present findings helped to understand the discrepancies in the efficacy of imatinib as therapeutic option in HRPC.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | | | | | |
Collapse
|
11
|
Parrella A, Kundi M, Lavorgna M, Criscuolo E, Russo C, Isidori M. Toxicity of exposure to binary mixtures of four anti-neoplastic drugs in Daphnia magna and Ceriodaphnia dubia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:41-6. [PMID: 25456218 DOI: 10.1016/j.aquatox.2014.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/17/2014] [Accepted: 09/27/2014] [Indexed: 05/24/2023]
Abstract
Anticancer drugs, interfering with DNA in every living organism, may pose a threat to aquatic environment, even more when they occur as complex mixtures. We investigated the combined long term toxic potential of four anti-neoplastic drugs (5-fluorouracil [5-FU], cisplatin [CDDP], etoposide [ET] and imatinib mesylate [IM]) testing their binary mixtures on two primary consumers of the freshwater aquatic chain with close phylogenetic relationship: Daphnia magna and Ceriodaphnia dubia. The combined toxicities were assessed using two distinct effect sizes that should be observed if Bliss independence holds. Direct statistical comparison by analysis of variance of single and combined toxicities under the assumption of Bliss independence allowed to accept or reject the independency hypothesis. Independency was confirmed for all mixtures both in D. magna and in C. dubia, except for IM+ ET and IM+CDDP in D. magna and for ET+CDDP and ET+5-FU in C. dubia which at the highest concentrations showed an antagonistic interaction. A synergic tendency was found testing IM+CDDP on C. dubia at the lowest concentration selected. Thus, the chronic ecotoxicological data evaluated in this study show not only a potential environmental risk of anticancer drugs, especially considering their potential synergistic effects, but also the necessity to integrate statistical models with experimental data to establish the real environmental impact of such compounds.
Collapse
Affiliation(s)
- Alfredo Parrella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Michael Kundi
- Institute of Environmental Health, Center for Public Health, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Margherita Lavorgna
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Emma Criscuolo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| |
Collapse
|
12
|
Cardoso HJ, Figueira MI, Correia S, Vaz CV, Socorro S. The SCF/c-KIT system in the male: Survival strategies in fertility and cancer. Mol Reprod Dev 2014; 81:1064-79. [PMID: 25359157 DOI: 10.1002/mrd.22430] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/25/2014] [Indexed: 12/18/2022]
Abstract
Maintaining the delicate balance between cell survival and death is of the utmost importance for the proper development of germ cells and subsequent fertility. On the other hand, the fine regulation of tissue homeostasis by mechanisms that control cell fate is a factor that can prevent carcinogenesis. c-KIT is a type III receptor tyrosine kinase activated by its ligand, stem cell factor (SCF). c-KIT signaling plays a crucial role in cell fate decisions, specifically controlling cell proliferation, differentiation, survival, and apoptosis. Indeed, deregulating the SCF/c-KIT system by attenuation or overactivation of its signaling strength is linked to male infertility and cancer, and rebalancing its activity via c-KIT inhibitors has proven beneficial in treating human tumors that contain gain-of-function mutations or overexpress c-KIT. This review addresses the roles of SCF and c-KIT in the male reproductive tract, and discusses the potential application of c-KIT target therapies in disorders of the reproductive system.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | |
Collapse
|
13
|
Pinto MP, Dye WW, Jacobsen BM, Horwitz KB. Malignant stroma increases luminal breast cancer cell proliferation and angiogenesis through platelet-derived growth factor signaling. BMC Cancer 2014; 14:735. [PMID: 25274034 PMCID: PMC4190420 DOI: 10.1186/1471-2407-14-735] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 09/26/2014] [Indexed: 12/21/2022] Open
Abstract
