1
|
Besasie BD, Saha A, DiGiovanni J, Liss MA. Effects of curcumin and ursolic acid in prostate cancer: A systematic review. Urologia 2024; 91:90-106. [PMID: 37776274 DOI: 10.1177/03915603231202304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The major barriers to phytonutrients in prostate cancer therapy are non-specific mechanisms and bioavailability issues. Studies have pointed to a synergistic combination of curcumin (CURC) and ursolic acid (UA). We investigate this combination using a systematic review process to assess the most likely mechanistic pathway and human testing in prostate cancer. We used the PRISMA statement to screen titles, abstracts, and the full texts of relevant articles and performed a descriptive analysis of the literature reviewed for study inclusion and consensus of the manuscript. The most common molecular and cellular pathway from articles reporting on the pathways and effects of CURC (n = 173) in prostate cancer was NF-κB (n = 25, 14.5%). The most common molecular and cellular pathway from articles reporting on the pathways and effects of UA (n = 24) in prostate cancer was caspase 3/caspase 9 (n = 10, 41.6%). The three most common molecular and cellular pathway from articles reporting on the pathways and effects of both CURC and UA (n = 193) in prostate cancer was NF-κB (n = 28, 14.2%), Akt (n = 22, 11.2%), and androgen (n = 19, 9.6%). Therefore, we have identified the potential synergistic target pathways of curcumin and ursolic acid to involve NF-κB, Akt, androgen receptors, and apoptosis pathways. Our review highlights the limited human studies and specific effects in prostate cancer.
Collapse
Affiliation(s)
- Benjamin D Besasie
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, USA
- Department of Urology, South Texas Veterans Healthcare System, USA
| |
Collapse
|
2
|
Li M, Xue Y, Chi L, Jin L. Heparin Oligosaccharides as Vasoactive Intestinal Peptide Inhibitors via their Binding Process Characterization. Curr Protein Pept Sci 2024; 25:480-491. [PMID: 38284716 DOI: 10.2174/0113892037287189240122110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND It has been proven that vasoactive intestinal peptide (VIP) was involved in the pathogenesis of prostate cancer. Cardin et al. found that by an alanine scan, the heparin- binding site on VIP was exactly the same sequence in VIP and its receptor. Therefore, heparin could competitively block the binding of VIP and its receptor. However, the structure-activity relationship between heparin and VIP has not been reported, especially in terms of the sequence and sulfation patterns of heparin oligosaccharides upon binding to VIP. OBJECTIVE A variety of experiments were designed to study the binding process and structure-activity relationship between heparin oligosaccharides and VIP. METHODS Heparin was enzymatically digested and purified to produce heparin oligosaccharides, and the structures were characterized by NMR. The binding capacity between heparin oligosaccharides and VIP was analyzed by GMSA and ITC experiments. The binding between heparin oligosaccharides and VIP was simulated using a molecular docking program to show the complex. ELISA assay was used to investigate the effect of non-anticoagulant heparin oligosaccharides on the VIP-mediated cAMP/PKA signaling pathway in vitro. RESULTS The results indicated that both the length and the sulfation pattern of heparin oligosaccharides affected its binding to VIP. VIP could induce the expression of cAMP at a higher level in PC3 cells, which could be regulated by the interaction of heparin oligosaccharides and VIP. CONCLUSION The binding between heparin oligosaccharides and VIP could block the binding between VIP and its receptor on tumor cells. Downloading the regulation of the expression level of cAMP could possibly further affect the subsequent activation of PKA. These non-anticoagulant heparin oligosaccharides may block the VIP-mediated cAMP/PKA signaling pathway and thus exert their antitumor activity.
Collapse
Affiliation(s)
- Meixin Li
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| | - Yaqi Xue
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| | - Lianli Chi
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| | - Lan Jin
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
3
|
Hao M, Li H, Yi M, Zhu Y, Wang K, Liu Y, Liang X, Ding L. Development of an immune-related gene prognostic risk model and identification of an immune infiltration signature in the tumor microenvironment of colon cancer. BMC Gastroenterol 2023; 23:58. [PMID: 36890467 PMCID: PMC9996977 DOI: 10.1186/s12876-023-02679-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Colon cancer is a common and highly malignant tumor. Its incidence is increasing rapidly with poor prognosis. At present, immunotherapy is a rapidly developing treatment for colon cancer. The aim of this study was to construct a prognostic risk model based on immune genes for early diagnosis and accurate prognostic prediction of colon cancer. METHODS Transcriptome data and clinical data were downloaded from the cancer Genome Atlas database. Immunity genes were obtained from ImmPort database. The differentially expressed transcription factors (TFs) were obtained from Cistrome database. Differentially expressed (DE) immune genes were identified in 473 cases of colon cancer and 41 cases of normal adjacent tissues. An immune-related prognostic model of colon cancer was established and its clinical applicability was verified. Among 318 tumor-related transcription factors, differentially expressed transcription factors were finally obtained, and a regulatory network was constructed according to the up-down regulatory relationship. RESULTS A total of 477 DE immune genes (180 up-regulated and 297 down-regulated) were detected. We developed and validated twelve immune gene models for colon cancer, including SLC10A2, FABP4, FGF2, CCL28, IGKV1-6, IGLV6-57, ESM1, UCN, UTS2, VIP, IL1RL2, NGFR. The model was proved to be an independent prognostic variable with good prognostic ability. A total of 68 DE TFs (40 up-regulated and 23 down-regulated) were obtained. The regulation network between TF and immune genes was plotted by using TF as source node and immune genes as target node. In addition, Macrophage, Myeloid Dendritic cell and CD4+ T cell increased with the increase of risk score. CONCLUSION We developed and validated twelve immune gene models for colon cancer, including SLC10A2, FABP4, FGF2, CCL28, IGKV1-6, IGLV6-57, ESM1, UCN, UTS2, VIP, IL1RL2, NGFR. This model can be used as a tool variable to predict the prognosis of colon cancer.
