1
|
Wei J, Wang J, Guan W, Li J, Pu T, Corey E, Lin TP, Gao AC, Wu BJ. PlexinD1 is a driver and a therapeutic target in advanced prostate cancer. EMBO Mol Med 2025; 17:336-364. [PMID: 39748059 PMCID: PMC11822115 DOI: 10.1038/s44321-024-00186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Aggressive prostate cancer (PCa) variants associated with androgen receptor signaling inhibitor (ARSI) resistance and metastasis remain poorly understood. Here, we identify the axon guidance semaphorin receptor PlexinD1 as a crucial driver of cancer aggressiveness in metastatic castration-resistant prostate cancer (CRPC). High PlexinD1 expression in human PCa is correlated with adverse clinical outcomes. PlexinD1 critically maintains CRPC aggressive behaviors in vitro and in vivo, and confers stemness and cellular plasticity to promote multilineage differentiation including a neuroendocrine-like phenotype for ARSI resistance. Mechanistically, PlexinD1 is upregulated upon relief of AR-mediated transcriptional repression of PlexinD1 under ARSI treatment, and subsdquently transactivates ErbB3 and cMet via direct interaction, which triggers the ERK/AKT pathways to induce noncanonical Gli1-dictated Hedgehog signaling, facilitating the growth and plasticity of PCa cells. Blockade of PlexinD1 by the protein inhibitor D1SP restricted CRPC growth in multiple preclinical models. Collectively, these findings characterize PlexinD1's contribution to PCa progression and offer a potential PlexinD1-targeted therapy for advanced PCa.
Collapse
Affiliation(s)
- Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Wen Guan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, 98195, USA
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan, 11217, Republic of China
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, 11221, Republic of China
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, CA, 95817, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
2
|
Garg R, Williamson M. The metastasis-promoting P1597L mutation in PlexinB1 enhances Ras activity. BMC Cancer 2024; 24:1004. [PMID: 39138404 PMCID: PMC11321201 DOI: 10.1186/s12885-024-12762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Metastatic prostate cancer is a leading cause of cancer-related morbidity and mortality in men, yet the underlying molecular mechanisms are poorly understood. Plexins are transmembrane receptors for semaphorins with divergent roles in many forms of cancer. We recently found that a single clinically relevant specific amino acid change (Proline1597Leucine, (P1597L)), found in metastatic deposits of prostate cancer patients, converts PlexinB1 from a metastasis suppressor to a gene that drives prostate cancer metastasis in vivo. However, the mechanism by which PlexinB1(P1597L) promotes metastasis is not known. METHODS Pull down assays using GST-RalGDS or -GSTRaf1-RBD were used to reveal the effect of mutant or wild-type PlexinB1 expression on Rap and Ras activity respectively. Protein-protein interactions were assessed in GST pulldown assays, Akt/ERK phosphorylation by immunoblotting and protein stability by treatment with cycloheximide. Rho/ROCK activity was monitored by measuring MLC2 phosphorylation and actin stress fiber formation. PlexinB1 function was measured using cell-collapse assays. RESULTS We show here that the single clinically relevant P1597L amino acid change converts PlexinB1 from a repressor of Ras to a Ras activator. The PlexinB1(P1597L) mutation inhibits the RapGAP activity of PlexinB1, promoting a significant increase in Ras activity. The P1597L mutation also blocks PlexinB1-mediated reduction in Rho/ROCK activity, restraining the decrease in MLC2 phosphorylation and actin stress fiber formation induced by overexpression of wild-type PlexinB1. PlexinB1(P1597L) has little effect on the interaction of PlexinB1 with small GTPases or receptor tyrosine kinases and does not inhibit PlexinB1-stimulated Akt or ERK phosphorylation. These results indicate that the mutation affects Rho signalling via the Rap/Ras pathway. The PlexinB1(P1597L) mutation inhibits morphological cell collapse induced by wild-type PlexinB1 expression, suggesting that the mutation induces a loss of an inhibitory tumour suppressor function. CONCLUSION These results suggest that the clinically relevant P1597L mutation in PlexinB1 may transform PlexinB1 from a suppressor to a driver of metastasis in mouse models of prostate cancer by reducing the RapGAP activity of PlexinB1, leading to Ras activation. These findings highlight the PlexinB1-Rap-Ras pathway for therapeutic intervention in prostate cancer.
