1
|
He H, Luo H, Xu H, Qian B, Zou X, Zhang G, Zeng F, Zou J. Preclinical models and evaluation criteria of prostatitis. Front Immunol 2023; 14:1183895. [PMID: 37228599 PMCID: PMC10203503 DOI: 10.3389/fimmu.2023.1183895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Prostatitis is a common urological condition that affects almost half of all men at some point in their life. The prostate gland has a dense nerve supply that contributes to the production of fluid to nourish sperm and the mechanism to switch between urination and ejaculation. Prostatitis can cause frequent urination, pelvic pain, and even infertility. Long-term prostatitis increases the risk of prostate cancer and benign prostate hyperplasia. Chronic non-bacterial prostatitis presents a complex pathogenesis, which has challenged medical research. Experimental studies of prostatitis require appropriate preclinical models. This review aimed to summarize and compare preclinical models of prostatitis based on their methods, success rate, evaluation, and range of application. The objective of this study is to provide a comprehensive understanding of prostatitis and advance basic research.
Collapse
Affiliation(s)
- Hailan He
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Xu
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Fei Zeng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Calvert RD, Fleet JC, Fournier PGJ, Juarez P, Burcham GN, Haverkamp JM, Guise TA, Ratliff TL, Elzey BD. Monocytic Myeloid-Derived Suppressor Cells from Tumor Tissue Are a Differentiated Cell with Limited Fate Plasticity. Immunohorizons 2022; 6:790-806. [PMID: 36480485 DOI: 10.4049/immunohorizons.2200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
Owing to ease of access and high yield, most murine myeloid-derived suppressor cell (MDSC) knowledge comes from the study of spleen-derived MDSCs rather than those isolated from the tumor. Although several studies have identified subtle differences in suppressive function between these MDSCs, a recent report demonstrated that the whole peripheral myeloid compartment poorly reflects myeloid populations found at the tumor. We confirm and extend these observations by presenting data that indicate extensive differences exist between peripheral and tumor MDSCs, suggesting that it may be inappropriate to use spleen MDSCs as surrogates for studying tumor MDSCs. Using cytospins, we observed that tumor MDSCs have undergone a morphologic shift from immature myeloid cell forms commonly seen in bone marrow (BM) and spleen MDSCs and acquired mature myeloid cell characteristics. Spleen and BM monocyte-like MDSCs (M-MDSCs) readily responded to differentiation signals for multiple myeloid cell types whereas tumor M-MDSCs had remarkably reduced cellular plasticity. At the time of isolation, M-MDSCs from BM or spleen have little to no T cell suppressive activity whereas those from the tumor possess immediate and efficient T cell suppressive function. Finally, microarray analysis revealed that the transcriptomes of tumor and spleen M-MDSCs possessed >4500 differentially expressed transcripts. We conclude that tumor M-MDSCs are more differentiated and mature, and that they are morphologically, genetically, and functionally distinct from spleen and BM M-MDSCs. These observations have important implications for the design of anti-MDSC therapies and suggest that preclinical studies using nontumor MDSCs could lead to results not applicable to tumor MDSCs.
Collapse
Affiliation(s)
- Ryan D Calvert
- Department of Science and Mathematics, Tabor College, Hillsboro, KS
| | - James C Fleet
- Department of Nutrition Science, University of Texas, Austin, TX
| | - Pierrick G J Fournier
- Center for Scientific Research and Higher Education at Ensenada, Ensenada, Baja California, Mexico
| | - Patricia Juarez
- Center for Scientific Research and Higher Education at Ensenada, Ensenada, Baja California, Mexico
| | - Grant N Burcham
- Heeke Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Purdue University, Dubois, IN.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN
| | | | - Theresa A Guise
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN.,Center for Cancer Research, Purdue University, West Lafayette, IN
| | - Bennett D Elzey
- Division of Internal Medicine, Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX; and.,Center for Cancer Research, Purdue University, West Lafayette, IN
| |
Collapse
|
3
|
Luo Y, Liu X, Lin J, Zhong W, Chen Q. Development and validation of novel inflammatory response-related gene signature to predict prostate cancer recurrence and response to immune checkpoint therapy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:11345-11366. [PMID: 36124593 DOI: 10.3934/mbe.2022528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of this study is to construct an inflammatory response-related genes (IRRGs) signature to monitor biochemical recurrence (BCR) and treatment effects in prostate cancer patients (PCa). A gene signature for inflammatory responses was constructed on the basis of the data from the Cancer Genome Atlas (TCGA) database, and validated in external datasets. It was analyzed using receiver operating characteristic curve, BCR-free survival, Cox regression, and nomogram. Distribution analysis and external model comparison were utilized. Then, enrichment analysis, tumor mutation burden, tumor immune microenvironment, and immune cell infiltration signatures were investigated. The role of the signature in immunotherapy was evaluated. The expression patterns of core genes were verified by RNA sequencing. We identified an IRRGs signature in the TCGA-PRAD cohort and verified it well in two other independent external datasets. The signature was a robust and independent prognostic index for predicting the BCR of PCa. The high-risk group of our signature predicted a shortened BCR time and an aggressive disease progression. A nomogram was constructed to predict BCR-free time in clinical practices. Neutrophils and CD8+ T cells were in higher abundance among the low-risk individuals. Immune functions varied significantly between the two groups and immune checkpoint therapy worked better for the low-risk patients. The expression of four IRRGs showed significant differences between PCa and surrounding benign tissues, and were validated in BPH-1 and DU145 cell lines by RNA sequencing. Our signature served as a reliable and promising biomarker for predicting the prognosis and evaluating the efficacy of immunotherapy, facilitating a better outcome for PCa patients.