Collapse
Affiliation(s)
- Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China.,Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China.,Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Meng Yi
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China.,Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Yubing Zhu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China.,Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China.,Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China.,Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Xiaoqing Liang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China.,Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China. .,Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China.
| |
Collapse
|
4
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
5
|
Anticancer Activity of Dendriplexes against Advanced Prostate Cancer from Protumoral Peptides and Cationic Carbosilane Dendrimers. Biomacromolecules 2019; 20:1224-1234. [PMID: 30669830 DOI: 10.1021/acs.biomac.8b01632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The interaction of neuropeptides, vasoactive intestinal peptide (VIP), or growth hormone-releasing hormone (GHRH), with a cationic carbosilane dendrimer forms dendriplexes with antitumoral behavior in advanced prostate cancer cells PC3. At the concentrations used for dendriplexes formation, the free peptides were protumoral and prometastatic in advanced prostate cancer, while dendrimer only showed low cytotoxicity, but did not avoid the metastatic behavior of PC3 cells. However, these nanoplexes favored also cell adhesion and avoided cell migration. Also, the dendriplexes were not toxic for no tumoral prostate cells (RPWE-1) or fibroblasts. The use of labeled GHRH peptide (rhodamine labeled) and a dendrimer (fluorescein labeled) allowed us to observe that both systems reach the intracellular milieu after dendriplex formation. The treatment of PC3 cells with the nanoplexes reduced expression of vascular endothelial growth factor (VEGF) and cyclic adenosine monophosphate (cAMP). Molecular modeling analysis highlights the important contribution of the carbosilane framework in the stabilization of the dendriplex, since dendrimer interacts with a peptide region where hydrophobic amino acids are presented.
Collapse
|
6
|
Muñoz-Moreno L, Schally AV, Prieto JC, Carmena MJ, Bajo AM. Growth hormone-releasing hormone receptor antagonists modify molecular machinery in the progression of prostate cancer. Prostate 2018; 78:915-926. [PMID: 29748961 DOI: 10.1002/pros.23648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Therapeutic strategies should be designed to transform aggressive prostate cancer phenotypes to a chronic situation. To evaluate the effects of the new growth hormone-releasing hormone receptor (GHRH-R) antagonists: MIA-602, MIA-606, and MIA-690 on processes associated with cancer progression as cell proliferation, adhesion, migration, and angiogenesis. METHODS We used three human prostate cell lines (RWPE-1, LNCaP, and PC3). We analyzed several molecules such as E-cadherin, β-catenin, Bcl2, Bax, p53, MMP2, MMP9, PCNA, and VEGF and signaling mechanisms that are involved on effects exerted by GHRH-R antagonists. RESULTS GHRH-R antagonists decreased cell viability and provoked a reduction in proliferation in LNCaP and PC3 cells. Moreover, GHRH-R antagonists caused a time-dependent increase of cell adhesion in all three cell lines and retarded the wound closure with the highest value with MIA-690 in PC3 cells. GHRH-R antagonists also provoked a large number of cells in SubG0 phase revealing an increase in apoptotic cells in PC3 cell line. CONCLUSIONS Taken all together, GHRH-R antagonists of the MIAMI series appear to be inhibitors of tumor progression in prostate cancer and should be considered for use in future therapeutic strategies on this malignancy.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Andrew V Schally
- Veterans Affairs Medical Center, Miami, Florida
- Departments of Pathology and Medicine, Divisions of Hematology/Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Juan C Prieto
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - M José Carmena
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Ana M Bajo
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
7
|
|
8
|
Oh BY, Cho J, Hong HK, Bae JS, Park WY, Joung JG, Cho YB. Exome and transcriptome sequencing identifies loss of PDLIM2 in metastatic colorectal cancers. Cancer Manag Res 2017; 9:581-589. [PMID: 29184442 PMCID: PMC5685135 DOI: 10.2147/cmar.s149002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background Understanding the genomic determinants associated with metastasis in colorectal cancers (CRCs) provides crucial clues for improving patient care. Patients and methods In this study, we performed whole-exome sequencing as well as RNA sequencing analyses on five pairs of primary and liver metastasized samples from CRC patients together with blood/normal control samples for each pair. Results We identified genomic deletions in the region of 8p21-23 (q value <0.01) from analysis of recurrent regions with copy number variations in both primary and matched metastatic lesions. Consistent with this result, we found significantly decreased expression levels of all 12 genes (ADAMDEC1, C8orf80, CLDN23, EPHX2, GFRA2, NEFL, NEFM, PDLIM2, PTK2B, SCARA5, SLC18A1 and STMN4) located within this region (adjusted P<0.01). Notably, the mRNA levels of PDLIM2, a key regulator of well-known cancer-associated genes including the proto-oncogene c-MYC, an early response gene IER3, and regulators of apoptosis such as BCL2, FAS, and FASLG, were highly downregulated in tumors compared to normal tissues. Conclusion Taken together, our findings uncovered various genomic alterations potentially leading to metastasis in CRC and provide important insights into the development of potential therapeutic targets for preventing metastatic progression of CRC.