Collapse
Affiliation(s)
- Ritu Garg
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Room 2.34B, New Hunts House, London, SE1 1UL, UK
| | - Magali Williamson
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Room 2.34B, New Hunts House, London, SE1 1UL, UK.
| |
Collapse
|
3
|
Samaržija I, Lukiyanchuk V, Lončarić M, Rac-Justament A, Stojanović N, Gorodetska I, Kahya U, Humphries JD, Fatima M, Humphries MJ, Fröbe A, Dubrovska A, Ambriović-Ristov A. The extracellular matrix component perlecan/HSPG2 regulates radioresistance in prostate cancer cells. Front Cell Dev Biol 2024; 12:1452463. [PMID: 39149513 PMCID: PMC11325029 DOI: 10.3389/fcell.2024.1452463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Radiotherapy of prostate cancer (PC) can lead to the acquisition of radioresistance through molecular mechanisms that involve, in part, cell adhesion-mediated signaling. To define these mechanisms, we employed a DU145 PC model to conduct a comparative mass spectrometry-based proteomic analysis of the purified integrin nexus, i.e., the cell-matrix junction where integrins bridge assembled extracellular matrix (matrisome components) to adhesion signaling complexes (adhesome components). When parental and radioresistant cells were compared, the expression of integrins was not changed, but cell radioresistance was associated with extensive matrix remodeling and changes in the complement of adhesion signaling proteins. Out of 72 proteins differentially expressed in the parental and radioresistant cells, four proteins were selected for functional validation based on their correlation with biochemical recurrence-free survival. Perlecan/heparan sulfate proteoglycan 2 (HSPG2) and lysyl-like oxidase-like 2 (LOXL2) were upregulated, while sushi repeat-containing protein X-linked (SRPX) and laminin subunit beta 3 (LAMB3) were downregulated in radioresistant DU145 cells. Knockdown of perlecan/HSPG2 sensitized radioresistant DU145 RR cells to irradiation while the sensitivity of DU145 parental cells did not change, indicating a potential role for perlecan/HSPG2 and its associated proteins in suppressing tumor radioresistance. Validation in androgen-sensitive parental and radioresistant LNCaP cells further supported perlecan/HSPG2 as a regulator of cell radiosensitivity. These findings extend our understanding of the interplay between extracellular matrix remodeling and PC radioresistance and signpost perlecan/HSPG2 as a potential therapeutic target and biomarker for PC.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vasyl Lukiyanchuk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anja Rac-Justament
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Uğur Kahya
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jonathan D Humphries
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mahak Fatima
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Anna Dubrovska
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
4
|
Yu Y, Huang X, Liang C, Zhang P. Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer. Eur J Pharmacol 2023; 957:176007. [PMID: 37611839 DOI: 10.1016/j.ejphar.2023.176007] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Prostate cancer (PCa) is among the most commonly diagnosed solid cancers in male adults. However, most anti-angiogenic therapies and immunotherapies fail to achieve durable remission in advanced PCa. Integrative analysis indicated that Sema3A was negatively correlated with the pathological malignancy and was involved in angiogenesis, cell adhesion, and immune infiltrates in PCa. Sema3A significantly inhibited vascular endothelial growth factor (VEGFA)-induced colony formation, cell proliferation, and PD-L1 expression in PCa cells. Network pharmacological analysis demonstrated that evodiamine, a natural alkaloid compound derived from Evodiae fructus fruits, might regulate Sema3A, lipid metabolism, and monocarboxylic acid transport signaling of PCa. Evodiamine evidently inhibited PCa cell viability in a time-dose-dependent manner. Furthermore, evodiamine impaired angiogenesis by increasing Sema3A expression, and induced ferroptosis by reducing glutathione peroxidase 4 (GPX4) expression, which could be reversed by the ferroptosis blocker ferrostatin-1. Lactate treatment increased hypoxia-inducible factor (HIF)-1α and PD-L1 expressions while restricting Sema3A expression in PCa cells, which could be reversed by silencing monocarboxylate transporter 4 (MCT4) expression. Moreover, evodiamine markedly blocked lactate-induced angiogenesis by restricting histone lactylation and expression of HIF1A in PCa cells, further enhancing Sema3A transcription while inhibiting that of PD-L1. In vivo, evodiamine remarkably inhibited PCa xenograft growth in nude mice, repressing expressions of HIF1α, H3K18la, GPX4, PD-L1, and proliferation, while hindering angiogenesis by increasing Sema3A expression. Therefore, Sema3A represents an essential antineoplastic biomarker, while evodiamine may act as a metabolic-epigenetic modulator, as well as a promising agent in either PCa anti-angiogenic therapy or immunotherapy.