Collapse
Affiliation(s)
- Yong Luo
- Department of Urology, the Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Xiaopeng Liu
- Department of Science and Teaching, the Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Jingbo Lin
- Department of Urology, the Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Weide Zhong
- Department of Urology, the Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Urology Key Laboratory of Guangdong Province, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Qingbiao Chen
- Department of Urology, the Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| |
Collapse
|
4
|
Bleeker J, Wang ZA. Applications of Vertebrate Models in Studying Prostatitis and Inflammation-Associated Prostatic Diseases. Front Mol Biosci 2022; 9:898871. [PMID: 35865005 PMCID: PMC9294738 DOI: 10.3389/fmolb.2022.898871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
It has long been postulated that the inflammatory environment favors cell proliferation, and is conducive to diseases such as cancer. In the prostate gland, clinical data implicate important roles of prostatitis in the progression of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa). However, their causal relationships have not been firmly established yet due to unresolved molecular and cellular mechanisms. By accurately mimicking human disease, vertebrate animals provide essential in vivo models to address this question. Here, we review the vertebrate prostatitis models that have been developed and discuss how they may reveal possible mechanisms by which prostate inflammation promotes BPH and PCa. Recent studies, particularly those involving genetically engineered mouse models (GEMMs), suggest that such mechanisms are multifaceted, which include epithelium barrier disruption, DNA damage and cell proliferation induced by paracrine signals, and expansion of potential cells of origin for cancer. Future research using rodent prostatitis models should aim to distinguish the etiologies of BPH and PCa, and facilitate the development of novel clinical approaches for prostatic disease prevention.
Collapse
|
5
|
Male Lower Urinary Tract Dysfunction: An Underrepresented Endpoint in Toxicology Research. TOXICS 2022; 10:toxics10020089. [PMID: 35202275 PMCID: PMC8880407 DOI: 10.3390/toxics10020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023]
Abstract
Lower urinary tract dysfunction (LUTD) is nearly ubiquitous in men of advancing age and exerts substantial physical, mental, social, and financial costs to society. While a large body of research is focused on the molecular, genetic, and epigenetic underpinnings of the disease, little research has been dedicated to the influence of environmental chemicals on disease initiation, progression, or severity. Despite a few recent studies indicating a potential developmental origin of male LUTD linked to chemical exposures in the womb, it remains a grossly understudied endpoint in toxicology research. Therefore, we direct this review to toxicologists who are considering male LUTD as a new aspect of chemical toxicity studies. We focus on the LUTD disease process in men, as well as in the male mouse as a leading research model. To introduce the disease process, we describe the physiology of the male lower urinary tract and the cellular composition of lower urinary tract tissues. We discuss known and suspected mechanisms of male LUTD and examples of environmental chemicals acting through these mechanisms to contribute to LUTD. We also describe mouse models of LUTD and endpoints to diagnose, characterize, and quantify LUTD in men and mice.
Collapse
|
6
|
Fleet JC, Burcham GN, Calvert RD, Elzey BD, Ratliff TL. 1α, 25 Dihydroxyvitamin D (1,25(OH) 2D) inhibits the T cell suppressive function of myeloid derived suppressor cells (MDSC). J Steroid Biochem Mol Biol 2020; 198:105557. [PMID: 31783150 PMCID: PMC8041088 DOI: 10.1016/j.jsbmb.2019.105557] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
Abstract
Myeloid derived suppressor cells (MDSC) suppress the ability of cytotoxic T cells to attack and clear tumor cells from the body. The active form of vitamin D, 1,25 dihydroxyvitamin D (1,25(OH)2D), regulates myeloid cell biology and previous research showed that in mouse models 1,25(OH)2D reduced the tumor level of CD34+ cells, an MDSC precursor, and reduced metastasis. We tested whether MDSC are vitamin D target cells by examining granulocytic- (G-MDSC) and monocytic (M-MDSC) MDSC from tumors, spleen, and bone marrow. Vitamin D receptor (VDR) mRNA levels are low in MDSC from bone marrow and spleen but are 20-fold higher in tumor MDSC. At all sites, M-MDSC have 4-fold higher VDR mRNA expression than G-MDSC. Bone marrow MDSC were induced to differentiate in vitro into tumor MDSC-like cells by treating with IFN-γ, IL-13, and GM-CSF for 48 h. This treatment significantly elevated Arg1 and Nos2 levels, activated the T cell-suppressive function of MDSC, increased VDR expression 50-fold, and made the MDSC responsive to 1,25(OH)2D treatment. Importantly, 1,25(OH)2D treatment reduced the T cell suppressive capacity of cytokine-induced total MDSC and M-MDSC by ≥70 % and tumor-derived M-MDSC by 30-50 %. Consistent with this finding, VDR deletion (KO) increased T cell suppressive function of in vitro M-MDSC by 30 % and of tumor-derived M-MDSC by 50 % and G-MDSC by 400 %. VDR KO did not alter Nos2 mRNA levels but significantly increased Arg1 mRNA levels in tumor M-MDSC by 100 %. In contrast, 1,25(OH)2D treatment reduced nitric oxide production in both in vitro derived M- and G- MDSC. The major finding of this study is that 1,25(OH)2D signaling through the VDR decreases the immunosuppressive capability of MDSC. Collectively, our data suggest that activation of vitamin D signaling could be used to suppress MDSC function and release a constraint on T-cell mediated clearance of tumor cells.
Collapse
Affiliation(s)
- J C Fleet
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| | - G N Burcham
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - R D Calvert
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - B D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - T L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
7
|
Ahel J, Hudorović N, Vičić-Hudorović V, Nikles H. TGF-BETA IN THE NATURAL HISTORY OF PROSTATE CANCER. Acta Clin Croat 2019; 58:128-138. [PMID: 31363335 PMCID: PMC6629207 DOI: 10.20471/acc.2019.58.01.17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
All transforming growth factors beta (TGFß) are cytokines that regulate several cellular functions such as cell growth, differentiation and motility. They may also have a role in immunosuppression. Their role is important for normal prostate development. TGFß is active in the regulation of balance between epithelial cell proliferation and apoptosis through stromal epithelia via the androgen receptor action. TGFß protects and maintains prostate stem cells, an important population necessary for prostate tissue regeneration. However, TGFß is shown to have a contrasting role in prostate tumor genesis. In the early stages of tumor development, TGFß acts as a tumor suppressor, whereas in the later stages, TGFß becomes a tumor promoter by inducing proliferation, invasion and metastasis. In this review, we outline complex interactions that TGFß-mediated signaling has on prostate tumor genesis, focusing on the role of these interactions during the course of prostate cancer and, in particular, during disease progression.