Collapse
Affiliation(s)
- Bo Young Oh
- Department of Surgery, College of Medicine, Ewha Womans University, Seoul
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | | | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University
| |
Collapse
|
9
|
de Boisvilliers M, Perrin F, Hebache S, Balandre AC, Bensalma S, Garnier A, Vaudry D, Fournier A, Festy F, Muller JM, Chadéneau C. VIP and PACAP analogs regulate therapeutic targets in high-risk neuroblastoma cells. Peptides 2016; 78:30-41. [PMID: 26826611 DOI: 10.1016/j.peptides.2016.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/30/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) is a pediatric cancer. New therapies for high-risk NB aim to induce cell differentiation and to inhibit MYCN and ALK signaling in NB. The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP) are 2 related neuropeptides sharing common receptors. The level of VIP increases with NB differentiation. Here, the effects of VIP and PACAP analogs developed for therapeutic use were studied in MYCN-amplified NB SK-N-DZ and IMR-32 cells and in Kelly cells that in addition present the F1174L ALK mutation. As previously reported by our group in IMR-32 cells, VIP induced neuritogenesis in SK-N-DZ and Kelly cells and reduced MYCN expression in Kelly but not in SK-N-DZ cells. VIP decreased AKT activity in the ALK-mutated Kelly cells. These effects were PKA-dependent. IMR-32, SK-NDZ and Kelly cells expressed the genes encoding the 3 subtypes of VIP and PACAP receptors, VPAC1, VPAC2 and PAC1. In parallel to its effect on MYCN expression, VIP inhibited invasion in IMR-32 and Kelly cells. Among the 3 PACAP analogs tested, [Hyp(2)]PACAP-27 showed higher efficiency than VIP in Kelly cells. These results indicate that VIP and PACAP analogs act on molecular and cellular processes that could reduce aggressiveness of high-risk NB.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mutation
- N-Myc Proto-Oncogene Protein/genetics
- N-Myc Proto-Oncogene Protein/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Organ Specificity
- Pituitary Adenylate Cyclase-Activating Polypeptide/chemical synthesis
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Signal Transduction
- Structure-Activity Relationship
- Vasoactive Intestinal Peptide/chemical synthesis
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- Madryssa de Boisvilliers
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Florian Perrin
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Salima Hebache
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Annie-Claire Balandre
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Souheyla Bensalma
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Agnès Garnier
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - David Vaudry
- Université de Rouen, INSERM U982, Equipe Neuropeptides, survie neuronale et plasticité cellulaire, IRIB, UFR Sciences et Techniques, Place E. Blondel, 76821 Mont-Saint-Aignan, France
| | - Alain Fournier
- INRS, Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Franck Festy
- Université de la Réunion, Stemcis c/o CYROI, 2, rue Maxime Rivière, 97490 Sainte Clotilde, France
| | - Jean-Marc Muller
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France
| | - Corinne Chadéneau
- Université de Poitiers, Équipe Récepteurs, Régulations et Cellules Tumorales (2RCT), Pôle Biologie Santé, Bât. B36/B37, UFR Sciences Fondamentales et Appliquées, 1 rue Georges Bonnet TSA, 51106 86073 Poitiers Cedex 9, France.
| |
Collapse
|
10
|
Moody TW, Nuche-Berenguer B, Jensen RT. Vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide, and their receptors and cancer. Curr Opin Endocrinol Diabetes Obes 2016; 23:38-47. [PMID: 26702849 PMCID: PMC4844466 DOI: 10.1097/med.0000000000000218] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To summarize the roles of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating polypeptide (PACAP) and their receptors (VPAC1, VPAC2, PAC1) in human tumors as well as their role in potential novel treatments. RECENT FINDINGS Considerable progress has been made in understanding of the effects of VIP/PACAP on growth of various tumors as well as in the signaling cascades involved, especially in the role of transactivation of the epidermal growth factor family. The overexpression of VPAC1/2 and PAC1 on a number of common neoplasms (breast, lung, prostate, central nervous system and neuroblastoma) is receiving increased attention both as a means of tumor imaging the location and extent of these tumors, as well as for targeted directed treatment, by coupling cytotoxic agents to VIP/PACAP analogues. SUMMARY VIP/PACAP has prominent growth effects on a number of common neoplasms, which frequently overexpressed the three subtypes of their receptors. The increased understanding of their signaling cascades, effect on tumor growth/differentiation and the use of the overexpression of these receptors for localization/targeted cytotoxic delivery are all suggesting possible novel tumor treatments.
Collapse
Affiliation(s)
- Terry W Moody
- aDepartment of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of the Director bNational Institutes of Health, National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, Maryland, USA
| | | | | |
Collapse
|
11
|
Neuropeptides of the VIP family inhibit glioblastoma cell invasion. J Neurooncol 2015; 122:63-73. [PMID: 25563813 DOI: 10.1007/s11060-014-1697-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are neuropeptides acting through VPAC1, VPAC2 and PAC1 receptors (referred here as the VIP-receptor system). In the central nervous system, VIP and PACAP are involved in neurogenesis, cell differentiation and migration, suggesting that they could be implicated in the development of glioblastoma (GBM). The infiltrative nature of GBM remains a major problem for the therapy of these tumors. We previously demonstrated that the VIP-receptor system regulated cell migration of the human cell lines M059J and M059K, derived from a single human GBM. Here, we evaluated the involvement of the VIP-receptor system in GBM cell invasion. In Matrigel invasion assays, M059K cells that express more the VIP-receptor system than M059J cells were less invasive. Invasion assays performed in the presence of agonists, antagonists or anti-PACAP antibodies as well as experiments with transfected M059J cells overexpressing the VPAC1 receptor indicated that the more the VIP-receptor system was expressed and activated, the less the cells were able to invade. Western immunoblotting experiments revealed that the VIP-receptor system inactivated the signaling protein AKT. Invasion assays carried out in the presence of an AKT inhibitor demonstrated the involvement of this signaling kinase in the regulation of cell invasion by the VIP-receptor system in M059K cells. The inhibition by VIP of invasion and AKT was also observed in U87 cells. In conclusion, VIP and PACAP act as anti-invasive factors in different GBM cell lines, a function mediated by VPAC1 inhibition of AKT signaling in M059K cells.