Background Luminal, estrogen receptor-positive breast cancers represent more than 70% of cases. Despite initial good prognoses one third of Luminal cancers eventually recur locally or at distant sites and exhibit hormone resistance. Here we demonstrate that factors elaborated by malignant stromal cells can induce Luminal tumor cells proliferation and promote angiogenesis and hormone independence. We recently isolated a malignant mouse mammary gland stromal cell line named BJ3Z that increases proliferation and angiogenesis in estrogen-free xenografted Luminal MCF-7 breast cancer cells. Methods BJ3Z and Normal mouse mammary Fibroblasts (NMFs) were expression profiled using microarray assays. Messenger RNA levels were confirmed by RT-PCR and by immunohistochemistry (IHC). Breast cancer MCF-7, BT-474, BT-20 and MDA-MB-231cell lines and stromal BJ3Z and NMFs were grown for in vitro assays: breast cancer cell lines were treated with stromal cells conditioned media, for three-dimensional (3D) mono and co-cultures in Matrigel, proliferation was measured by Bromo-deoxyuridine (BrdU) incorporation using IHC. Tubule formation in vitro, a proxy for angiogenesis, was assessed using 3D cultured Human Umbilical cord Vascular Endothelial Cells (HUVEC). Results We show that under estrogen-free conditions, BJ3Z cells but not NMFs increase proliferation of co-cultured Luminal but not basal-like human breast cancer cells in 2D or as 3D Matrigel colonies. Gene expression profiling, RT-PCR analysis and IHC of colony-derived BJ3Z cells and NMFs shows that Platelet Derived Growth Factor ligands (PDGF-A and -B) are elaborated by BJ3Z cells but not NMFs; while PDGF receptors are present on NMFs but not BJ3Z cells. As a result, in colony co-culture assays, BJ3Z cells but not NMFs increase MCF-7 cell proliferation. This can be mimicked by direct addition of PDGF-BB, and blocked by the PDGF receptor inhibitor Imatinib Mesylate. Both normal and malignant stromal cells enhance angiogenesis in an in vitro model. This effect is also due to PDGF and is suppressed by Imatinib. Conclusions We provide evidence that Luminal breast cancer cells can be targeted by the PDGF signaling pathway leading to estrogen-independent proliferation and angiogenesis. We speculate that stroma-directed therapies, including anti-PDGFR agents like Imatinib, may be useful in combination with other therapies for treatment of luminal cancers. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-735) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mauricio P Pinto
- Departments of Medicine, Mail Stop 8106, 12801 East 17th Avenue, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
14
|
Alpay K, Farshchian M, Tuomela J, Sandholm J, Aittokallio K, Siljamäki E, Kallio M, Kähäri VM, Hietanen S. Inhibition of c-Abl kinase activity renders cancer cells highly sensitive to mitoxantrone. PLoS One 2014; 9:e105526. [PMID: 25148385 PMCID: PMC4141754 DOI: 10.1371/journal.pone.0105526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 07/24/2014] [Indexed: 01/09/2023] Open
Abstract
Although c-Abl has increasingly emerged as a key player in the DNA damage response, its role in this context is far from clear. We studied the effect of inhibition of c-Abl kinase activity by imatinib with chemotherapy drugs and found a striking difference in cell survival after combined mitoxantrone (MX) and imatinib treatment compared to a panel of other chemotherapy drugs. The combinatory treatment induced apoptosis in HeLa cells and other cancer cell lines but not in primary fibroblasts. The difference in MX and doxorubicin was related to significant augmentation of DNA damage. Transcriptionally active p53 accumulated in cells in which human papillomavirus E6 normally degrades p53. The combination treatment resulted in caspase activation and apoptosis, but this effect did not depend on either p53 or p73 activity. Despite increased p53 activity, the cells arrested in G2 phase became defective in this checkpoint, allowing cell cycle progression. The effect after MX treatment depended partially on c-Abl: Short interfering RNA knockdown of c-Abl rendered HeLa cells less sensitive to MX. The effect of imatinib was decreased by c-Abl siRNA suggesting a role for catalytically inactive c-Abl in the death cascade. These findings indicate that MX has a unique cytotoxic effect when the kinase activity of c-Abl is inhibited. The treatment results in increased DNA damage and c-Abl–dependent apoptosis, which may offer new possibilities for potentiation of cancer chemotherapy.
Collapse
Affiliation(s)
- Kemal Alpay
- Department of Obstetrics and Gynecology and Joint Clinical Biochemistry Laboratory of Turku University Hospital, Medicity Research Laboratory, University of Turku, Turku, Finland
| | - Mehdi Farshchian
- Department of Dermatology and MediCity Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Johanna Tuomela
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Jouko Sandholm
- Cell Imaging Core, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kaappo Aittokallio
- Department of Obstetrics and Gynecology and Joint Clinical Biochemistry Laboratory of Turku University Hospital, Medicity Research Laboratory, University of Turku, Turku, Finland
| | - Elina Siljamäki
- Department of Dermatology and MediCity Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Marko Kallio