Collapse
Affiliation(s)
| | - Narcis Hudorović
- 1Dr Zaky Polyclinic for Internal Medicine and Urology, Zagreb, Croatia; 2Department of Vascular Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Croatian Nursing Association, Zagreb, Croatia; 4Department of Abdominal Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Višnja Vičić-Hudorović
- 1Dr Zaky Polyclinic for Internal Medicine and Urology, Zagreb, Croatia; 2Department of Vascular Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Croatian Nursing Association, Zagreb, Croatia; 4Department of Abdominal Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Hrvoje Nikles
- 1Dr Zaky Polyclinic for Internal Medicine and Urology, Zagreb, Croatia; 2Department of Vascular Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia; 3Croatian Nursing Association, Zagreb, Croatia; 4Department of Abdominal Surgery, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| |
Collapse
|
8
|
Cimen Bozkus C, Elzey BD, Crist SA, Ellies LG, Ratliff TL. Expression of Cationic Amino Acid Transporter 2 Is Required for Myeloid-Derived Suppressor Cell-Mediated Control of T Cell Immunity. THE JOURNAL OF IMMUNOLOGY 2015; 195:5237-50. [PMID: 26491198 DOI: 10.4049/jimmunol.1500959] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/24/2015] [Indexed: 01/04/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells that expand during benign and cancer-associated inflammation and are characterized by their ability to inhibit T cell immunity. Increased metabolism of l-Arginine (l-Arg), through the enzymes arginase 1 and NO synthase 2 (NOS2), is well documented as a major MDSC suppressive mechanism. Therefore, we hypothesized that restricting MDSC uptake of l-Arg is a critical control point to modulate their suppressor activity. Using murine models of prostate-specific inflammation and cancer, we have identified the mechanisms by which extracellular l-Arg is transported into MDSCs. We have shown that MDSCs recruited to localized inflammation and tumor sites upregulate cationic amino acid transporter 2 (Cat2), coordinately with Arg1 and Nos2. Cat2 expression is not induced in MDSCs in peripheral organs. CAT2 contributes to the transport of l-Arg in MDSCs and is an important regulator of MDSC suppressive function. MDSCs that lack CAT2 have significantly reduced suppressive ability ex vivo and display impaired capacity for regulating T cell responses in vivo as evidenced by increased T cell expansion and decreased tumor growth in Cat2(-/-) mice. The abrogation of suppressive function is due to low intracellular l-Arg levels, which leads to the impaired ability of NOS2 to catalyze l-Arg-dependent metabolic processes. Together, these findings demonstrate that CAT2 modulates MDSC function. In the absence of CAT2, MDSCs display diminished capacity for controlling T cell immunity in prostate inflammation and cancer models, where the loss of CAT2 results in enhanced antitumor activity.
Collapse
Affiliation(s)
- Cansu Cimen Bozkus
- Comparative Pathobiology Department, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907; and
| | - Bennett D Elzey
- Comparative Pathobiology Department, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907; and
| | - Scott A Crist
- Comparative Pathobiology Department, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907; and
| | - Lesley G Ellies
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| | - Timothy L Ratliff
- Comparative Pathobiology Department, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907; and
| |
Collapse
|
9
|
Wang H, Wang L, Jerde TJ, Chan B, Savran CA, Burcham GN, Crist S, Ratliff TL. Characterization of autoimmune inflammation induced prostate stem cell expansion. Prostate 2015; 75:1620-31. [PMID: 26174474 PMCID: PMC4720918 DOI: 10.1002/pros.23043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/02/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND The presence of inflammation in prostate cancer (PCa) and benign prostate hyperplasia (BPH) has been well described but the cellular mechanisms by which inflammation modulates the prostate are currently unclear. Prostate stem cells (PSC) not only maintain prostate homeostasis but also are considered to be the cell of origin of PCa and an important contributor to BPH. However, the impact of inflammation on PSC is not well understood. Therefore, we initiated studies to evaluate the effect of inflammation on PSC. METHOD Ovalbumin specific CD8(+) T cells were intravenously delivered to intact and castrated prostate ovalbumin expressing transgenic-3 (POET-3) mice to induce inflammation. Lin (CD45/CD31)(-) Sca1(+) CD49f(+) cells (LSC) and progenitor cells within LSC were determined by flow cytometry. Sorted LSC were subjected to a prostate sphere forming assay to evaluate PSC clonal propagation, proliferation, immediate differentiation, and self-renewal ability. Density of individual spheres was measured by a cantilever-based resonator weighing system. Morphology and characterization of prostate spheres was determined by hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC). Finally, immediate PSC differentiation in sphere formation was determined by immunofluorescence for epithelial cytokeratin markers cytokeratin (CK) 5 and CK8. RESULT Data presented here demonstrate a significant expansion of the proliferative (BrdU(+) ) LSC population, including CK5(+) , p63(+) , CK18(+) cells, as well as intermediate cells (CK5(+) /CK8(+) ) in inflamed prostates. Histological images reveal that PSC from inflamed prostates produce significantly larger spheres, indicating that the enhanced proliferation observed in LSC is sustained in vitro in the absence of inflammatory mediators. In addition, cultures from inflamed PSC yielded increased number of tubule-like spheres. These tube-like spheres grown from PSCs isolated from inflamed mice exhibited stratification of a CK8(+) luminal-like layer and a CK5(+) basal-like layer. Notably, the numbers of spheres formed by inflamed and non-inflamed PSC were equal, suggesting that even though proliferation is enhanced by inflammation, the homeostatic level of PSC is maintained. CONCLUSION Induction of inflammation promotes PSC expansion and immediate differentiation through highly proliferative progenitor cells while the homeostasis of PSC is maintained.