Collapse
|
12
|
Fernández-Martínez AB, Carmena MJ, Bajo AM, Vacas E, Sánchez-Chapado M, Prieto JC. VIP induces NF-κB1-nuclear localisation through different signalling pathways in human tumour and non-tumour prostate cells. Cell Signal 2014; 27:236-44. [PMID: 25446255 DOI: 10.1016/j.cellsig.2014.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/16/2014] [Accepted: 11/08/2014] [Indexed: 01/19/2023]
Abstract
The nuclear factor κB (NF-κB) is a powerful activator of angiogenesis, invasion and metastasis. Transactivation and nuclear localisation of NF-κB is an index of recurrence in prostate cancer. Vasoactive intestinal peptide (VIP) exerts similar effects in prostate cancer models involving increased expression of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) which are related to NF-κB transactivation. Here we studied differential mechanisms of VIP-induced NF-κB transactivation in non-tumour RWPE-1 and tumour LNCaP and PC3 human prostate epithelial cells. Immunofluorescence studies showed that VIP increases translocation of the p50 subunit of NF-κB1 to the nucleus, an effect that was inhibited by curcumin. The signalling transduction pathways involved are different depending on cell transformation degree. In control cells (RWPE1), the effect is mediated by protein kinase A (PKA) activation and does not implicate extracellular signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3-K) pathways whereas the opposite is true in tumour LNCaP and PC3 cells. Exchange protein directly activated by cAMP (EPAC) pathway is involved in transformed cells but not in control cells. Curcumin blocks the activating effect of VIP on COX-2 promoter/prostaglandin E2 (PGE2) production and VEGF expression and secretion. The study incorporates direct observation on COX-2 promoter and suggests that VIP effect on VEGF may be indirectly mediated by PGE2 after being synthesised by COX-2, thus amplifying the initial signal. We show that the signalling involved in VIP effects on VEGF is cAMP/PKA in non-tumour cells and cAMP/EPAC/ERK/PI3K in tumour cells which coincides with pathways mediating p50 nuclear translocation. Thus, VIP appears to use different pathways for NF-κB1 (p50) transactivation in prostate epithelial cells depending on whether they are transformed or not. Transformed cells depend on pro-survival and pro-proliferative signalling pathways involving ERK, PI3-K and cAMP/EPAC which supports the potential therapeutic value of these targets in prostate cancer.
Collapse
Affiliation(s)
- Ana B Fernández-Martínez
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - María J Carmena
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Ana M Bajo
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Eva Vacas
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Manuel Sánchez-Chapado
- Department of Surgery and Medical and Social Sciences, University of Alcalá, 28871 Alcalá de Henares, Spain; Department of Urology, Príncipe de Asturias Hospital, 28871 Alcalá de Henares, Spain
| | - Juan C Prieto
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain.
| |
Collapse
|
13
|
DAI WEI, SHEN GENHAI, QIU JIANPING, ZHAO XIN, GAO QUANGEN. Aberrant expression of B7-H3 in gastric adenocarcinoma promotes cancer cell metastasis. Oncol Rep 2014; 32:2086-92. [DOI: 10.3892/or.2014.3405] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022] Open
|
14
|
Shen F, Cai WS, Li JL, Feng Z, Liu QC, Xiao HQ, Cao J, Xu B. Synergism from the combination of ulinastatin and curcumin offers greater inhibition against colorectal cancer liver metastases via modulating matrix metalloproteinase-9 and E-cadherin expression. Onco Targets Ther 2014; 7:305-14. [PMID: 24570592 PMCID: PMC3933719 DOI: 10.2147/ott.s57126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver metastasis is a major cause of mortality in colorectal cancer (CRC). The current study was to investigate the ability of ulinastatin (UTI) and curcumin (CUR) to inhibit CRC liver metastases via modulating matrix metalloproteinase-9 (MMP-9) and E-cadherin expression. Human CRC HCT-116 cells were treated with compounds individually and in combination in order to understand the effect on cell migration and invasion. The HCT-116 cell line was established to stably express luciferase and green fluorescent protein (GFP) by lentiviral transduction (HCT-116-Luc-GFP). We identified an anti-metastasis effect of UTI and CUR on a CRC liver metastasis mouse model. Tumor development and therapeutic responses were dynamically tracked by bioluminescence imaging. Expression of MMP-9 and E-cadherin in metastatic tumors was detected by immunohistochemical assay. Results of wound healing and cell invasion assays suggest that treatment with UTI, CUR, and UTI plus CUR, respectively, significantly inhibit HCT-116 cell migration and invasion. Furthermore, results of CRC hepatic metastasis on a nude mouse model showed that treatment with UTI, CUR alone, and a combination notably inhibited hepatic metastases from CRC and prolonged survival of tumor-bearing mice, especially in the UTI plus CUR group. These results suggest that the combination of UTI and CUR together may offer greater inhibition against metastasis of CRC.