Collapse
Affiliation(s)
- Ying Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xing Huang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chaoqi Liang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Peng Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
5
|
Stentenbach M, Ermer JA, Rudler DL, Perks KL, Raven SA, Lee RG, McCubbin T, Marcellin E, Siira SJ, Rackham O, Filipovska A. Multi-omic profiling reveals an RNA processing rheostat that predisposes to prostate cancer. EMBO Mol Med 2023:e17463. [PMID: 37093546 DOI: 10.15252/emmm.202317463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy and the third leading cause of cancer deaths. GWAS have identified variants associated with prostate cancer susceptibility; however, mechanistic and functional validation of these mutations is lacking. We used CRISPR-Cas9 genome editing to introduce a missense variant identified in the ELAC2 gene, which encodes a dually localised nuclear and mitochondrial RNA processing enzyme, into the mouse Elac2 gene as well as to generate a prostate-specific knockout of Elac2. These mutations caused enlargement and inflammation of the prostate and nodule formation. The Elac2 variant or knockout mice on the background of the transgenic adenocarcinoma of the mouse prostate (TRAMP) model show that Elac2 mutation with a secondary genetic insult exacerbated the onset and progression of prostate cancer. Multiomic profiling revealed defects in energy metabolism that activated proinflammatory and tumorigenic pathways as a consequence of impaired noncoding RNA processing and reduced protein synthesis. Our physiologically relevant models show that the ELAC2 variant is a predisposing factor for prostate cancer and identify changes that underlie the pathogenesis of this cancer.
Collapse
Affiliation(s)
- Maike Stentenbach
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Danielle L Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Kara L Perks
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Samuel A Raven
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Richard G Lee
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| |
Collapse
|
6
|
Hao J, Han X, Huang H, Yu X, Fang J, Zhao J, Prayson RA, Bao S, Yu JS. Sema3C signaling is an alternative activator of the canonical WNT pathway in glioblastoma. Nat Commun 2023; 14:2262. [PMID: 37080989 PMCID: PMC10119166 DOI: 10.1038/s41467-023-37397-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/15/2023] [Indexed: 04/22/2023] Open
Abstract
The Wnt pathway is frequently dysregulated in many cancers, underscoring it as a therapeutic target. Wnt inhibitors have uniformly failed in clinical trials. Here, we report a mechanism of WNT pathway activation through the Semaphorin 3 C neurodevelopmental program in glioma stem-like cells. Sema3C directs β-catenin nuclear accumulation in a Rac1-dependent process, leading to transactivation of Wnt target genes. Sema3C-driven Wnt signaling occurred despite suppression of Wnt ligand secretion, suggesting that Sema3C drives canonical Wnt signaling independent of Wnt ligand binding. In a mouse model of glioblastoma, combined depletion of Sema3C and β-catenin partner TCF1 extended animal survival more than single target inhibition alone. In human glioblastoma, Sema3C expression and Wnt pathway activation were highly concordant. Since Sema3C is frequently overexpressed in glioblastoma, Sema3C signaling may be a significant mechanism of resistance to upstream Wnt pathway inhibitors. Dual targeting of Sema3C and Wnt pathways may achieve clinically significant Wnt pathway inhibition.