Collapse
Affiliation(s)
- Hsing‐Hui Wang
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- Purdue University Center for Cancer Research201 S. University St.West LafayetteIndiana
| | - Liang Wang
- Department of Pharmacology and Toxicology and Department of UrologyIndiana UniversityIndianapolisIndiana
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology and Department of UrologyIndiana UniversityIndianapolisIndiana
| | - Bin‐Da Chan
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndiana
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIndiana
| | - Cagri A. Savran
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndiana
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIndiana
| | - Grant N. Burcham
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- College of Veterinary MedicineThe Heeke Animal Disease Diagnostic Laboratory, Purdue UniversityWest LafayetteIndiana
| | - Scott Crist
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- Purdue University Center for Cancer Research201 S. University St.West LafayetteIndiana
| | - Timothy L. Ratliff
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndiana
- Purdue University Center for Cancer Research201 S. University St.West LafayetteIndiana
| |
Collapse
|
10
|
Burcham GN, Cresswell GM, Snyder PW, Chen L, Liu X, Crist SA, Henry MD, Ratliff TL. Impact of prostate inflammation on lesion development in the POET3(+)Pten(+/-) mouse model of prostate carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3176-91. [PMID: 25455686 DOI: 10.1016/j.ajpath.2014.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/14/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022]
Abstract
Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten(+/-)) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten(+/-) mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b(+)Gr1(+) cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten(+/-) model of cancer.
Collapse
Affiliation(s)
- Grant N Burcham
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana; Heeke Animal Disease Diagnostic Laboratory, Southern Indiana Purdue Agricultural Center, Dubois, Indiana
| | - Gregory M Cresswell
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Paul W Snyder
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana; Purdue University Center for Cancer Research, West Lafayette, Indiana
| | - Long Chen
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, Indiana
| | - Xiaoqi Liu
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, Indiana; Purdue University Center for Cancer Research, West Lafayette, Indiana
| | - Scott A Crist
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana; Purdue University Center for Cancer Research, West Lafayette, Indiana
| | - Michael D Henry
- Department of Physiology and Biophysics and Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana; Purdue University Center for Cancer Research, West Lafayette, Indiana.
| |
Collapse
|
11
|
Dong B, Minze LJ, Xue W, Chen W. Molecular insights into the development of T cell-based immunotherapy for prostate cancer. Expert Rev Clin Immunol 2014; 10:1547-57. [DOI: 10.1586/1744666x.2014.962515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Chou CK, Schietinger A, Liggitt HD, Tan X, Funk S, Freeman GJ, Ratliff TL, Greenberg NM, Greenberg PD. Cell-intrinsic abrogation of TGF-β signaling delays but does not prevent dysfunction of self/tumor-specific CD8 T cells in a murine model of autochthonous prostate cancer. THE JOURNAL OF IMMUNOLOGY 2012; 189:3936-46. [PMID: 22984076 DOI: 10.4049/jimmunol.1201415] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adoptive T cell therapy (ACT) for the treatment of established cancers is actively being pursued in clinical trials. However, poor in vivo persistence and maintenance of antitumor activity of transferred T cells remain major problems. TGF-β is a potent immunosuppressive cytokine that is often expressed at high levels within the tumor microenvironment, potentially limiting T cell-mediated antitumor activity. In this study, we used a model of autochthonous murine prostate cancer to evaluate the effect of cell-intrinsic abrogation of TGF-β signaling in self/tumor-specific CD8 T cells used in ACT to target the tumor in situ. We found that persistence and antitumor activity of adoptively transferred effector T cells deficient in TGF-β signaling were significantly improved in the cancerous prostate. However, over time, despite persistence in peripheral lymphoid organs, the numbers of transferred cells in the prostate decreased and the residual prostate-infiltrating T cells were no longer functional. These findings reveal that TGF-β negatively regulates the accumulation and effector function of transferred self/tumor-specific CD8 T cells and highlight that, when targeting a tumor Ag that is also expressed as a self-protein, additional substantive obstacles are operative within the tumor microenvironment, potentially hampering the success of ACT for solid tumors.
Collapse
Affiliation(s)
- Cassie K Chou
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bruno TC, Rothwell C, Grosso JF, Getnet D, Yen HR, Durham NM, Netto G, Pardoll DM, Drake CG. Anti-tumor effects of endogenous prostate cancer-specific CD8 T cells in a murine TCR transgenic model. Prostate 2012; 72:514-22. [PMID: 21761425 PMCID: PMC3248615 DOI: 10.1002/pros.21453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/13/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The CD8 T-cell response to prostate and other cancers is often functionally diminished or absent. This may occur via deletion of tumor-specific T cells, through acquisition of an anergic phenotype, or via active suppression mediated by another population of cells. METHODS We used a double transgenic model in which mice express CD8 T cells specific for a prostate/prostate cancer antigen to study the response of CD8 T cells to evolving autochronous prostate tumors in TRAMP mice. CD8 T cells were analyzed for functionality by measuring IFN-γ production via flow cytometry and via an in vivo CTL killing assay. In addition, pathological scoring of the prostates of the double transgenic mice was compared to scoring of tumor burden prostates of ProTRAMP mice. RESULTS Tumor-specific CD8 T cells were not grossly deleted in these animals, but evidenced a clearly non-functional phenotype. Interestingly, full lytic function was rapidly recovered upon removal from tumor-bearing mice. CONCLUSIONS These data indicate a role for continuous antigen exposure in the maintenance of tumor-specific CD8 T-cell tolerance to prostate cancer.
