1
|
Ganguly K, Kishore U, Metkari SM, Madan T. Immunomodulatory Role of Surfactant Protein-D in a Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) Model. Front Immunol 2022; 13:930449. [PMID: 35874783 PMCID: PMC9302643 DOI: 10.3389/fimmu.2022.930449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Surfactant protein D (SP-D), a pattern recognition molecule, is emerging as a potent anti-tumoural innate immune defense molecule in a range of cancers. Previously, SP-D expression was found to be significantly downregulated at the malignant sites of human prostate adenocarcinoma and associated with an increasing Gleason score and severity. We recently reported selective induction of intrinsic apoptosis by a recombinant fragment of human SP-D (rfhSP-D) in the human Prostate cancer (PCa) biopsy explants and cells with glucose regulated protein of 78 (GRP78) as one of the key interacting partners. The present study evaluated the expression of SP-D in early and advanced stages of PCa using transgenic adenocarcinoma of mouse prostate (TRAMP) model. Both early and late stages of PCa showed significantly decreased SP-D mRNA expression and increased proteolytic degradation of SP-D protein. Systemic and tumoural immunophenotyping of TRAMP model revealed increased serine proteases producing granulocytes and polymorphonuclear myeloid-derived suppressor cells (PMN MDSCs) in the late stage; the serine proteases secreted by these cells could be involved in the degradation of SP-D. Susceptibility of rfhSP-D to elastase-mediated proteolysis provided the rationale to use an elastase-inhibitor to sustain intact rfhSP-D in the tumour microenvironment. The study revealed an immunomodulatory potential of rfhSP-D and elastase inhibitor, sivelestat, to induce macrophage polarization towards M1 with downregulation of PMN MDSCs in ex-vivo cultured TRAMP tumours. Furthermore, rfhSP-D induced immunogenic cell death in murine PCa cells and in TRAMP explants. The findings highlight that SP-D plays an anti-tumourigenic role in PCa by inducing immunogenic cell death and immunomodulation while the prostate tumour milieu adversely impacts SP-D by inhibiting its transcription, and enhancing its proteolytic degradation. Transformation of an immunologically "cold tumour" into a "hot tumour" implicates therapeutic potential of rfhSP-D in PCa.
Collapse
Affiliation(s)
- Kasturi Ganguly
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)- National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Veterinary Medicine, United Arab Emirates (U.A.E) University, Al Ain, United Arab Emirates
| | - Siddhanath M. Metkari
- Indian Council of Medical Research (ICMR)- National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Taruna Madan
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)- National Institute for Research in Reproductive and Child Health, Mumbai, India
| |
Collapse
|
2
|
Lee GT, Kim JH, Kwon SJ, Stein MN, Hong JH, Nagaya N, Billakanti S, Kim MM, Kim WJ, Kim IY. Dihydrotestosterone Increases Cytotoxic Activity of Macrophages on Prostate Cancer Cells via TRAIL. Endocrinology 2019; 160:2049-2060. [PMID: 31184711 PMCID: PMC6691685 DOI: 10.1210/en.2019-00367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/05/2019] [Indexed: 01/03/2023]
Abstract
Although androgen deprivation therapy (ADT) and immunotherapy are potential treatment options in men with metastatic prostate cancer (CaP), androgen has conventionally been proposed to be a suppressor of the immune response. However, we herein report that DHT activates macrophages. When the murine macrophage cell line (RAW 264.7), human monocyte cell line (THP-1), and human peripheral blood monocytes were cultured with androgen-resistant CaP cell lines, DHT increased cytotoxicity of macrophages in a concentration-dependent manner. Further studies revealed that DHT induced M1 polarization and increased the expression levels of TNF-related apoptosis-inducing ligand (TRAIL) in macrophages and that this effect was abrogated when TRAIL was neutralized with a blocking antibody or small interfering RNA. Subsequent experiments demonstrated that induction of TRAIL expression was regulated by direct binding of androgen receptor to the TRAIL promoter region. Finally, an in vivo mouse study demonstrated that castration enhanced the growth of an androgen-resistant murine CaP tumor and that this protumorigenic effect of castration was blocked when macrophages were removed with clodronate liposomes. Collectively, these results demonstrate that DHT activates the cytotoxic activity of macrophages and suggest that immunotherapy may not be optimal when combined with ADT in CaP.