Collapse
Affiliation(s)
- Fei Shen
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wen-Song Cai
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jiang-Lin Li
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhe Feng
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qi-cai Liu
- Experimental Medical Research Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Huan-qing Xiao
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Cao
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Bo Xu
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Tang B, Yong X, Xie R, Li QW, Yang SM. Vasoactive intestinal peptide receptor-based imaging and treatment of tumors (Review). Int J Oncol 2014; 44:1023-31. [PMID: 24481544 DOI: 10.3892/ijo.2014.2276] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/22/2013] [Indexed: 11/06/2022] Open
Abstract
Vasoactive intestinal peptide receptors (VIPRs) are members of the G-protein-coupled receptor superfamily. These receptors are overexpressed in many common malignant tumors and play a major role in the progression and angiogenesis of a number of malignancies. Therefore, VIPRs may be a valuable target for the molecular imaging of tumors and therapeutic interventions. The specific natural ligand or its analogs can be labeled with a radionuclide and used for tumor receptor imaging, which could be used to visualize VIPR-related surface protein expression in vivo and to monitor the in vivo effects of molecular drugs on tumors. Moreover, the involvement of VIPRs in malignant transformation and angiogenesis renders them potential therapeutic targets for cancer treatment. A variety of VIP antagonists and cytotoxic VIP conjugates have been synthesized and evaluated for VIPR-targeted molecular therapy. The importance of VIPRs in tumor biology and the ability to predict responses to targeted therapy and monitor drug interventions suggest that VIP receptor-based imaging and treatment will be critical for the early diagnosis and management of cancer. Here, we review the current literature regarding VIPRs and their natural ligands and the involvement of VIPRs in tumor growth and angiogenesis, with an emphasis on the present use of VIPRs for the molecular imaging of tumors and therapies targeting VIPRs.
Collapse
Affiliation(s)
- Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Qian-Wei Li
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
16
|
Vacas E, Arenas MI, Muñoz-Moreno L, Bajo AM, Sánchez-Chapado M, Prieto JC, Carmena MJ. Antitumoral effects of vasoactive intestinal peptide in human renal cell carcinoma xenografts in athymic nude mice. Cancer Lett 2013; 336:196-203. [PMID: 23664888 DOI: 10.1016/j.canlet.2013.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/16/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
We studied antitumor effect of VIP in human renal cell carcinoma (RCC) (A498 cells xenografted in immunosuppressed mice). VIP-treated cells gave resulted in p53 upregulation and decreased nuclear β-catenin translocation and NFκB expression, MMP-2 and MMP-9 activities, VEGF levels and CD-34 expression. VIP led to a more differentiated tubular organization in tumours and less metastatic areas. Thus, VIP inhibits growth of A498-cell tumours acting on the major issues involved in RCC progression such as cell proliferation, microenvironment remodelling, tumour invasion, angiogenesis and metastatic ability. These antitumoral effects of VIP offer new therapeutical possibilities in RCC treatment.
Collapse
Affiliation(s)
- Eva Vacas
- Department of Systems Biology, Unit of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Vacas E, Bajo AM, Schally AV, Sánchez-Chapado M, Prieto JC, Carmena MJ. Vasoactive intestinal peptide induces oxidative stress and suppresses metastatic potential in human clear cell renal cell carcinoma. Mol Cell Endocrinol 2013; 365:212-22. [PMID: 23123564 DOI: 10.1016/j.mce.2012.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/12/2012] [Accepted: 10/20/2012] [Indexed: 12/30/2022]
Abstract
Molecular mechanisms involved in progression of clear-cell renal-cell carcinomas (ccRCCs) are poorly understood. A common genetic mutation found in ccRCC is the loss of the von Hippel-Lindau (VHL) gene, which contributes to cancer progression and metastasis. We investigated VIP effects on metastatic and angiogenic factors in human VHL-null A498 ccRCC and HK2 renal cells. VIP increased adhesion but decreased expression of metalloproteinases, MMP2 and MMP9, as well as cell migration and VEGF expression and secretion in A498 but not in HK2 cells. VIP enhanced ROS levels and decreased nuclear levels of β-catenin and NFκB p50-subunit in A498 cells, suggesting neuropeptide involvement in the observed decrease of metastatic ability in clear-cell carcinoma. VIP effects in A498 cells were blocked by the VPAC(1/2)-receptor antagonist JV-1-53. In conclusion, present data point to a role of VIP in preventing invasion and metastasis in ccRCCs and support its potential therapeutic usefulness in this disease.
Collapse
Affiliation(s)
- Eva Vacas
- Department of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Zhao X, Li DC, Zhu XG, Gan WJ, Li Z, Xiong F, Zhang ZX, Zhang GB, Zhang XG, Zhao H. B7-H3 overexpression in pancreatic cancer promotes tumor progression. Int J Mol Med 2012; 31:283-91. [PMID: 23242015 PMCID: PMC4042878 DOI: 10.3892/ijmm.2012.1212] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/26/2012] [Indexed: 12/25/2022] Open
Abstract
B7-H3, a member of the B7-family molecules, plays an important role in adaptive immune
responses. In addition, B7-H3 is also expressed in several types of human cancers and is
correlated with the poor outcome of cancer patients. However, its exact role in cancer is
not known. In the present study, we compared B7-H3 expression in normal pancreas and
pancreatic cancer tissue specimens, and determined the effects of low B7-H3 expression on
the human pancreatic cancer cell line Patu8988 using lentivirus-mediated RNA interference.