- VTT Health, VTT Technical Research Centre of Finland, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology and MediCity Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology and Joint Clinical Biochemistry Laboratory of Turku University Hospital, Medicity Research Laboratory, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
15
|
Ye P, Zhang W, Yang T, Lu Y, Lu M, Gai Y, Ma X, Xiang G. Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting. Int J Nanomedicine 2014; 9:2167-78. [PMID: 24855354 PMCID: PMC4019625 DOI: 10.2147/ijn.s60178] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Imatinib inhibits platelet-derived growth factor receptor (PDGFR), and evidence shows that PDGFR participates in the development and progression of cervical cancer. Although imatinib has exhibited preclinical activity against cervical cancer, only minimal clinical therapeutic efficacy was observed. This poor therapeutic efficacy may be due to insufficient drug delivery to the tumor cells and plasma protein binding. Therefore, the purpose of this study was to explore a novel folate receptor (FR)-targeted delivery system via imatinib-loaded liposomes to enhance drug delivery to tumor cells and to reduce plasma protein binding. Methods Imatinib was remote-loaded into FR-targeted liposomes which were prepared by thin film hydration followed by polycarbonate membrane extrusion. Encapsulation efficiency, mean size diameter, and drug retention were characterized and cellular uptake, cell cytotoxicity, and cell apoptosis on cervical cancer HeLa cells were evaluated. Comparative pharmacokinetic studies were also carried out with FR-targeted imatinib liposomes, simple imatinib liposomes, and free imatinib. Results High encapsulation efficiency (>90%), appropriate mean particle size (143.5 nm), and zeta potential (−15.97 mV) were obtained for FR-targeted imatinib liposomes. The drug release profile showed minimal imatinib leakage (<5%) in phosphate-buffered saline (PBS) at pH =7.4 within 72 hours of incubation, while more leakage (>25%) was observed in PBS at pH =5.5. This indicates that these liposomes possess a certain degree of pH sensitivity. Cytotoxicity assays demonstrated that the FR-targeted imatinib liposomes promoted a six-fold IC50 reduction on the non-targeted imatinib liposomes from 910 to 150 μM. In addition, FR-targeted imatinib liposomes enhanced HeLa cell apoptosis in vitro compared to the non-targeted imatinib liposomes. Pharmacokinetic parameters indicated that both targeted and non-targeted liposomes exhibited long circulation properties in Kunming mice. Conclusion These findings indicate that the nano-sized FR-targeted PDGFR antagonist imatinib liposomes may constitute a promising strategy in cervical cancer therapy through the combination of active targeting and molecular targeting.
Collapse
Affiliation(s)
- Peng Ye
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China ; Department of Pharmacy, Wuhan University, Renmin Hospital, Wuhan, People's Republic of China
| | - Wendian Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tan Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Miao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yongkang Gai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
16
|
Tafrihi M, Toosi S, Minaei T, Gohari AR, Niknam V, Arab Najafi SM. Anticancer Properties of Teucrium persicum in PC-3 Prostate Cancer Cells. Asian Pac J Cancer Prev 2014; 15:785-91. [DOI: 10.7314/apjcp.2014.15.2.785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
17
|
Ko JC, Chen HJ, Huang YC, Tseng SC, Weng SH, Wo TY, Huang YJ, Chiu HC, Tsai MS, Chiou RYY, Lin YW. HSP90 inhibition induces cytotoxicity via down-regulation of Rad51 expression and DNA repair capacity in non-small cell lung cancer cells. Regul Toxicol Pharmacol 2012; 64:415-24. [PMID: 23069143 DOI: 10.1016/j.yrtph.2012.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 12/20/2022]
Abstract
Heat shock protein 90 (HSP90) is an exciting new target in cancer therapy. Repair protein Rad51 is involved in protecting non-small cell lung cancer (NSCLC) cell lines against chemotherapeutic agent-induced cytotoxicity. This study investigated the role of Rad51 expression in HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced cytotoxicity in two NSCLC cell lines, A549 and H1975. The 17-AAG treatment decreased cellular Rad51 protein and mRNA levels and phosphorylated MKK1/2-ERK1/2 protein levels, and disrupted the HSP90 and Rad51 interaction. This triggered Rad51 protein degradation through the 26S proteasome pathway. The 17-AAG treatment also decreased the NSCLC cells' DNA repair capacity, which was restored by the forced expression of the Flag-Rad51 vector. Specific inhibition of Rad51 expression by siRNA further enhanced 17-AAG-induced cytotoxicity. In contrast, enhanced ERK1/2 activation by the constitutively active MKK1/2 (MKK1/2-CA) vector significantly restored the 17-AAG-reduced Rad51 protein levels and cell viability. Arachidin-1, an antioxidant stilbenoid, further decreased Rad51 expression and augmented the cytotoxic effect and growth inhibition of 17-AAG. The 17-AAG and arachidin-1-induced synergistic cytotoxic effects and decreased DNA repair capacity were abrogated in lung cancer cells with MKK1/2-CA or Flag-Rad51 expression vector transfection. In conclusion, HSP90 inhibition induces cytotoxicity by down-regulating Rad51 expression and DNA repair capacity in NSCLC cells.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