Collapse
Affiliation(s)
- Jing Hao
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Xiangzi Han
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Haidong Huang
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Xingjiang Yu
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jiankang Fang
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jianjun Zhao
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Richard A Prayson
- Department of Anatomic Pathology, Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Shideng Bao
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jennifer S Yu
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
- Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
7
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
8
|
Low Doses of PFOA Promote Prostate and Breast Cancer Cells Growth through Different Pathways. Int J Mol Sci 2022; 23:ijms23147900. [PMID: 35887249 PMCID: PMC9318902 DOI: 10.3390/ijms23147900] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/13/2022] Open
Abstract
Endocrine Disrupting Compounds (EDCs) are found in everyday products. Widely distributed throughout the environment, persistent organic pollutants (POPs) are a specific class of EDCs that can accumulate in adipose tissue. Many of them induce adverse effects on human health—such as obesity, fertility disorders and cancers—by perturbing hormone effects. We previously identified many compounds with EDC activity in the circulation of obese patients who underwent bariatric surgery. Herein, we analyzed the effects of four of them (aldrin, BDE28, PFOA and PCB153) on two cancer cell lines of hormone-sensitive organs (prostate and breast). Each cell line was exposed to serial dilutions of EDCs from 10−6 M to 10−12 M; cytotoxicity and proliferation were monitored using the IncuCyte® technology. We showed that none of these EDCs induce cytotoxicity and that PFOA and PCB153, only at very low doses (10−12 M), increase the proliferation of DU145 (prostate cancer) and MCF7 (breast cancer) cells, while the same effects are observed with high concentrations (10−6 M) for aldrin or BDE28. Regarding the mechanistic aspects, PFOA uses two different signaling pathways between the two lines (the Akt/mTORC1 and PlexinD1 in MCF7 and DU145, respectively). Thus, our study demonstrates that even at picomolar (10−12 M) concentrations PFOA and PCB153 increase the proliferation of prostate and breast cancer cell lines and can be considered possible carcinogens.
Collapse
|
9
|
Brisset M, Grandin M, Bernet A, Mehlen P, Hollande F. Dependence receptors: new targets for cancer therapy. EMBO Mol Med 2021; 13:e14495. [PMID: 34542930 PMCID: PMC8573599 DOI: 10.15252/emmm.202114495] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Dependence receptors are known to promote survival and positive signaling such as proliferation, migration, and differentiation when activated, but to actively trigger apoptosis when unbound to their ligand. Their abnormal regulation was shown to be an important feature of tumorigenesis, allowing cancer cells to escape apoptosis triggered by these receptors while promoting in parallel major aspects of tumorigenesis such as proliferation, angiogenesis, invasiveness, and chemoresistance. This involvement in multiple cancer hallmarks has raised interest in dependence receptors as targets for cancer therapy. Although additional studies remain necessary to fully understand the complexity of signaling pathways activated by these receptors and to target them efficiently, it is now clear that dependence receptors represent very exciting targets for future cancer treatment. This manuscript reviews current knowledge on the contribution of dependence receptors to cancer and highlights the potential for therapies that activate pro-apoptotic functions of these proteins.
