1
|
Combination Blockade of the IL6R/STAT-3 Axis with TIGIT and Its Impact on the Functional Activity of NK Cells against Prostate Cancer Cells. J Immunol Res 2022; 2022:1810804. [PMID: 35465350 PMCID: PMC9020142 DOI: 10.1155/2022/1810804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Background/Aims. Prostate cancer (PCa) is one of the neoplasms with the highest incidence and mortality rate in men worldwide. Advanced stages of the disease are usually very aggressive, and most are treated with chemotherapeutic drugs that generally cause side effects in these patients. However, additional therapeutic targets such as the IL6R/STAT-3 axis and TIGIT have been proposed, mainly due to their relevance in the development of PCa and regulation of NK cell-mediated cytotoxicity. Here, we evaluate the effect of inhibitors directed against these therapeutic targets primarily via an analysis of NK cell function versus prostate cancer cells. Methods. We analyzed the secretion of cytokines, chemokines, and growth factors in 22Rv1, LNCaP, and DU145 cells. In these cells, we also evaluated the expression of NK ligands, IL6R, STAT-3, and phosporylated STAT-3. In NK-92 cells, we evaluated the effects of Stattic (Stt) and tocilizumab (Tcz) on NK receptors. In addition, we assessed if the disruption of the IL6R/STAT-3 pathway and blockade of TIGIT potentiated the cytotoxicity of NK-92 cells versus DU145 cells. Results. DU145 abundantly secretes M-CSF, VEGF, IL-6, CXCL8, and TGF-β. Furthermore, the expression of CD155 was found to increase in accordance with aggressiveness and metastatic status in the prostate cancer cells. Stt and Tcz induce a decrease in STAT-3 phosphorylation in the DU145 cells and, in turn, induce an increase of NKp46 and a decrease of TIGIT expression in NK-92 cells. Finally, the disruption of the IL6R/STAT-3 axis in prostate cancer cells and the blocking of TIGIT on NK-92 were observed to increase the cytotoxicity of NK-92 cells against DU145 cells through an increase in sFasL, granzyme A, granzyme B, and granulysin. Conclusions. Our results reveal that the combined use of inhibitors directed against the IL6R/STAT-3 axis and TIGIT enhances the functional activity of NK cells against castration-resistant prostate cancer cells.
Collapse
|
2
|
Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, Lewis S, Garg N, Singh N, Bangar P, Mehta T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J Control Release 2020; 330:257-283. [PMID: 33345832 DOI: 10.1016/j.jconrel.2020.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
In recent years, there have been significant advancements in the nanotechnology for cancer therapy. Even though molybdenum disulphide (MoS2)-based nanocomposites demonstrated extensive applications in biosensing, bioimaging, phototherapy, the review article focusing on MoS2 nanocomposite platform has not been accounted for yet. The review summarizes recent strategies on design and fabrication of MoS2-based nanocomposites and their modulated properties in cancer treatment. The review also discussed several therapeutic strategies (photothermal, photodynamic, immunotherapy, gene therapy and chemotherapy) and their combinations for efficient cancer therapy along with certain case studies. The review also inculcates various diagnostic techniques viz. magnetic resonance imaging, computed tomography, photoacoustic imaging and fluorescence imaging for diagnosis of cancer.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ritu Kudarha
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Dr. Babasaheb Ambedkar Technological University, Aurangabad, Maharashtra 431133, India
| | - Shubham Khot
- Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra 411041, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology, Mandi, Kamand, Himachal Pradesh 175005, India
| | - Mitali Paryani
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Priyanka Bangar
- Intas Pharmaceuticals Ltd., Ahmedabad, Gujarat 382213, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
3
|
Zhong JR, Wu P, Feng L, Jiang WD, Liu Y, Kuang SY, Tang L, Zhou XQ. Dietary phytic acid weakened the antimicrobial activity and aggravated the inflammatory status of head kidney, spleen and skin in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020; 103:256-265. [PMID: 32439508 DOI: 10.1016/j.fsi.2020.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to explore the effects of phytic acid (PA) on the antimicrobial activity and inflammatory response in three immune organs (head kidney, spleen and skin) of on-growing grass carp (Ctenopharyngodon idella). To achieve this goal, we first conducted a 60-day growth trial by feeding fish with graded levels of PA (0, 0.8, 1.6, 2.4, 3.2 and 4.0%). Then, the fish were challenged with Aeromonas hydrophila for 6 days. Compared with the control group, the following results were obtained regarding supplementation with certain levels of PA in the diet. (1) There was an increase in skin haemorrhage and lesion morbidity in fish. (2) There was a decrease in activities or contents of immune factors, including lysozyme (LZ), complement 3 (C3), C4 and immunoglobulin M (IgM), and there was downregulation of gene expression levels of hepcidin, liver-expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, and β-defensin-1 in immune organs. (3) There was upregulation in the gene expression of the following pro-inflammatory cytokines: tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) (except in the spleen), interferon γ2 (IFN-γ2), IL-6 (except in the spleen), IL-8, IL-12p40, IL-15 and IL-17D. These changes were partly related to the nuclear factor kappa B (NF-κB) signalling pathway, but downregulation of mRNA levels of anti-inflammatory cytokines (transforming growth factor β1 (TGF-β1), TGF-β2, IL-413/A, IL-413/B, IL-10 (except in the skin) and IL-11) occurred in a manner partially related to the target of rapamycin (TOR) signalling pathway. Finally, based on the broken-line analysis of skin haemorrhage and lesion morbidity and IgM content in the head kidney, the maximum tolerance levels of PA for on-growing grass carp (120.56-452.00 g) were estimated to be 1.79 and 1.31% of the diet, respectively.