B7-H3 expression in pancreatic specimens was determined by enzyme-linked immunosorbent
assay (ELISA). A Patu8988 cell line with low B7-H3 expression was established by
lentivirus-mediated RNA interference to investigate the effect of B7-H3 on cell
proliferation, migration and invasion in vitro. By establishing
subcutaneous transplantation tumor and orthotopic transplantation pancreatic cancer mouse
models, the effect of B7-H3 on cell proliferation, migration and invasion was studied
in vivo. B7-H3 in tissue samples was significantly higher in the
pancreatic cancer group than in the normal pancreas group (mean ± SD,
193.6±9.352 vs. 87.74±7.433 ng/g; P<0.0001). B7-H3 knockdown by
RNA interference decreased cell migration and Transwell invasion up to 50%
in vitro. No apparent impact was observed on cell proliferation
in vitro. In the subcutaneous transplantation tumor mouse model, the
tumor growth rate was reduced by the knockdown of B7-H3. In the orthotopic transplantation
pancreatic cancer mouse model, the effect of inhibiting metastasis by knocking down B7-H3
was assessed in terms of the average postmortem abdominal visceral metastatic tumor
weight. This demonstrated that inhibition of B7-H3 expression reduced pancreatic cancer
metastasis in vivo. In conclusion, B7-H3 is aberrantly expressed in
pancreatic cancer. In addition to modulating tumor immunity, B7-H3 may have a novel role
in regulating pancreatic tumor progression.
Collapse
Affiliation(s)
- Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vacas E, Bajo AM, Schally AV, Sánchez-Chapado M, Prieto JC, Carmena MJ. Antioxidant activity of vasoactive intestinal peptide in HK2 human renal cells. Peptides 2012; 38:275-81. [PMID: 23000305 DOI: 10.1016/j.peptides.2012.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 11/21/2022]
Abstract
Oxidative stress is a major mediator of tissue and cell injuries. The injury in chronic nephrotic syndrome, acute renal failure, myeloma kidney injury and other kidney diseases is initiated by oxidative stress. We have previously demonstrated that vasoactive intestinal peptide (VIP) acts as an antiproliferative agent in renal cancer cells. This study was designed to evaluate the renoprotective activity of VIP against H(2)O(2)-induced oxidative damage in a proximal tubule kidney cell line (human, non-tumor, HK2 cells) in order to investigate the potential usefulness of this peptide in the treatment of oxidative-stress related kidney diseases. HK2 cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Propidium iodide was used to identify cells undergoing apoptosis. Western blotting was performed with anti-Bcl-2, anti-Bax and anti-formyl peptide receptor (low-affinity variant FPRL-1) monoclonal antibodies whereas 2,7-dichlorofluorescein diacetate was used for measurement of levels of intracellular reactive oxygen species (ROS). HK2 cells were injured with H(2)O(2) in order to induce apoptosis: the effect was time- and dose-dependent. VIP increased the levels of the antiapoptotic protein Bcl-2 and decreased those of the proapoptotic protein Bax. VIP decreased the intracellular ROS levels reached by H(2)O(2)-induced oxidative stress. VIP effect on ROS levels involved FPLR-1 but not VPAC(1,2) receptors as evidenced by the use of the respective antagonists WRW4 and JV-1-53. Thus, VIP protects HK2 cells from apoptosis by increasing Bcl-2 levels and this effect is initiated through FPLR1 receptor. In conclusion, VIP might exert a renoprotective effect by the suppression of oxidative stress.
Collapse
Affiliation(s)
- Eva Vacas
- Department of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Muñoz-Moreno L, Arenas MI, Schally AV, Fernández-Martínez AB, Zarka E, González-Santander M, Carmena MJ, Vacas E, Prieto JC, Bajo AM. Inhibitory effects of antagonists of growth hormone-releasing hormone on growth and invasiveness of PC3 human prostate cancer. Int J Cancer 2012; 132:755-65. [PMID: 22777643 DOI: 10.1002/ijc.27716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/11/2012] [Accepted: 06/22/2012] [Indexed: 01/28/2023]
Abstract
New approaches are needed to the therapy of advanced prostate cancer. This study determined the effect of growth hormone-releasing hormone (GHRH) antagonists, JMR-132 and JV-1-38 on growth of PC3 tumors as well as on angiogenesis and metastasis through the evaluation of various factors that contribute largely to the progression of prostate cancer. Human PC3 androgen-independent prostate cancer cells were injected subcutaneously into nude mice. The treatment with JMR-132 (10 μg/day) or JV-1-38 (20 μg/day) lasted 41 days. We also evaluated the effects of JMR-132 and JV-1-38 on proliferation, cell adhesion and migration in PC-3 cells in vitro. Several techniques (Western blot, reverse transcription polymerase chain reaction, immunohistochemistry, ELISA and zymography) were used to evaluate the expression levels of GHRH receptors and its splice variants, GHRH, vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF)-1α, metalloproteinases (MMPs) -2 and -9, β-catenin and E-cadherin. GHRH antagonists suppressed the proliferation of PC-3 cells in vitro and significantly inhibited growth of PC3 tumors. After treatment with these analogues, we found an increase in expression of GHRH receptor accompanied by a decrease of GHRH levels, a reduction in both VEGF and HIF-1α expression and in active forms of MMP-2 and MMP-9, a significant increase in levels of membrane-associated β-catenin and a significant decline in E-cadherin. These results support that the blockade of GHRH receptors can modulate elements involved in angiogenesis and metastasis. Consequently, GHRH antagonists could be considered as suitable candidates for therapeutic trials in the management of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Molecular Neuroendocrinology Unit, Department of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vacas E, Fernández-Martínez AB, Bajo AM, Sánchez-Chapado M, Schally AV, Prieto JC, Carmena MJ. Vasoactive intestinal peptide (VIP) inhibits human renal cell carcinoma proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1676-85. [PMID: 22728770 DOI: 10.1016/j.bbamcr.2012.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/29/2012] [Accepted: 06/14/2012] [Indexed: 12/13/2022]
Abstract