Collapse
Affiliation(s)
- Geun Taek Lee
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Jeong Hyun Kim
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Urology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Seok Joo Kwon
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Mark N Stein
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Jeong Hee Hong
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Urology, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Naoya Nagaya
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Sachin Billakanti
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Melina Minji Kim
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Isaac Yi Kim
- Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Division of Urology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
3
|
Gevariya N, Besançon M, Robitaille K, Picard V, Diabaté L, Alesawi A, Julien P, Fradet Y, Bergeron A, Fradet V. Omega-3 fatty acids decrease prostate cancer progression associated with an anti-tumor immune response in eugonadal and castrated mice. Prostate 2019; 79:9-20. [PMID: 30073695 DOI: 10.1002/pros.23706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/13/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Several lines of evidence suggest effects of dietary fat on prostate cancer (PCa) development and progression. Targeting omega (ω)-3:ω6 fatty acids (FA) ratio could be beneficial against PCa by favorably modulating inflammation. Here, we studied the effects of ω3- and ω6-enriched diets on prostate tumor growth and inflammatory response in androgen-deprived and non-deprived conditions. METHODS Immune-competent eugonadal and castrated C57BL/6 mice were injected with TRAMP-C2 prostate tumor cells and daily fed with ω3- or ω6-enriched diet. FA and cytokine profiles were measured in blood and tumors using gas chromatography and multiplex immunoassay, respectively. Immune cell infiltration in tumors was profiled by multicolor flow cytometry. RESULTS ω3-enriched diet decreased prostate TRAMP-C2 tumor growth in immune-competent eugonadal and castrated mice. Cytokines associated with Th1 immune response (IL-12 [p70], IFN-γ, GM-CSF) and eosinophil recruitment (eotaxin-1, IL-5, and IL-13) were significantly elevated in tumors of ω3-fed mice. Using in vitro experiments, we confirmed ω3 FA-induced eotaxin-1 secretion by tumor cells and that eotaxin-1 secretion was regulated by androgens. Analysis of immune cell infiltrating tumors showed no major difference of immune cells' abundance between ω3- and ω6-enriched diets. CONCLUSIONS ω3-enriched diet reduces prostate tumor growth independently of androgen levels. ω3 FA can inhibit tumor cell growth and induce a local anti-tumor inflammatory response. These findings warrant further examination of dietary ω3's potential to slow down the progression of androgen-sensitive and castrate-resistant PCa by modulating immune cell function in tumors.
Collapse
Affiliation(s)
- Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Marjorie Besançon
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Valérie Picard
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Lamoussa Diabaté
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Anwar Alesawi
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Pierre Julien
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
- Endocrinology and Nephrology Axis, Centre de recherche du CHU de Québec-Université Laval-CHUL, Québec, Quebec, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
4
|
Li W, Pung D, Su ZY, Guo Y, Zhang C, Yang AY, Zheng X, Du ZY, Zhang K, Kong AN. Epigenetics Reactivation of Nrf2 in Prostate TRAMP C1 Cells by Curcumin Analogue FN1. Chem Res Toxicol 2016; 29:694-703. [PMID: 26991801 DOI: 10.1021/acs.chemrestox.6b00016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has previously been shown that curcumin can effectively inhibit prostate cancer proliferation and progression in TRAMP mice, potentially acting through the hypomethylation of the Nrf2 gene promoter and hence activation of the Nrf2 pathway to enhance cell antioxidative defense. FN1 is a synthetic curcumin analogue that shows stronger anticancer activity than curcumin in other reports. We aimed to explore the epigenetic modification of FN1 that restores Nrf2 expression in TRAMP-C1 cells. Stably transfected HepG2-C8 cells were used to investigate the effect of FN1 on the Nrf2- antioxidant response element (ARE) pathway. Real-time quantitative PCR and Western blotting were applied to study the influence of FN1 on endogenous Nrf2 and its downstream genes. Bisulfite genomic sequencing (BGS) and methylated DNA immunoprecipitation (MeDIP) were then performed to examine the methylation profile of the Nrf2 promoter. An anchorage-independent colony-formation analysis was conducted to examine the tumor inhibition activity of FN1. Epigenetic modification enzymes, including DNMTs and HDACs, were investigated by Western blotting. The luciferase reporter assay indicated that FN1 was more potent than curcumin in activating the Nrf2-ARE pathway. FN1 increased the expression of Nrf2 and its downstream detoxifying enzymes. FN1 significantly inhibited the colony formation of TRAMP-C1 cells. BGS and MeDIP assays revealed that FN1 treatment (250 nM for 3 days) reduced the percentage of CpG methylation of the Nrf2 promoter. FN1 also downregulated epigenetic modification enzymes. In conclusion, our results suggest that FN1 is a novel anticancer agent for prostate cancer. In the TRAMP-C1 cell line, FN1 can increase the level of Nrf2 and downstream genes via activating the Nrf2-ARE pathway and inhibit the colony formation potentially through the decreased expression of keap1 coupled with CpG demethylation of the Nrf2 promoter. This CpG demethylation effect may come from decreased epigenetic modification enzymes, such as DNMT1, DNMT3a, DNMT3b, and HDAC4.