A Phase I clinical trial of the combination of imatinib and paclitaxel in patients with advanced or metastatic solid tumors refractory to standard therapy. Cancer Chemother Pharmacol 2012; 70:843-53. [PMID: 23014737 DOI: 10.1007/s00280-012-1969-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/02/2012] [Indexed: 12/12/2022]
Abstract
PURPOSE Pre-clinical data suggest that combining imatinib with traditional cytotoxic chemotherapy may improve imatinib efficacy. We conducted a Phase I study of imatinib in combination with paclitaxel in patients with advanced or metastatic solid tumors. METHODS Patients were accrued to the study in a standard 3 + 3 design. Patients were restaged every two cycles, and those with stable disease (SD), or better, continued study treatment without interruption. Maximally tolerated doses (MTDs) and pharmacokinetic profiles of combination imatinib and paclitaxel were assessed. RESULTS Fifty-eight patients were enrolled, including 40 in the Phase I dose escalation portion. Alternating dose escalation of imatinib and paclitaxel on a 28-day cycle resulted in MTDs of 800 mg imatinib daily, on days 1-4, 8-11, 15-18, and 22-25, and 100 mg/m(2) paclitaxel weekly, on days 3, 10, and 17. Two expansion cohorts, comprising 10 breast cancer patients and 8 patients with soft-tissue sarcomas, were enrolled at the MTDs. The most common adverse events were flu-like symptoms (64 %) and nausea/vomiting (71 %). The most common Grade 3/4 toxicities were neutropenia (26 %), flu-like symptoms (12 %), and pain (12 %). There were no relevant differences in the pharmacokinetic profiles of either drug when given in combination compared with alone. Thirty-eight subjects were evaluable for response, 18 (47.4 %) of whom experienced clinical benefit. Five patients (13.2 %) had a partial response (PR) and 13 patients (34.2 %) had SD; the average time to progression in those with clinical benefit was 17 weeks (range: 7-28 weeks). CONCLUSIONS This combination of imatinib and paclitaxel was reasonably safe and tolerable, and demonstrated evidence of anti-tumor activity. Further exploration in disease-specific Phase II trials is warranted.
Collapse
|
19
|
Cortes J, Roché H. Docetaxel combined with targeted therapies in metastatic breast cancer. Cancer Treat Rev 2012; 38:387-96. [DOI: 10.1016/j.ctrv.2011.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
|
20
|
Nabhan C, Villines D, Valdez TV, Tolzien K, Lestingi TM, Bitran JD, Christner SM, Egorin MJ, Beumer JH. Phase I study investigating the safety and feasibility of combining imatinib mesylate (Gleevec) with sorafenib in patients with refractory castration-resistant prostate cancer. Br J Cancer 2012; 107:592-7. [PMID: 22805325 PMCID: PMC3419960 DOI: 10.1038/bjc.2012.312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Determining the maximum tolerated dose (MTD) and the dose-limiting toxicity (DLT) of sorafenib (S) plus imatinib (IM) in castration-resistant prostate cancer (CRPC) patients. Methods: Refractory CRPC patients were enrolled onto this 3+3 dose escalation designed study. Imatinib pharmacokinetics (PK) were determined on day 15, 4 h post dose with a validated LC–MS assay. Results: Seventeen patients were enrolled; 10 evaluable (6 at 400 mg S qd with 300 mg IM qd (DL0) and 4 at 400 mg S bid with 300 mg IM qd (DL1)); inevaluable patients received <1 cycle. The median age was 73 (57–89); median prostatic serum antigen was 284 ng ml−1 (11.7–9027). Median number of prior non-hormonal therapies was 3 (1–12). Dose-limiting toxicities were diarrhoea and hand-foot syndrome. Maximum tolerated dose was 400 mg S and 300 mg IM both daily. No biochemical responses were observed. Two patients had stable disease by RECIST. Median time to progression was 2 months (1–5). Median OS was 6 months (1–30+) with 3/17 patients (17%) alive at 21 months median follow-up. Ten patients had PK data suggesting that S reduced IM clearance by 55%, resulting in 77% increased exposure (P=0.005; compared with historical data). Conclusion: This is the first report showing that S+IM can be administered in CRPC at a dose of 400 mg S and 300 mg IM, daily.