Clear renal cell carcinoma (cRCC) is an aggressive and fatal neoplasm. The present work was undertaken to investigate the antiproliferative potential of vasoactive intestinal peptide (VIP) exposure on non-tumoral (HK2) and tumoral (A498, cRCC) human proximal tubular epithelial cell lines. Reverse transcription and semiquantitative PCR was used at the VIP mRNA level whereas enzyme immunoanalysis was performed at the protein level. Both renal cell lines expressed VIP as well as VIP/pituitary adenylate cyclase-activating peptide (VPAC) receptors whereas only HK2 cells expressed formyl peptide receptor-like 1 (FPRL-1). Receptors were functional, as shown by VIP stimulation of adenylyl cyclase activity. Treatment with 0.1μM VIP (24h) inhibited proliferation of A498 but not HK2 cells as based on a reduction in the incorporation of [(3)H]-thymidine and BrdU (5'-Br-2'-deoxyuridine), PCNA (proliferating-cell nuclear antigen) expression and STAT3 (signal transducer and activator of transcription 3) expression and activation. VPAC(1)-receptor participation was established using JV-1-53 antagonist and siRNA transfection. Growth-inhibitory response to VIP was related to the cyclic adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP (EPAC)/phosphoinositide 3-kinase (PI3-K) signaling systems as shown by studies on adenylate cyclase stimulation, and using the EPAC-specific compound 8CPT-2Me-cAMP and specific kinase inhibitors such as H89, wortmannin and PD98059. The efficacy of VIP on the prevention of tumor progression was confirmed in vivo using xenografted athymic mouse. These actions support a potential role of this peptide and its agonists in new therapies for cRCC.
Collapse
Affiliation(s)
- Eva Vacas
- Department of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Veljkovic M, Dopsaj V, Dopsaj M, Branch DR, Veljkovic N, Sakarellos-Daitsiotis MM, Veljkovic V, Glisic S, Colombatti A. Physical activity and natural anti-VIP antibodies: potential role in breast and prostate cancer therapy. PLoS One 2011; 6:e28304. [PMID: 22140573 PMCID: PMC3227651 DOI: 10.1371/journal.pone.0028304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/05/2011] [Indexed: 12/14/2022] Open
Abstract
Background There is convincing evidence from numerous clinical and epidemiological studies that physical activity can reduce the risk for breast and prostate cancer. The biological mechanisms underlying this phenomenon remain elusive. Herein we suggest a role for naturally produced antibodies reactive with the vasoactive intestinal peptide (VIP) in the suppression of breast and prostate cancer, which we believe could offer a possible molecular mechanism underlying control of these cancers by physical exercise. Methodology and Results We found that sera from individuals having breast and prostate cancers have decreased titers of VIP natural antibodies as demonstrated by a lower reactivity against peptide NTM1, having similar informational and structural properties as VIP. In contrast, sera collected from elite athletes, exhibited titers of natural NTM1-reactive antibodies that are significantly increased, suggesting that physical activity boosts production of these antibodies. Significance Presented results suggest that physical exercise stimulates production of natural anti-VIP antibodies and likely results in suppression of VIP. This, in turn, may play a protective role against breast and prostate cancers. Physical exercise should be further investigated as a potential tool in the treatment of these diseases.
Collapse
Affiliation(s)
| | - Violeta Dopsaj
- Institute of Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - Milivoj Dopsaj
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | | | - Nevena Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, Belgrade, Serbia
| | | | - Veljko Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, Belgrade, Serbia
- * E-mail:
| | - Sanja Glisic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, Belgrade, Serbia
| | - Alfonso Colombatti
- Divisione di Oncologia Sperimentale, Centro di Riferimento Oncologico CRO-IRCCS, Aviano, Italy
| |
Collapse
|
23
|
Yuan H, Wei X, Zhang G, Li C, Zhang X, Hou J. B7-H3 Over Expression in Prostate Cancer Promotes Tumor Cell Progression. J Urol 2011; 186:1093-9. [DOI: 10.1016/j.juro.2011.04.103] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Indexed: 12/20/2022]
Affiliation(s)
- Hexing Yuan
- Department of Urology, Soochow University, Suzhou, People's Republic of China
| | - Xuedong Wei
- Department of Urology, Soochow University, Suzhou, People's Republic of China
| | - Guangbo Zhang
- Clinical Immunology Laboratory, Soochow University, Suzhou, People's Republic of China
| | - Chen Li
- Department of Urology, Soochow University, Suzhou, People's Republic of China
| | - Xueguang Zhang
- Institute of Medical Biotechnology, Soochow University, Suzhou, People's Republic of China
| | - Jianquan Hou
- First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
24
|
Fernández-Martínez AB, Bajo AM, Isabel Arenas M, Sánchez-Chapado M, Prieto JC, Carmena MJ. Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1. Cancer Lett 2010; 299:11-21. [DOI: 10.1016/j.canlet.2010.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
|
25
|
Valdehita A, Bajo AM, Fernández-Martínez AB, Arenas MI, Vacas E, Valenzuela P, Ruíz-Villaespesa A, Prieto JC, Carmena MJ. Nuclear localization of vasoactive intestinal peptide (VIP) receptors in human breast cancer. Peptides 2010; 31:2035-45. [PMID: 20691743 DOI: 10.1016/j.peptides.2010.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/12/2022]
Abstract
Vasoactive intestinal peptide (VIP) and its receptors (VPACs) are involved in proliferation, survival, and differentiation in human breast cancer cells. Its mechanism of action is traditionally thought to be through specific plasma membrane receptors. There is compelling evidence for a novel intracrine mode of genomic regulation by G-protein-coupled receptors (GPCRs) that implies both endocytosis and nuclear translocation of peripheral GPCR and/or the activation of nuclear-located GPCRs by endogenously-produced, non-secreted ligands. Regarding to VPAC receptors, which are GPCRs, there is only a report suggesting them as a dynamic system for signaling from plasma membrane and nuclear membrane complex. In this study, we show that VPAC(1) receptor is localized in cell nuclear fraction whereas VPAC(2) receptor presents an extranuclear localization and its protein expression is lower than that of VPAC(1) receptor in human breast tissue samples. Both receptors as well as VIP are overexpressed in breast cancer as compared to non-tumor tissue. Moreover, we report the markedly nuclear localization of VPAC(1) receptors in estrogen-dependent (T47D) and independent (MDA-MB-468) human breast cancer cell lines. VPAC(1) receptors are functional in plasma membrane and nucleus as shown by VIP stimulation of cAMP production in both cell lines. In addition, VIP increases its own intracellular and extracellular levels, and could be involved in the regulation of VPAC(1)-receptor traffic from the plasma membrane to the nucleus. These results support new concepts on function and regulation of nuclear GPCRs which could have an impact on development of new therapeutic drugs.