Collapse
Affiliation(s)
- Wenji Li
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Doug Pung
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Zheng-Yuan Su
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Bioscience Technology, Chung Yuan Christian University , Chung Li District, Taoyuan City 32023, Taiwan (R.O.C.)
| | - Yue Guo
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Chengyue Zhang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Anne Yuqing Yang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Xi Zheng
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , 164 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Zhi-Yun Du
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology , Guangzhou, P.R. China
| | - Kun Zhang
- Laboratory of Natural Medicinal Chemistry & Green Chemistry, Guangdong University of Technology , Guangzhou, China
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Mossine VV, Waters JK, Hannink M, Mawhinney TP. piggyBac transposon plus insulators overcome epigenetic silencing to provide for stable signaling pathway reporter cell lines. PLoS One 2013; 8:e85494. [PMID: 24376882 PMCID: PMC3869926 DOI: 10.1371/journal.pone.0085494] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/04/2013] [Indexed: 12/28/2022] Open
Abstract
Genetically modified hematopoietic progenitors represent an important testing platform for a variety of cell-based therapies, pharmaceuticals, diagnostics and other applications. Stable expression of a transfected gene of interest in the cells is often obstructed by its silencing. DNA transposons offer an attractive non-viral alternative of transgene integration into the host genome, but their broad applicability to leukocytes and other "transgene unfriendly" cells has not been fully demonstrated. Here we assess stability of piggyBac transposon-based reporter expression in murine prostate adenocarcinoma TRAMP-C2, human monocyte THP-1 and erythroleukemia K562 cell lines, along with macrophages and dendritic cells (DCs) that have differentiated from the THP-1 transfects. The most efficient and stable reporter activity was observed for combinations of the transposon inverted terminal repeats and one 5'- or two cHS4 core insulators flanking a green fluorescent protein reporter construct, with no detectable silencing over 10 months of continuous cell culture in absence of any selective pressure. In monocytic THP-1 cells, the functional activity of luciferase reporters for NF-κB, Nrf2, or HIF-1α has not decreased over time and was retained following differentiation into macrophages and DCs, as well. These results imply pB as a versatile tool for gene integration in monocytic cells in general, and as a convenient access route to DC-based signaling pathway reporters suitable for high-throughput assays, in particular.
Collapse
Affiliation(s)
- Valeri V. Mossine
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Experiment Station Chemical Labs, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| | - James K. Waters
- Experiment Station Chemical Labs, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Hannink
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Thomas P. Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Experiment Station Chemical Labs, University of Missouri, Columbia, Missouri, United States of America
- Department of Child Health, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
6
|
Snyder A, Tepper JE, Slovin SF. Perspectives on immunotherapy in prostate cancer and solid tumors: where is the future? Semin Oncol 2013; 40:347-60. [PMID: 23806499 DOI: 10.1053/j.seminoncol.2013.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The goals of any cancer therapy are to improve disease control, palliate pain and improve overall survival. We are fortunate to have in our cancer armamentarium two new immune-directed therapies which not only impact on disease control but also on overall survival. The first, sipuleucel-T, a cellular-based vaccine, was approved for prostate cancer and was shown to be safe with minimal toxicity. The second, ipilimumab, a monoclonal antibody directed to an immunologic checkpoint molecule, showed a survival benefit in patients with advanced melanoma. Benefit appeared to correlate in some cases with the development of autoimmune events, signaling that the immune system is in overdrive against the cancer. Where we are and where we will likely go are the topics to be discussed in this review.