Collapse
Affiliation(s)
- C Nabhan
- Department of Medicine, Division of Hematology and Oncology, Advocate Lutheran General Hospital, Park Ridge, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schedule treatment design and quantitative in vitro evaluation of chemotherapeutic combinations for metastatic prostate cancer therapy. Cancer Chemother Pharmacol 2010; 67:275-84. [DOI: 10.1007/s00280-010-1315-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
|
22
|
Xu Y, Fang F, Sun Y, St. Clair DK, St. Clair WH. RelB-dependent differential radiosensitization effect of STI571 on prostate cancer cells. Mol Cancer Ther 2010; 9:803-12. [PMID: 20371728 PMCID: PMC2852498 DOI: 10.1158/1535-7163.mct-09-1001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Radiation therapy is an effective treatment for localized prostate cancer. However, when high-risk factors are present, such as increased prostate-specific antigen, elevated Gleason scores and advanced T stage, undetected spreading of the cancer, and development of radiation-resistant cancer cells are concerns. Thus, additional therapeutic agents that can selectively sensitize advanced prostate cancer to radiation therapy are needed. Imatinib mesylate (Gleevec, STI571), a tyrosine kinase inhibitor, was evaluated for its potential to enhance the efficacy of ionizing radiation (IR) against aggressive prostate cancer cells. STI571 significantly enhances the IR-induced cytotoxicity of androgen-independent prostate cancer cells but not of androgen-responsive prostate cancer cells. The differential cytotoxic effects due to STI571 are associated with the nuclear level of RelB in prostate cancer cells. STI571 inhibits IR-induced RelB nuclear translocation, leading to increased radiosensitivity in aggressive androgen-independent PC-3 and DU-145 cells. In contrast, STI571 enhances RelB nuclear translocation in androgen-responsive LNCaP cells. The different effects of STI571 on RelB nuclear translocation are consistent with RelB DNA binding activity and related target gene expression. STI571 inhibits the phosphoinositide 3-kinase-AKT-IkappaB kinase-alpha pathway in PC-3 cells by decreasing the phosphorylation levels of phosphoinositide 3-kinase (Tyr458) and AKT (Ser473), whereas STI571 increases NF-kappaB inducible kinase (Thr559) phosphorylation, leading to activation of IkappaB kinase-alpha in LNCaP cells. These results reveal that STI571 exhibits differential effects on the upstream kinases leading to different downstream effects on the NF-kappaB alternative pathway in prostate cancer cells and suggest that STI571 is effective for the treatment of androgen-independent prostate cancer in the context of high constitutive levels of RelB. Mol Cancer Ther; 9(4); 803-12. (c)2010 AACR.
Collapse
Affiliation(s)
- Yong Xu
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Fang Fang
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536
| | - Yulan Sun
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536
| | | |
Collapse
|
23
|
Abstract
Imatinib mesylate is a rationally designed tyrosine kinase inhibitor that has revolutionized the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors. Although the efficacy and tolerability of imatinib are a vast improvement over conventional chemotherapies, the drug exhibits off-target effects. An unanticipated side effect of imatinib therapy is hypophosphatemia and hypocalcemia, which in part has been attributed to drug-mediated changes to renal and gastrointestinal handling of phosphate and calcium. However, emerging data suggest that imatinib also targets cells of the skeleton, stimulating the retention and sequestration of calcium and phosphate to bone, leading to decreased circulating levels of these minerals. The aim of this review is to highlight our current understanding of the mechanisms surrounding the effects of imatinib on the skeleton. In particular, it examines recent studies suggesting that imatinib has direct effects on bone-resorbing osteoclasts and bone-forming osteoblasts through inhibition of c-fms, c-kit, carbonic anhydrase II, and the platelet-derived growth factor receptor. The potential application of imatinib in the treatment of cancer-induced osteolysis will also be discussed.
Collapse
|
24
|
Chen RS, Jhan JY, Su YJ, Lee WT, Cheng CM, Ciou SC, Lin ST, Chuang SM, Ko JC, Lin YW. Emodin enhances gefitinib-induced cytotoxicity via Rad51 downregulation and ERK1/2 inactivation. Exp Cell Res 2009; 315:2658-72. [PMID: 19505457 DOI: 10.1016/j.yexcr.2009.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/12/2009] [Accepted: 06/03/2009] [Indexed: 01/24/2023]
Abstract
Emodin, a tyrosine kinase inhibitor, is a natural anthraquinone derivative found in the roots and rhizomes of numerous plants. It reportedly exhibits an anticancer effect on lung cancer. Gefitinib (Iressa) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor for human non-small cell lung cancer (NSCLC). However, the molecular mechanism of how emodin combined with gefitinib decreases NSCLC cell viability is unclear. The recombinase protein Rad51 is essential for homologous recombination repair, and Rad51 overexpression is resistant to DNA double-strand break-inducing cancer therapies. In this study, we found that emodin enhanced the cytotoxicity induced by gefitinib in two NSCLC cells lines, A549 and H1650. Emodin at low doses of 2-10 microM did not affect ERK1/2 activation, mRNA, and Rad51 protein levels; however, it enhanced a gefitinib-induced decrease in phospho-ERK1/2 and Rad51 protein levels by enhancing Rad51 protein instability. Expression of constitutively active MKK1/2 vectors (MKK1/2-CA) significantly rescued the reduced phospho-ERK1/2 and Rad51 protein levels as well as cell viability on gefitinib and emodin cotreatment. Blocking of ERK1/2 activation by U0126 (an MKK1/2 inhibitor) lowered Rad51 protein levels and cell viability in emodin-treated H1650 and A549 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA enhanced emodin cytotoxicity. In contrast, Rad51 overexpression protected the cells from the cytotoxic effects induced by emodin and gefitinib. Consequently, emodin-gefitinib cotreatment may serve as the basis for a novel and better therapeutic modality in the management of advanced lung cancer.