Collapse
Affiliation(s)
- Tullia C. Bruno
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Cristin Rothwell
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Joseph F. Grosso
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Derese Getnet
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hung Rong Yen
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nicholas M. Durham
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - George Netto
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Drew M. Pardoll
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Charles G. Drake
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
14
|
Haverkamp JM, Charbonneau B, Meyerholz DK, Cohen MB, Snyder PW, Svensson RU, Henry MD, Wang HH, Ratliff TL. An inducible model of abacterial prostatitis induces antigen specific inflammatory and proliferative changes in the murine prostate. Prostate 2011; 71:1139-50. [PMID: 21656824 PMCID: PMC3136647 DOI: 10.1002/pros.21327] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/30/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Prostatitis is a poorly understood disease and increasing evidence suggests inflammation is involved in other prostatic diseases including prostate cancer. METHODS The ability of pre-activated CD8 T cells to induce prostatitis was examined by adoptive transfer of prostate antigen specific CD8 T cells into POET-3 mice or POET-3/Luc/Pten(-/+) mice. Characterization of the inflammatory response was determined by examining leukocyte infiltration by histological analysis, flow cytometry and by evaluating cytokine and chemokine levels in prostate tissue. The impact of inflammation on the prostate was evaluated by monitoring epithelial cell proliferation over time. RESULTS Initiation of inflammation by ovalbumin specific CD8⁺ T cells (OT-I cells) resulted in development of acute prostatitis in the anterior, dorsolateral and ventral prostate of POET-3 and POET-3/Luc/Pten(-/+) mice. Acute prostatitis was characterized by recruitment of adoptively transferred OT-I cells and importantly, autologous CD4⁺ and CD8⁺ T cells, myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg). In concert with leukocyte infiltration elevated levels of pro-inflammatory cytokines and chemokines were observed. Inflammation also resulted in marked epithelial cell proliferation that was sustained up to 80 days post adoptive transfer of OT-I cells. CONCLUSIONS The POET-3 model represents a novel mouse model to study both acute and chronic prostate inflammation in an antigen-specific system. Further, the POET-3 mouse model can be crossed with other genetic models of disease such as the C57/Luc/Pten(-/-) model of prostate cancer, allowing the impact of prostatitis on other prostatic diseases to be evaluated.
Collapse
Affiliation(s)
- Jessica M. Haverkamp
- Jessica M. Haverkamp, BS. Purdue University, Department of Comparative Pathobiology, West Lafayette, IN and University of Iowa Immunology Program, Iowa City, IA, Hansen Life Science Research Building, 201 South University St., West Lafayette IN, 47905, 765-494-6329 (phone)/765-494-9193 (fax)
| | - Bridget Charbonneau
- Bridget Charbonneau Ph.D., M.P.H. University of Iowa Microbiology Program, Iowa City, IA, Purdue University, Hansen Life Science Research Building, 201 South University St., West Lafayette IN, 47905, 765-494-6329 (phone)/765-494-9193 (fax)
| | - David K. Meyerholz
- David K. Meyerholz, D.V.M, Ph.D., The University of Iowa, Department of Pathology, Iowa City, IA, University of Iowa, 1165 Medical Laboratories, Iowa City, IA 52242-1181, 319-353-4589 (phone)
| | - Michael B. Cohen
- Michael B. Cohen, MD. University of Iowa Carver College of Medicine, Departments of Pathology, Urology and Epidemiology, Iowa City, IA University of Iowa, 200 Hawkins Drive-C660 General Hospital, Iowa City, IA 52242-1009, 319-384-9609 (phone) / 319-384-9613 (fax)
| | - Paul W. Snyder
- Paul W. Snyder, DVM, Ph.D. Department of Comparative Pathobiology, Purdue University, West Lafayette, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, 765-494-9676 (phone)
| | - Robert U. Svensson
- Robert U Svensson, Ph.D. The University of Iowa, Department of Molecular Physiology and Biophysics, Iowa City, IA, University of Iowa, 6-510 Bowen Science Building, Iowa City, IA, 52242, 319-335-7886 (phone)/319-335-7330 (fax)
| | - Michael D. Henry
- Michael D. Henry, Ph.D, University of Iowa Carver College of Medicine, Departments of Molecular Physiology and Biophysics and Pathology. 6-510 Bowen Science Building, Iowa City, IA 52242, 319-335-7886 (phone)/ 319-335-7330 (fax)
| | - Hsing- Hui Wang
- Hsing-Hui Wang, M.S., Purdue University, Department of Comparative Pathobiology, West Lafaytte, IN, Hansen Life Science Research Building, 201 South University St., West Lafayette IN, 47905, 765-494-6329 (phone)/765-494-9193 (fax)
| | - Timothy L. Ratliff
- Timothy L. Ratliff, Ph.D., Purdue University, Department of Comparative Pathobiology, and Purdue University Center for Cancer Research, West Lafayette, IN, Hansen Life Science Research Building, 201 South University St., West Lafayette IN, 47905, 765-494-9129 (phone) / 765-494-9193 (fax)
| |
Collapse
|
15
|
Haverkamp JM, Crist SA, Elzey BD, Cimen C, Ratliff TL. In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site. Eur J Immunol 2011; 41:749-59. [PMID: 21287554 DOI: 10.1002/eji.201041069] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/25/2010] [Accepted: 12/17/2010] [Indexed: 12/17/2022]
Abstract
Current paradigms suggest that, despite the heterogeneity of myeloid-derived suppressor cells (MDSC), all Gr-1(+) CD11b(+) cells can exert suppressive function when exposed to inflammatory stimuli. In vitro evaluation shows that MDSC from multiple tissue sites have suppressive activity, and in vivo inhibition of MDSC enhances T-cell function; however, the relative capacity of MDSC present at localized inflammatory sites or in peripheral tissues to suppress T-cell responses in vivo has not been directly evaluated. In the current study, we observed that during a tissue-specific inflammatory response, MDSC inhibition of CD8(+) T-cell proliferation and IFN-γ production was restricted to the inflammatory site. Using a prostate-specific inflammatory model and a heterotopic prostate tumor model, we showed that MDSC from inflammatory sites or from tumor tissue possess immediate capacity to inhibit T-cell function, whereas those isolated from peripheral tissues (spleens and liver) were not suppressive without activation of iNOS by exposure to IFN-γ. These data suggest that MDSC are important regulators of immune responses in the prostate during acute inflammation and the chronic inflammatory setting of tumor growth, and that regulation of T-cell function by MDSC during a localized inflammatory response is restricted in vivo to the site of an ongoing immune response.