Collapse
Affiliation(s)
- Jing-Ren Zhong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
4
|
Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treat Rev 2013; 40:31-40. [PMID: 23993415 DOI: 10.1016/j.ctrv.2013.07.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/20/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022]
Abstract
Androgen/androgen receptor (AR) signaling plays pivotal roles in the prostate development and homeostasis as well as in the progression of prostate cancer (PCa). Androgen deprivation therapy (ADT) with anti-androgens remains as the main treatment for later stage PCa, and it has been shown to effectively suppress PCa growth during the first 12-24 months. However, ADT eventually fails and tumors may re-grow and progress into the castration resistant stage. Recent reports revealed that AR might play complicated and even opposite roles in PCa progression that might depend on cell types and tumor stages. Importantly, AR may influence PCa progression via differential modulation of various cell deaths including apoptosis, anoikis, entosis, necrosis, and autophagic cell deaths. Targeting AR may induce PCa cell apoptosis, autophagic cell deaths and programmed necrosis, yet targeting AR may suppress cell deaths via anoikis and entosis that may potentially lead to increased metastasis. These differential functions of AR in various types of PCa cell death might challenge the current ADT with anti-androgens treatment. Further detailed dissection of molecular mechanisms by which AR modulates different PCa cell deaths will help us to develop a better therapy to battle PCa.
Collapse
|
5
|
Frezza M, Yang H, Dou QP. Modulation of the tumor cell death pathway by androgen receptor in response to cytotoxic stimuli. J Cell Physiol 2011; 226:2731-9. [PMID: 21448923 DOI: 10.1002/jcp.22758] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite an initial response from androgen deprivation therapy, most prostate cancer patients relapse to a hormone-refractory state where tumors still remain dependent on androgen receptor (AR) function. We have previously shown that AR breakdown correlates with the induction of cancer cell apoptosis by proteasome inhibition. However, the involvement of AR in modulating the cell death pathway has remained elusive. To investigate this, we used an experimental model consisting of parental PC-3 prostate cancer cells that lack AR expression and PC-3 cells stably overexpressing wild type AR gene. Here, we report that both chemotherapeutic drugs (cisplatin) and proteasome inhibitors induced caspase-3-associated cell death in parental PC-3 cells whereas non-caspase-3 associated cell death in PC3-AR cells. The involvement of AR in modulating tumor cell death was further confirmed in PC-3 cells transiently expressing AR. Consistently, treatment with the clinically used proteasome inhibitor Bortezomib (Velcade/PS-341) of (AR+) LNCaP prostate cancer cells caused AR cleavage and cell death with low levels of caspase activation. However, co-treatment with Bortezomib and the AR antagonist Bicalutamide (Casodex) caused significant decrease in AR expression associated with an increase in caspase-3 activity in both LNCaP and PC3-AR cells. Thus our results provide compelling evidence for involvement of AR in deciding types of tumor cell death upon cytotoxic stimuli, and specifically, blockade of AR activities could change necrosis to apoptosis in tumor cells. Our findings may help guide clinicians based on AR status in the design of favorable treatment strategies for prostate cancer patients.