Collapse
Affiliation(s)
- Ruey-Shyang Chen
- Molecular Genetics of Microorganisms Laboratory, Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Qi W, Cooke LS, Stejskal A, Riley C, Croce KD, Saldanha JW, Bearss D, Mahadevan D. MP470, a novel receptor tyrosine kinase inhibitor, in combination with Erlotinib inhibits the HER family/PI3K/Akt pathway and tumor growth in prostate cancer. BMC Cancer 2009; 9:142. [PMID: 19432987 PMCID: PMC2685437 DOI: 10.1186/1471-2407-9-142] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 05/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostate cancer is a common disease in men and at present there is no effective therapy available due to its recurrence despite androgen deprivation therapy. The epidermal growth factor receptor family (EGFR/HER1, HER2/neu and HER3)/PI3K/Akt signaling axis has been implicated in prostate cancer development and progression. However, Erlotinib, an EGFR tyrosine kinase inhibitor, has less effect on proliferation and apoptosis in prostate cancer cell lines. In this study, we evaluate whether MP470, a novel receptor tyrosine kinase inhibitor alone or in combination with Erlotinib has inhibitory effect on prostate cancer in vitro and in vivo. METHODS The efficacy of MP470 or MP470 plus Erlotinib was evaluated in vitro using three prostate cancer cell lines by MTS and apoptosis assays. The molecular mechanism study was carried out by phosphorylation antibody array, immunoblotting and immunohistochemistry. A LNCaP mouse xenograft model was also used to determine the tumor growth inhibition by MP470, Erlotinib or the combination treatments. RESULTS MP470 exhibits low microM IC50 in prostate cancer cell lines. Additive effects on both cytotoxicity and induction of apoptosis were observed when LNCaP were treated with MP470 in combination with Erlotinib. This combination treatment completely inhibited phosphorylation of the HER family members (HER1, 2, 3), binding of PI3K regulatory unit p85 to HER3 and downstream Akt activity even after androgen depletion. Furthermore, in a LNCaP mouse xenograft model, the MP470-Erlotinib combination produced 30-65% dose-dependent tumor growth inhibition (TGI). CONCLUSION We propose that MP470-Erlotinib targets the HER family/PI3K/Akt pathway and may represent a novel therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Wenqing Qi
- Arizona Cancer Center, the University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Choudhury A, Zhao H, Jalali F, Al Rashid S, Ran J, Supiot S, Kiltie AE, Bristow RG. Targeting homologous recombination using imatinib results in enhanced tumor cell chemosensitivity and radiosensitivity. Mol Cancer Ther 2009; 8:203-13. [PMID: 19139130 DOI: 10.1158/1535-7163.mct-08-0959] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RAD51 is a key protein in the homologous recombination (HR) pathway of DNA double-strand break repair, and HR represents a novel target for cancer therapy. Because imatinib (Gleevec) has been reported to reduce RAD51 protein levels, we tested the clonogenic survival for RT112, H1299, PANC1, and PC3 tumor cell lines of varying p53 status and normal GM05757 normal fibroblasts after exposure to single agent imatinib (0-20 micromol/L; 0-72 hours). We also combined imatinib with DNA damaging agents that are toxic to RAD51-deficient cells, including ionizing radiation, gemcitabine, and mitomycin C. We observed decreased nuclear expression and chromatin binding of RAD51 protein following imatinib treatment. Imatinib also resulted in decreased error-free HR as determined by a flow cytometry-based integrated direct repeat-green fusion protein reporter system; this correlated to reduced RAD51 expression. Clonogenic survival experiments revealed increased cell kill for imatinib-treated cells in combination with ionizing radiation, gemcitabine, and mitomycin C, due in part to mitotic catastrophe. In experiments using imatinib and gemcitabine, tumor cell lines were sensitized to a greater extent than normal fibroblasts. This preservation of the therapeutic ratio was confirmed in vivo using PC3 xenograft growth delay and intestinal crypt cell clonogenic assays. HR inhibition may be an additional mechanism of action for the chemosensitization and radiosensitization of solid tumors with imatinib with preservation of the therapeutic ratio.