Collapse
Affiliation(s)
- Alexandra Snyder
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
7
|
Lee GT, Jung YS, Ha YS, Kim JH, Kim WJ, Kim IY. Bone morphogenetic protein-6 induces castration resistance in prostate cancer cells through tumor infiltrating macrophages. Cancer Sci 2013; 104:1027-32. [PMID: 23710822 DOI: 10.1111/cas.12206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 01/16/2023] Open
Abstract
Bone morphogenetic protein (BMP) is a pleiotropic growth factor that has been implicated in inflammation and prostate cancer (CaP) progression. We investigated the potential role of BMP-6 in the context of macrophages and castration-resistant prostate cancer. When the androgen-responsive murine (Tramp-C1 and PTENCaP8) and human (LNCaP) CaP cell lines were cocultured with macrophages in the presence of dihydrotestosterone, BMP-6 increased androgen-responsive promoter activity and cell count significantly. Subsequent studies revealed that BMP-6 increased the expression level of androgen receptor (AR) mRNA and protein in CaP cell lines only in the presence of macrophages. Simultaneously, the AR antagonists bicalutamide and MDV3100 partially or completely blocked BMP-6-induced macrophage-mediated androgen hypersensitivity in CaP cells. Abolishing interleukin-6 signaling with neutralizing antibody in CaP/macrophage cocultures inhibited the BMP-6-mediated AR upregulation in CaP cells. Using Tramp-C1 and PTENCaP8 cells with a tetracycline-inducible expression of BMP-6, the induction of BMP-6 in vivo resulted in a significant resistance to castration. However, this resistance was blocked after the removal of macrophages with clodronate liposomes. Taken together, these results show that BMP-6 induces castration resistance by increasing the expression of AR through macrophage-derived interleukin-6.
Collapse
Affiliation(s)
- Geun Taek Lee
- Section of Urologic Oncology and Dean and Betty Gallo Prostate Cancer Center, The Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | | | | | | | |
Collapse
|
8
|
Macrophage inhibitory cytokine-1 (MIC-1/GDF15) slows cancer development but increases metastases in TRAMP prostate cancer prone mice. PLoS One 2012; 7:e43833. [PMID: 22952779 PMCID: PMC3428289 DOI: 10.1371/journal.pone.0043833] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022] Open
Abstract
Macrophage inhibitory cytokine-1 (MIC-1/GDF15), a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa) and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1(fms)) to produce syngeneic TRAMP(fmsmic-1) mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1(fms) and syngeneic C57BL/6 mice. Whilst TRAMP(fmsmic-1) survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU) tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1(fms) mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.
Collapse
|
9
|
Abstract
Despite considerable success in treatment of early stage localized prostate cancer (PC), acute inadequacy of late stage PC treatment and its inherent heterogeneity poses a formidable challenge. Clearly, an improved understanding of PC genesis and progression along with the development of new targeted therapies are warranted. Animal models, especially, transgenic immunocompetent mouse models, have proven to be the best ally in this respect. A series of models have been developed by modulation of expression of genes implicated in cancer-genesis and progression; mainly, modulation of expression of oncogenes, steroid hormone receptors, growth factors and their receptors, cell cycle and apoptosis regulators, and tumor suppressor genes have been used. Such models have contributed significantly to our understanding of the molecular and pathological aspects of PC initiation and progression. In particular, the transgenic mouse models based on multiple genetic alterations can more accurately address the inherent complexity of PC, not only in revealing the mechanisms of tumorigenesis and progression but also for clinically relevant evaluation of new therapies. Further, with advances in conditional knockout technologies, otherwise embryonically lethal gene changes can be incorporated leading to the development of new generation transgenics, thus adding significantly to our existing knowledge base. Different models and their relevance to PC research are discussed.
Collapse
Affiliation(s)
- Varinder Jeet
- Oncology Research Centre, Prince of Wales Hospital, Barker St., Randwick, NSW, 2031, Australia
| | | | | |
Collapse
|
10
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:260-77. [PMID: 19390324 DOI: 10.1097/med.0b013e32832c937e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|