Collapse
Affiliation(s)
- Michael Frezza
- Departments of Oncology, Pharmacology and Pathology, The Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
6
|
Eberhard M, Föller M, Lang F. Effect of phytic acid on suicidal erythrocyte death. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2028-2033. [PMID: 20058927 DOI: 10.1021/jf903666b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phytic acid, an anticarcinogenic food component, stimulates apoptosis of tumor cells. Similar to apoptosis, human erythrocytes may undergo suicidal death or eryptosis, characterized by cell membrane scrambling and cell shrinkage. Triggers of eryptosis include energy depletion. Phytate intake could cause anemia, an effect attributed to iron complexation. The present experiments explored whether phytic acid influences eryptosis. Supernatant hemoglobin concentration was determined to reveal hemolysis, annexin V-binding in FACS analysis was utilized to identify erythrocytes with scrambled cell membrane, forward scatter in FACS analysis was taken as a measure of cell volume, and a luciferin-luciferase assay was employed to determine erythrocyte ATP content. As a result, phytic acid (>or=1 mM) did not lead to significant hemolysis, but significantly increased the percentage of annexin V-binding erythrocytes, significantly decreased forward scatter, and significantly decreased cellular ATP content. In conclusion, phytic acid stimulates suicidal human erythrocyte death, an effect paralleling its proapoptotic effect on nucleated cells.
Collapse
Affiliation(s)
- Matthias Eberhard
- Department of Physiology, Eberhard-Karls-University of Tubingen, Gmelinstrasse 5, D-72076 Tuebingen, Germany
| | | | | |
Collapse
|
7
|
Gu M, Roy S, Raina K, Agarwal C, Agarwal R. Inositol hexaphosphate suppresses growth and induces apoptosis in prostate carcinoma cells in culture and nude mouse xenograft: PI3K-Akt pathway as potential target. Cancer Res 2010; 69:9465-72. [PMID: 19920184 DOI: 10.1158/0008-5472.can-09-2805] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constitutive activation of phosphoinositide 3-kinase (PI3K)-Akt pathway transmits growth-regulatory signals that play a central role in promoting survival, proliferation, and angiogenesis in human prostate cancer cells. Here, we assessed the efficacy of inositol hexaphosphate (IP6) against invasive human prostate cancer PC-3 and C4-2B cells and regulation of PI3K-Akt pathway. IP6 treatment of cells suppressed proliferation, induced apoptosis along with caspase-3 and poly(ADP-ribose) polymerase (PARP) cleavage, and inhibited constitutive activation of Akt and its upstream regulators PI3K, phosphoinositide-dependent kinase-1 and integrin-linked kinase-1 (ILK1). Downstream of Akt, IP6 inhibited the phosphorylation of glycogen synthase kinase-3alpha/beta at Ser(21/9) and consequently reduced cyclin D1 expression. Efficacy studies employing PC-3 tumor xenograft growth in nude mice showed that 2% (w/v) IP6 feeding in drinking water inhibits tumor growth and weight by 52% to 59% (P < 0.001). Immunohistochemical analysis of xenografts showed that IP6 significantly reduces the expression of molecules associated with cell survival/proliferation (ILK1, phosphorylated Akt, cyclin D1, and proliferating cell nuclear antigen) and angiogenesis (platelet endothelial cell adhesion molecule-1 or CD31, vascular endothelial growth factor, endothelial nitric oxide synthase, and hypoxia-inducible factor-1alpha) together with an increase in apoptotic markers (cleaved caspase-3 and PARP). These findings suggest that, by targeting the PI3K-ILK1-Akt pathway, IP6 suppresses cell survival, proliferation, and angiogenesis but induces death in prostate cancer cells, which might have translational potential in preventing and controlling the growth of advanced and aggressive prostate cancer for which conventional chemotherapy is not effective.