Collapse
|
16
|
Abstract
Advances in basic immunology have led to an improved understanding of the interactions between the immune system and tumours, generating renewed interest in approaches that aim to treat cancer immunologically. As clinical and preclinical studies of tumour immunotherapy illustrate several immunological principles, a review of these data is broadly instructive and is particularly timely now that several agents are beginning to show evidence of efficacy. This is especially relevant in the case of prostate cancer, as recent approval of sipuleucel-T by the US Food and Drug Administration marks the first antigen-specific immunotherapy approved for cancer treatment. Although this Review focuses on immunotherapy for prostate cancer, the principles discussed are applicable to many tumour types, and the approaches discussed are highlighted in that context.
Collapse
Affiliation(s)
- Charles G Drake
- Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street-CRB 410, Baltimore, Maryland 21231, USA.
| |
Collapse
|
17
|
Diener KR, Need EF, Buchanan G, Hayball JD. TGF-beta signalling and immunity in prostate tumourigenesis. Expert Opin Ther Targets 2010; 14:179-92. [PMID: 20055717 DOI: 10.1517/14728220903544507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE OF THE FIELD The TGF-beta's are pleiotropic cytokines that regulate multiple cellular functions. Their role in the prostate is important for normal prostate development and also in prostate tumourigenesis. AREAS COVERED IN THIS REVIEW The interactions TGF-beta-mediated signalling has with maintaining prostate health, as well as its role in prostate tumourigenesis and prostate tumour immune evasion, with emphasis on how a breakdown in these interactions may influence disease progression. WHAT THE READER WILL GAIN That TGF-beta influences normal prostate growth and differentiation by regulating the balance between epithelial cell proliferation and apoptosis, and involving the androgen receptor pathway. That TGF-beta protects and maintains prostate stem cells and a review of the contrasting role TGF-beta has in prostate tumourigenesis and tumour development, where TGF-beta acts as a tumour suppressor and then switches roles to become a tumour promoter, and creates a local immunosuppressive niche leading to systemic tumour tolerance. TAKE HOME MESSAGE TGF-beta signalling in prostate cancer is a valid target for the treatment of this disease; however any therapeutic regimen will require an understanding of all aspects of the TGF-beta-signalling nexus, otherwise by the very pleiotrophic nature of TGF-beta, limited clinical benefits may result.
Collapse
Affiliation(s)
- Kerrilyn R Diener
- Hanson Institute, Experimental Therapeutics Laboratory, Adelaide, SA 5000, Australia
| | | | | | | |
Collapse
|
18
|
Drake CG. Immunotherapy for prostate cancer: an emerging treatment modality. Urol Clin North Am 2010; 37:121-9, Table of Contents. [PMID: 20152525 DOI: 10.1016/j.ucl.2009.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This article examines prostate cancer as a target for immunotherapy and investigates active immunotherapy for prostate cancer, combining conventional therapy with active immunotherapy, immune modulators (brakes and accelerators), and monoclonal antibodies.
Collapse
Affiliation(s)
- Charles G Drake
- Departments of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, 1650 Orleans Street CRB I #410, Baltimore, MD 21231, USA.
| |
Collapse
|
19
|
Wada S, Yoshimura K, Hipkiss EL, Harris TJ, Yen HR, Goldberg MV, Grosso JF, Getnet D, Demarzo AM, Netto GJ, Anders R, Pardoll DM, Drake CG. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res 2009; 69:4309-18. [PMID: 19435909 DOI: 10.1158/0008-5472.can-08-4102] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To study the immune response to prostate cancer, we developed an autochthonous animal model based on the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse in which spontaneously developing tumors express influenza hemagglutinin as a unique, tumor-associated antigen. Our prior studies in these animals showed immunologic tolerance to hemagglutinin, mirroring the clinical situation in patients with cancer who are generally nonresponsive to their disease. We used this physiologically relevant animal model to assess the immunomodulatory effects of cyclophosphamide when administered in combination with an allogeneic, cell-based granulocyte-macrophage colony-stimulating factor-secreting cancer immunotherapy. Through adoptive transfer of prostate/prostate cancer-specific CD8 T cells as well as through studies of the endogenous T-cell repertoire, we found that cyclophosphamide induced a marked augmentation of the antitumor immune response. This effect was strongly dependent on both the dose and the timing of cyclophosphamide administration. Mechanistic studies showed that immune augmentation by cyclophosphamide was associated with a transient depletion of regulatory T cells in the tumor draining lymph nodes but not in the peripheral circulation. Interestingly, we also noted effects on dendritic cell phenotype; low-dose cyclophosphamide was associated with increased expression of dendritic cell maturation markers. Taken together, these data clarify the dose, timing, and mechanism of action by which immunomodulatory cyclophosphamide can be translated to a clinical setting in a combinatorial cancer treatment strategy.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Koh YT, Gray A, Higgins SA, Hubby B, Kast WM. Androgen ablation augments prostate cancer vaccine immunogenicity only when applied after immunization. Prostate 2009; 69:571-84. [PMID: 19143030 PMCID: PMC2732563 DOI: 10.1002/pros.20906] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Androgen ablation (AA) causes apoptosis of normal and neoplastic prostate cells. It is a standard treatment for advanced prostate cancer. Androgen ablation-mediated immunological effects include bone marrow hyperplasia, thymic regeneration, T and B cell lymphopoeisis and restoration of age-related peripheral T cell dysfunction. Androgens also regulate the transcription of several cytokines. Dendritic cells (DC) are the most potent antigen presenting cells that can activate antigen-specific naïve T cells. Despite myriad clinical trials involving DC-based prostate cancer immunotherapies, the effects of AA on DC function remain largely uncharacterized. Therefore, we investigated the effects of AA on DC and whether it could improve the efficacy of prostate cancer immunotherapy. METHODS Cytokine expression changes due to AA were quantified by multiplex ELISA. Flow cytometry was used to assess AA-mediated effects on DC maturation and expression of costimulatory markers. Mixed leukocyte reactions and cell-mediated lysis assays elucidated the role of androgens in DC function. The effect of AA on the efficacy of vaccination against a prostate tumor-associated antigen was tested using Elispot assays. RESULTS Androgen ablation increased dendritic cell maturation and costimulatory marker expression, but had no effect on DC costimulatory function. However, DC isolated from castrated mice increased the expression of key cytokines by antigen-experienced T cells while decreasing their expression in naïve cells. Finally, androgen ablation improved immune responses to vaccination only when applied after immunization. CONCLUSION Androgen ablation causes differential effects of DC on primary and secondary T cell responses, thus augmenting vaccine immunogenicity only when applied after immunization.