Collapse
Affiliation(s)
- Ananya Choudhury
- Department of Medical Biophysics, University of Toronto and Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario, Canada M5G2M9
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mundhenke C, Weigel MT, Sturner KH, Roesel F, Meinhold-Heerlein I, Bauerschlag DO, Schem C, Hilpert F, Jonat W, Maass N. Novel treatment of ovarian cancer cell lines with Imatinib mesylate combined with Paclitaxel and Carboplatin leads to receptor-mediated antiproliferative effects. J Cancer Res Clin Oncol 2008; 134:1397-405. [DOI: 10.1007/s00432-008-0408-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/23/2008] [Indexed: 11/30/2022]
|
28
|
Mathew P, Thall PF, Bucana CD, Oh WK, Morris MJ, Jones DM, Johnson MM, Wen S, Pagliaro LC, Tannir NM, Tu SM, Meluch AA, Smith L, Cohen L, Kim SJ, Troncoso P, Fidler IJ, Logothetis CJ. Platelet-derived growth factor receptor inhibition and chemotherapy for castration-resistant prostate cancer with bone metastases. Clin Cancer Res 2007; 13:5816-24. [PMID: 17908974 DOI: 10.1158/1078-0432.ccr-07-1269] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To further assess preclinical and early clinical evidence that imatinib mesylate, a platelet-derived growth factor receptor (PDGFR) inhibitor, modulates taxane activity in prostate cancer and bone metastases, a randomized study was conducted. EXPERIMENTAL DESIGN Men with progressive castration-resistant prostate cancer with bone metastases (n = 144) were planned for equal randomization to i.v. 30 mg/m(2) docetaxel on days 1, 8, 15, and 22 every 42 days with 600 mg imatinib daily or placebo, for an improvement in median progression-free survival from 4.5 to 7.5 months (two-sided alpha = 0.05 and beta = 0.20). Secondary end points included differential toxicity and bone turnover markers, tumor phosphorylated PDGFR (p-PDGFR) expression, and modulation of p-PDGFR in peripheral blood leukocytes. RESULTS Accrual was halted early because of adverse gastrointestinal events. Among 116 evaluable men (57 docetaxel + imatinib; 59 docetaxel + placebo), respective median times to progression were 4.2 months (95% confidence interval, 3.1-7.5) and 4.2 months (95% confidence interval, 3.0-6.8; P = 0.58, log-rank test). Excess grade 3 toxicities (n = 23) in the docetaxel + imatinib group were principally fatigue and gastrointestinal. Tumor p-PDGFR expression was observed in 12 of 14 (86%) evaluable bone specimens. In peripheral blood leukocytes, p-PDGFR reduction was more likely in docetaxel + imatinib-treated patients compared with docetaxel + placebo (P < 0.0001), as were reductions in urine N-telopeptides (P = 0.004) but not serum bone-specific alkaline phosphatase (P = 0.099). CONCLUSIONS These clinical and translational results question the value of PDGFR inhibition with taxane chemotherapy in prostate cancer bone metastases and are at variance with the preclinical studies. This discordance requires explanation.
Collapse
Affiliation(s)
- Paul Mathew
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Reduced tumor growth in vivo and increased c-Abl activity in PC3 prostate cancer cells overexpressing the Shb adapter protein. BMC Cancer 2007; 7:161. [PMID: 17697368 PMCID: PMC1976127 DOI: 10.1186/1471-2407-7-161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 08/15/2007] [Indexed: 11/18/2022] Open
Abstract
Background Induction of apoptosis is one strategy for treatment of prostate cancer. The Shb adapter protein has been found to regulate apoptosis in various cell types and consequently human prostate cancer 3 (PC3) cells were transfected to obtain cells overexpressing Shb in order to increase our understanding of the mechanisms regulating PC3 cell apoptosis. Methods Human prostate cancer cells (PC3) were transfected with control vector or a vector containing the Shb cDNA. Clones overexpressing Shb were studied with respect to apoptosis (Dapi, M30) and c-Abl activation (Western blot for pY-245-Abl). The cells were exposed to the anti-tumor agent 2-methoxyestradiol (2-ME) and the p38 MAPK and c-Abl inhibitors SB203580 and STI-571, respectively, after which cell death was determined. In vivo tumor growth and tumor cell proliferation (Ki-67 staining) or apoptosis (active caspase 3 staining) were also determined in nude mice. Results PC3 cells overexpressing Shb exhibited increased rates of apoptosis in the presence of the anti-tumor agent 2-ME. The Shb cells displayed increased activity of the pro-apoptotic kinase c-Abl. Pre-treatment with p38 MAPK (SB203580) or c-Abl (STI-571) inhibitors completely blocked 2-ME-induced apoptosis, implicating these two pathways in the response. The PC3-Shb cells displayed reduced tumor growth in vivo, an effect occurring as a consequence of increased apoptosis and reduced DNA synthesis. Conclusion It is concluded that Shb promotes 2-ME-induced PC3 cell apoptosis by increased pro-apoptotic signaling via the c-Abl pathway and that this causes reduced tumor growth in vivo.
Collapse
|
30
|
Abstract
BACKGROUND Carcinoma of the prostate (CaP) is the most commonly diagnosed cancer in men in the United States. Signal transduction molecules such as tyrosine kinases play important roles in CaP. Src, a nonreceptor tyrosine kinase (NRTK) and the first proto-oncogene discovered is shown to participate in processes such as cell proliferation and migration in CaP. Underscoring NRTK's and, specifically, Src's importance in cancer is the recent approval by the US Food and Drug Administration of dasatinib, the first commercial Src inhibitor for clinical use in chronic myelogenous leukemia (CML). In this review we will focus on NRTKs and their roles in the biology of CaP. MATERIALS AND METHODS Publicly available literature from PubMed regarding the topic of members of NRTKs in CaP was searched and reviewed. RESULTS Src, FAK, JaK1/2, and ETK are involved in processes indispensable to the biology of CaP: cell growth, migration, invasion, angiogenesis, and apoptosis. CONCLUSIONS Src emerges as a common signaling and regulatory molecule in multiple biological processes in CaP. Src's relative importance in particular stages of CaP, however, required further definition. Continued investigation of NRTKs will increase our understanding of their biological function and potential role as new therapeutic targets.