Collapse
Affiliation(s)
- Mallikarjuna Gu
- Department of Pharmaceutical Sciences, School of Pharmacy, and University of Colorado Cancer Center, University of Colorado-Denver, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
8
|
Hattori Y, Shi L, Ding W, Koga K, Kawano K, Hakoshima M, Maitani Y. Novel irinotecan-loaded liposome using phytic acid with high therapeutic efficacy for colon tumors. J Control Release 2009; 136:30-7. [DOI: 10.1016/j.jconrel.2009.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/15/2009] [Accepted: 01/18/2009] [Indexed: 11/25/2022]
|
9
|
Enhanced killing of androgen-independent prostate cancer cells using inositol hexakisphosphate in combination with proteasome inhibitors. Br J Cancer 2008; 99:1613-22. [PMID: 18941459 PMCID: PMC2584963 DOI: 10.1038/sj.bjc.6604730] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Effective treatments for androgen-independent prostate cancer (AIPCa) are lacking. To address this, emerging therapeutics such as proteasome inhibitors are currently undergoing clinical trials. Inositol hexakisphosphate (IP6) is an orally non-toxic phytochemical that exhibits antitumour activity against several types of cancer including PCa. We have previously shown that treatment of PC3 cells with IP6 induces the transcription of a subset of nuclear factor-κB (NF-κB)-responsive and pro-apoptotic BCL-2 family genes. In this study, we report that although NF-κB subunits p50/p65 translocate to the nucleus of PC3 cells in response to IP6, inhibition of NF-κB-mediated transcription using non-degradable inhibitor of κB (IκB)-α does not modulate IP6 sensitivity. Treatment with IP6 also leads to increased protein levels of PUMA, BIK/NBK and NOXA between 4 and 8 h of treatment and decreased levels of MCL-1 and BCL-2 after 24 h. Although blocking transcription using actinomycin D does not modulate PC3 cell sensitivity to IP6, inhibition of protein translation using cycloheximide has a significant protective effect. In contrast, blocking proteasome-mediated protein degradation using MG-132 significantly enhances the ability of IP6 to reduce cellular metabolic activity in both PC3 and DU145 AIPCa cell lines. This effect of combined treatment on mitochondrial depolarisation is particularly striking and is also reproduced by another proteasome inhibitor (ALLN). The enhanced effect of combined MG132/IP6 treatment is almost completely inhibited by cycloheximide and correlates with changes in BCL-2 family protein levels. Altogether these results suggest a role for BCL-2 family proteins in mediating the combined effect of IP6 and proteasome inhibitors and warrant further pre-clinical studies for the treatment of AIPCa.
Collapse
|
10
|
Diallo JS, Aldejmah A, Mouhim AF, Fahmy MA, Koumakpayi IH, Sircar K, Bégin LR, Mes-Masson AM, Saad F. Co-assessment of cytoplasmic and nuclear androgen receptor location in prostate specimens: potential implications for prostate cancer development and prognosis. BJU Int 2008; 101:1302-9. [DOI: 10.1111/j.1464-410x.2008.07514.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Kim HJ, Jang YM, Kim H, Kwon YH. Apoptotic effect of IP(6) was not enhanced by co-treatment with myo-inositol in prostate carcinoma PC3 cells. Nutr Res Pract 2007; 1:195-9. [PMID: 20368938 PMCID: PMC2849022 DOI: 10.4162/nrp.2007.1.3.195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/02/2007] [Accepted: 09/13/2007] [Indexed: 12/30/2022] Open
Abstract
Inositol hexaphosphate (IP(6)) is a major constituent of most cereals, legumes, nuts, oil seeds and soybean. Previous studies reported the anticancer effect of IP(6) and suggested that co-treatment of IP(6) with inositol may enhance anticancer effect of IP(6). Although the anticancer effect of IP(6) has been intensively studied, the combinational effect of IP(6) and inositol and involved mechanisms are not well understood so far. In the present study, we investigated the effect of IP(6) and myo-inositol (MI) on cell cycle regulation and apoptosis using PC3 prostate cancer cell lines. When cells were co-treated with IP(6) and MI, the extent of cell growth inhibition was significantly increased than that by IP(6) alone. To identify the effect of IP(6) and MI on apoptosis, the activity of caspase-3 was measured. The caspase-3 activity was significantly increased when cells were treated with either IP(6) alone or both IP(6) and MI, with no significant enhancement by co-treatment. To investigate the effect of IP(6) and MI of cell cycle arrest, we measured p21 mRNA expression in PC3 cells and observed significant increase in p21 mRNA by IP(6). But synergistic regulation by co-treatment with IP(6) and MI was not observed. In addition, there was no significant effect by co-treatment compared to IP(6) treatment on the regulation of cell cycle progression although IP(6) significantly changed cell cycle distribution in the presence of MI or not. Therefore, these findings support that IP(6) has anticancer function by induction of apoptosis and regulation of cell cycle. However, synergistic effect by MI on cell cycle regulation and apoptosis was not observed in PC3 prostate cancer cells.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Food and Nutrition, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|