Collapse
Affiliation(s)
- Yi T. Koh
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA 90033
| | - Andrew Gray
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033
| | - Sean A. Higgins
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033
| | - Bolyn Hubby
- Alphavax Inc., Research Triangle Park, NC 27709
| | - W. Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA 90033
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA 90033
- Correspondence: W. Martin Kast, PhD, Norris Comprehensive Cancer Center, NRT 7507, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, Phone: 1 323 442 3870, E-mail:
| |
Collapse
|
21
|
Diener KR, Woods AE, Manavis J, Brown MP, Hayball JD. Transforming growth factor-beta-mediated signaling in T lymphocytes impacts on prostate-specific immunity and early prostate tumor progression. J Transl Med 2009; 89:142-51. [PMID: 19079323 DOI: 10.1038/labinvest.2008.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
T cells are in general tolerant of prostate-specific tumor antigens. That prostate tumor tissue makes transforming growth factor-beta (TGFbeta) is thought to play a role in the induction of T-cell tolerance within the host and to contribute to tumor progression itself. Here we sought to investigate the influence of TGFbeta signaling on prostate antigen-specific T-cell responses as well as prostate tumorogenesis in an autochthonous murine model of the disease. The response of naive and activated ovalbumin (OVA) antigen-specific T cells, which had been rendered incapable of responding to TGFbeta through T-cell-specific transgenic expression of a dominant-negative variant of the TGFbeta receptor II (dnTGFRII), was analyzed after adoptive transfer into prostate OVA-expressing transgenic (POET) mice. The role of TGFbeta signaling in endogenous T cells in mice, which spontaneously form tumors, was also assessed by monitoring prostate tumor formation and progression in F1 progeny of productive matings between transgenic adenocarcinoma of the mouse prostate (TRAMP) and dnTGFRII mice. TGFbeta-resistant CD8(+) T cells proliferated more and produced IFNgamma more readily after OVA stimulation in vitro. OVA-specific T cells did not damage the prostate gland of POET mice irrespective of TGFbeta responsiveness. However, ex vivo activation facilitated entry of TGFbeta-insensitive T cells into the prostate and was associated with prostate tissue damage. Early tumor progression was delayed in TRAMP mice that carried endogenous TGFbeta-insensitive T cells. Together, these results suggest that TGFbeta-signaling represses CD8(+) T-cell responses to a prostate-specific antigen. TGFbeta-mediated repression of T-cell function may include production of IFNgamma, which is known to contribute to tumor immunosurveillance.
Collapse
Affiliation(s)
- Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Hanson Institute, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
22
|
Neeley YC, Arredouani MS, Hollenbeck B, Eng MH, Rubin MA, Sanda MG. Partially circumventing peripheral tolerance for oncogene-specific prostate cancer immunotherapy. Prostate 2008; 68:715-27. [PMID: 18302222 DOI: 10.1002/pros.20689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Failure of cancer immunotherapy is essentially due to immunological tolerance to tumor-associated antigens (TAAs), as these antigens are also expressed in healthy tissues. METHODS Here, we used transgenic adenocarcinoma of mouse prostate (TRAMP) mice, which develop lethal prostate cancer due to prostate-specific expression of SV40 T antigen (Tag), to evaluate effects of prostatic transformation on oncogene TAA-specific tolerance and to test the possibility of breaking such tolerance using a modified recombinant vaccinia virus. RESULTS We showed that Tag expression in TRAMP mice is uniquely extra-thymic, and levels of prostatic Tag expression positively correlate with malignant transformation of the prostate. Yet, young tumor-free TRAMP mice were tolerant to Tag antigen. We therefore attempted overcoming such peripheral oncogene-specific T cell tolerance through immunization with a vaccinia construct encoding Tag immunogenic epitopes. This vaccination modality showed that oncogene-specific tolerance was successfully overcome by effective in vivo priming of Tag-specific cytotoxic T cells (CTLs). However, this was restricted to young TRAMP mice. Tag-specific CTL from "tumor naïve" young TRAMP mice showed significant anti-tumor efficacy in vivo by eliminating established heterotopic prostate tumors and prolonging survival in SCID mice harboring Tag-expressing tumors. In contrast, older TRAMP mice with established prostate tumors exhibited oncogene-specific tolerance as evidenced by failure to generate Tag-specific CTL following Tag-specific immunization. CONCLUSIONS Peripheral tolerance can be overcome for effective anti-tumor therapy following oncogene-specific immunization. However, this ability to elicit oncogene-specific CTL is impeded in the tumor-bearing host, in the context of increased oncogene expression associated with tumor progression.