Collapse
Affiliation(s)
- Yu-Ming Chang
- Department of Urology, University of California at Davis, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
31
|
McDowell HP, Meco D, Riccardi A, Tanno B, Berardi AC, Raschellà G, Riccardi R, Dominici C. Imatinib mesylate potentiates topotecan antitumor activity in rhabdomyosarcoma preclinical models. Int J Cancer 2007; 120:1141-9. [PMID: 17131346 DOI: 10.1002/ijc.22391] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
High levels of PDGFR expression in primary rhabdomyosarcoma (RMS) have been associated with disease progression. To date however, there are no reports on the activity of imatinib mesylate, a selective PDGFR inhibitor, in RMS preclinical models. A panel of 5 RMS cell lines was used to investigate the expression of PDGFRalpha and PDGFRbeta, c-Kit and the multidrug transporter ABCG2 (also inhibited by imatinib). In vitro and in vivo experiments were performed using RD (embryonal) and RH30 (alveolar) cell lines to determine the efficacy of imatinib as single agent and in combination with topotecan (TPT). PDGFRbeta was significantly expressed in all cell lines, with the highest levels in RD, while PDGFR alpha and ABCG2 were significantly expressed only in RH30 and RMZ-RC2. c-Kit was not detected. PDGFRbeta signaling was active in RD but not in RH30, whilst PDGFRalpha signaling was not active in either cell lines. Significant ABCG2-mediated extrusion of Hoechst 33342 was demonstrated in RH30 but not in RD, and was inhibited by imatinib and the specific ABCG2 inhibitor Ko143. In vitro, imatinib was not active as a single agent at therapeutic concentrations, but significantly potentiated TPT antitumor activity in both cell lines. In vivo experiments using tumor xenografts confirmed the synergistic interaction in both cell lines. These results suggest that at least 2 different mechanisms--inhibition of ABCG2 and/or PDGFRbeta--are involved in the synergistic interaction between imatinib and TPT, and support the use of this combination for the treatment of high-risk RMS patients.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/analysis
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/genetics
- Animals
- Antineoplastic Combined Chemotherapy Protocols
- Benzamides
- Cell Line, Tumor
- Drug Evaluation, Preclinical
- Humans
- Imatinib Mesylate
- Mice
- Mice, Nude
- Neoplasm Proteins/analysis
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Piperazines/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-kit/analysis
- Proto-Oncogene Proteins c-kit/genetics
- Pyrimidines/therapeutic use
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptors, Platelet-Derived Growth Factor/analysis
- Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors
- Receptors, Platelet-Derived Growth Factor/genetics
- Rhabdomyosarcoma/drug therapy
- Topotecan/therapeutic use
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Heather P McDowell
- Department of Oncology, Royal Liverpool Children's NHS Trust Alder Hey, Liverpool, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Our understanding of growth factors and growth-factor receptors, signal transduction pathways, cellular survival pathways, angiogenesis, and their potential roles in prostate-cancer tumorigenesis remains a work in progress. Novel agents targeting these key mechanisms are showing promise in clinical trials. Many more agents, including those not discussed in this article, such as radio-pharmaceuticals, bisphosphonates, nutriceuticals, immunotherapy, and newer generation chemotherapy, are also showing promise as emerging treatments for prostate cancer. It is important to recognize when designing clinical trials of novel agents that traditional endpoints of disease response may not be applicable in measuring success of biologic compounds. Especially in a disease where tumor marker levels are critical for both patient and physician, additional biomarkers are necessary to better assess response. Halting drug development due to lack of response in serum PSA may lead to an unnecessary demise of an active agent.As expected, the combination of biologic agent with cytotoxic chemotherapy has a higher traditional response rate compared with biologic agent alone. The challenge of combination trials is to determine if the combination of agents will produce a higher traditional response rate compared with chemotherapy alone. For several of the agents discussed, the clinical benefit derived from a combination of biologic agent and cytotoxic chemotherapy may not justify additional drug toxicity. Efficient trial design, appropriate selection of correlative markers,and close toxicity monitoring will help improve our ability to identify promising novel agents.
Collapse
Affiliation(s)
- Elisabeth I Heath
- Barbara Ann Karmanos Cancer Institute, 4100 John R, 4 HWCRC, Detroit, MI 48201, USA.
| | | |
Collapse
|