Collapse
Affiliation(s)
- Ana Valdehita
- Molecular Neuroendocrinology Unit, Department of Biochemistry and Molecular Biology, Alcalá University, 28871 Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cochaud S, Chevrier L, Meunier AC, Brillet T, Chadéneau C, Muller JM. The vasoactive intestinal peptide-receptor system is involved in human glioblastoma cell migration. Neuropeptides 2010; 44:373-83. [PMID: 20638719 DOI: 10.1016/j.npep.2010.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/14/2010] [Accepted: 06/12/2010] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor in adults. This cancer has an infiltrative nature and the median survival of patients is about one year. Vasoactive intestinal peptide (VIP) belongs to a structurally related family of polypeptides and is a major regulatory factor in the central and peripheral nervous systems. VIP regulates proliferation of astrocytes and of numerous cancer cell lines and modulates migration in prostatic and colonic cancer cell lines. Little is known about the involvement of VIP and its receptors (VIP-receptor system) in proliferation or migration of GBM cells. The effects of VIP, PACAP and of synthetic VIP antagonists were tested in two human GBM cell lines, M059K and M059J, established from two different parts of a single tumor. In these cells, the data revealed that the VIP-receptor system did not affect proliferation but controlled cell migration. Indeed, in M059K cells which express components of the VIP receptor system, the VIP receptor antagonists and a PACAP antibody enhanced migration. The VIP receptor antagonists increased generation of typical migration-associated processes: filopodia and lamellipodia, and activation of Rac1 and Cdc42 GTPases. Reciprocally, in M059J cells which poorly express the VIP-receptor system, treatments with the agonists VIP and PACAP resulted in decreased cell migration. Furthermore, the peptides appeared to act through a subclass of binding sites displaying an uncommon very high affinity for these ligands. Taken together, these observations suggest that components of the VIP-receptor system negatively regulate cell migration, thus showing potential anti-oncogenic properties.
Collapse
Affiliation(s)
- Stéphanie Cochaud
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, 40 Avenue du Recteur Pineau, Poitiers F-86022, France
| | | | | | | | | | | |
Collapse
|
27
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:293-312. [PMID: 20418721 DOI: 10.1097/med.0b013e328339f31e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Fernández-Martínez AB, Bajo AM, Valdehita A, Isabel Arenas M, Sánchez-Chapado M, Carmena MJ, Prieto JC. Multifunctional role of VIP in prostate cancer progression in a xenograft model: suppression by curcumin and COX-2 inhibitor NS-398. Peptides 2009; 30:2357-64. [PMID: 19772879 DOI: 10.1016/j.peptides.2009.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 12/28/2022]
Abstract
We used an in vivo model of human experimental prostate cancer in order to shed a new light on the effects of vasoactive intestinal peptide (VIP) on tumor growth as well as its pro-metastatic potential in this disease. We used nude mice subcutaneously injected with prostate cancer androgen-independent PC3 cells for 30 days. The regulatory role of VIP on cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) expression as well as on matrix metalloproteinase-2 and 9 (MMP-2 and 9) activities was examined. A selective COX-2 inhibitor, NS-398, and curcumin were used to block VIP effects. Xenografts of VIP-treated PC3 prostate cancer cells in nude mice gave tumors that grew significantly faster than those in the untreated group. It is conceivably a result of both the trophic effect of VIP on prostate cancer cells and the proangiogenic action of the neuropeptide in the growing tumor. We show the overexpression at mRNA and/or protein levels of VIP, its main receptor VPAC(1), the major angiogenic factor VEGF, and the pro-inflammatory enzyme COX-2 as well as the increased activity of MMP-2 and 9 in tumors derived from VIP-treated PC3 cells as compared with control group. The overexpression of the above biomarkers was suppressed in tumors derived from VIP-treated PC3 cells that had been previously incubated with curcumin or NS-398. Thus, the potential therapeutic role of curcumin and selective COX-2 inhibitors in combination with available VIP antagonists should be considered in prostate cancer therapy as supported by their inhibitory activities on tumor cell growth.
Collapse
Affiliation(s)
- Ana B Fernández-Martínez
- Department of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | | | | | | | | | | | | |
Collapse
|