Collapse
Affiliation(s)
- Yilin C Neeley
- Department of Urology, Surgery, and Pathology, University of Michigan. Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
23
|
Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC, Goldberg MV, Pardoll DM, Drake CG. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 2008; 117:3383-92. [PMID: 17932562 DOI: 10.1172/jci31184] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 07/25/2007] [Indexed: 01/29/2023] Open
Abstract
Lymphocyte activation gene-3 (LAG-3) is a cell-surface molecule with diverse biologic effects on T cell function. We recently showed that LAG-3 signaling is important in CD4+ regulatory T cell suppression of autoimmune responses. Here, we demonstrate that LAG-3 maintains tolerance to self and tumor antigens via direct effects on CD8+ T cells using 2 murine systems. Naive CD8+ T cells express low levels of LAG-3, and expression increases upon antigen stimulation. Our data show increased levels of LAG-3 protein on antigen-specific CD8+ T cells within antigen-expressing organs or tumors. In vivo antibody blockade of LAG-3 or genetic ablation of the Lag-3 gene resulted in increased accumulation and effector function of antigen-specific CD8+ T cells within organs and tumors that express their cognate antigen. Most notably, combining LAG-3 blockade with specific antitumor vaccination resulted in a significant increase in activated CD8+ T cells in the tumor and disruption of the tumor parenchyma. A major component of this effect was CD4 independent and required LAG-3 expression by CD8+ T cells. Taken together, these data demonstrate a direct role for LAG-3 on CD8+ T cells and suggest that LAG-3 blockade may be a potential cancer treatment.
Collapse
Affiliation(s)
- Joseph F Grosso
- Sidney Kimmel Comprehensive Cancer Center and Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC, Goldberg MV, Pardoll DM, Drake CG. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 2008. [PMID: 17932562 DOI: 10.1172/jci31184ds1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lymphocyte activation gene-3 (LAG-3) is a cell-surface molecule with diverse biologic effects on T cell function. We recently showed that LAG-3 signaling is important in CD4+ regulatory T cell suppression of autoimmune responses. Here, we demonstrate that LAG-3 maintains tolerance to self and tumor antigens via direct effects on CD8+ T cells using 2 murine systems. Naive CD8+ T cells express low levels of LAG-3, and expression increases upon antigen stimulation. Our data show increased levels of LAG-3 protein on antigen-specific CD8+ T cells within antigen-expressing organs or tumors. In vivo antibody blockade of LAG-3 or genetic ablation of the Lag-3 gene resulted in increased accumulation and effector function of antigen-specific CD8+ T cells within organs and tumors that express their cognate antigen. Most notably, combining LAG-3 blockade with specific antitumor vaccination resulted in a significant increase in activated CD8+ T cells in the tumor and disruption of the tumor parenchyma. A major component of this effect was CD4 independent and required LAG-3 expression by CD8+ T cells. Taken together, these data demonstrate a direct role for LAG-3 on CD8+ T cells and suggest that LAG-3 blockade may be a potential cancer treatment.
Collapse
Affiliation(s)
- Joseph F Grosso
- Sidney Kimmel Comprehensive Cancer Center and Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu W, Evanoff DP, Chen X, Luo Y. Urinary bladder epithelium antigen induces CD8+ T cell tolerance, activation, and autoimmune response. THE JOURNAL OF IMMUNOLOGY 2007; 178:539-46. [PMID: 17182594 PMCID: PMC4596412 DOI: 10.4049/jimmunol.178.1.539] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effort to explore the specific autoimmune mechanisms of urinary bladder has long been hindered due to a lack of proper animal models. To better elucidate this issue, we developed a novel line of transgenic (Tg) mice, designated as URO-OVA mice, that express the model Ag OVA as a "self"-Ag on the bladder epithelium. URO-OVA mice are naturally tolerant to OVA and show no response to OVA stimulation. Adoptive transfer of naive OVA-specific T cells showed cell proliferation, activation, and infiltration but no bladder histopathology. In contrast, adoptive transfer of activated OVA-specific T cells induced OVA-mediated histological bladder inflammation. Increased mast cells and up-regulated mRNA expressions of TNF-alpha, nerve growth factor, and substance P precursor were also observed in the inflamed bladder. To further facilitate bladder autoimmunity study, we crossbred URO-OVA mice with OVA-specific CD8(+) TCR Tg mice (OT-I mice) to generate a dual Tg line URO-OVA/OT-I mice. The latter mice naturally acquire clonal deletion for autoreactive OT-I CD8(+) T cells (partial deletion in the thymus and severe deletion in the periphery). Despite this clonal deletion, URO-OVA/OT-I mice spontaneously develop autoimmune cystitis at 10 wk of age. Further studies demonstrated that the inflamed bladder contained infiltrating OT-I CD8(+) T cells that had escaped clonal deletion and gained effector functions before developing histological bladder inflammation. Taken together, we demonstrate for the first time that the bladder epithelium actively presents self-Ag to the immune system and induces CD8(+) T cell tolerance, activation, and autoimmune response.
Collapse
Affiliation(s)
| | | | | | - Yi Luo
- Address correspondence and reprint requests to Dr. Yi Luo, Department of Urology, University of Iowa, 3202 Medical Education and Research Facility, 375 Newton Road, Iowa City, IA 52242-1087.
| |
Collapse
|
26
|
Vykhovanets EV, Resnick MI, MacLennan GT, Gupta S. Experimental rodent models of prostatitis: limitations and potential. Prostate Cancer Prostatic Dis 2007; 10:15-29. [PMID: 17199136 DOI: 10.1038/sj.pcan.4500930] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prostatitis is a polyetiological inflammation of the prostate gland in men characterized by pelvic pain, irritative voiding symptoms, and sexual dysfunction. Histologically prostatitis is characterized by poly- and mononuclear cell infiltrates (neutrophils, lymphocytes, macrophages and plasma cells) in the stromal connective tissue around the acini or ducts. Prostatitis is an important worldwide health problem in men. The pathogenesis and diagnostic criteria for the condition are obscure, with the result that the development of management programs for this condition has been hindered. Animal model(s) might be useful in elucidating mechanisms involved in the molecular pathogenesis of chronic nonbacterial prostatitis and chronic pelvic pain syndrome. Given that prostatitis might have a multifactorial etiology, several animal models with unique features may prove helpful. This review examines a number of experimental rodent models of prostatitis and evaluates their advantages and limitations.
Collapse
Affiliation(s)
- E V Vykhovanets
- Department of Urology, Case Western Reserve University & University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|