Collapse
Affiliation(s)
- Morgan Brisset
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| | - Mélodie Grandin
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| | - Agnès Bernet
- Apoptosis, Cancer and Development LaboratoryCentre de Recherche en Cancérologie de Lyon, INSERM U1052‐CNRS UMR5286Centre Léon BérardUniversité de LyonLyonFrance
| | - Patrick Mehlen
- Apoptosis, Cancer and Development LaboratoryCentre de Recherche en Cancérologie de Lyon, INSERM U1052‐CNRS UMR5286Centre Léon BérardUniversité de LyonLyonFrance
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer CentreThe University of MelbourneMelbourneVic.Australia
- University of Melbourne Centre for Cancer ResearchVictorian Comprehensive Cancer CentreMelbourneVic.Australia
| |
Collapse
|
10
|
Christie SM, Hao J, Tracy E, Buck M, Yu JS, Smith AW. Interactions between semaphorins and plexin-neuropilin receptor complexes in the membranes of live cells. J Biol Chem 2021; 297:100965. [PMID: 34270956 PMCID: PMC8350011 DOI: 10.1016/j.jbc.2021.100965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Signaling of semaphorin ligands via their plexin-neuropilin receptors is involved in tissue patterning in the developing embryo. These proteins play roles in cell migration and adhesion but are also important in disease etiology, including in cancer angiogenesis and metastasis. While some structures of the soluble domains of these receptors have been determined, the conformations of the full-length receptor complexes are just beginning to be elucidated, especially within the context of the plasma membrane. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy allows direct insight into the formation of protein-protein interactions in the membranes of live cells. Here, we investigated the homodimerization of neuropilin-1 (Nrp1), plexin A2, plexin A4, and plexin D1 using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy. Consistent with previous studies, we found that Nrp1, plexin A2, and plexin A4 are present as dimers in the absence of exogenous ligand. Plexin D1, on the other hand, was monomeric under similar conditions, which had not been previously reported. We also found that plexin A2 and A4 assemble into a heteromeric complex. Stimulation with semaphorin 3A or semaphorin 3C neither disrupts nor enhances the dimerization of the receptors when expressed alone, suggesting that activation involves a conformational change rather than a shift in the monomer-dimer equilibrium. However, upon stimulation with semaphorin 3C, plexin D1 and Nrp1 form a heteromeric complex. This analysis of interactions provides a complementary approach to the existing structural and biochemical data that will aid in the development of new therapeutic strategies to target these receptors in cancer.
Collapse
Affiliation(s)
| | - Jing Hao
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erin Tracy
- Department of Chemistry, University of Akron, Akron, Ohio, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jennifer S Yu
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA; Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, Ohio, USA.
| |
Collapse
|
11
|
Valentini E, Di Martile M, Del Bufalo D, D'Aguanno S. SEMAPHORINS and their receptors: focus on the crosstalk between melanoma and hypoxia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:131. [PMID: 33858502 PMCID: PMC8050914 DOI: 10.1186/s13046-021-01929-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Hypoxia, a condition of oxygen deprivation, is considered a hallmark of tumor microenvironment regulating several pathways and promoting cancer progression and resistance to therapy. Semaphorins, a family of about 20 secreted, transmembrane and GPI-linked glycoproteins, and their cognate receptors (plexins and neuropilins) play a pivotal role in the crosstalk between cancer and stromal cells present in the tumor microenvironment. Many studies reported that some semaphorins are involved in the development of a permissive tumor niche, guiding cell-cell communication and, consequently, the development and progression, as well as the response to therapy, of different cancer histotypes, including melanoma. In this review we will summarize the state of art of semaphorins regulation by hypoxic condition in cancer with different origin. We will also describe evidence about the ability of semaphorins to affect the expression and activity of transcription factors activated by hypoxia, such as hypoxia-inducible factor-1. Finally, we will focus our attention on findings reporting the role of semaphorins in melanocytes transformation, melanoma progression and response to therapy. Further studies are necessary to understand the mechanisms through which semaphorins induce their effect and to shed light on the possibility to use semaphorins or their cognate receptors as prognostic markers and/or therapeutic targets in melanoma or other malignancies.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy.
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| |
Collapse
|
12
|
Zhang H, Ma H, Zhang W, Duan D, Zhu G, Cao W, Liu B. Increased Expression of Sema3C Indicates a Poor Prognosis and Is Regulated by miR-142-5p in Glioma. Biol Pharm Bull 2020; 43:639-648. [PMID: 32238705 DOI: 10.1248/bpb.b19-00818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sema3C has been reported to promote glioma stem cells self-renewal and glioblastoma growth. However, the prognostic value and the regulatory mechanism for its abnormal expression in glioma remain poorly understood. In the current study, the immunohistochemistry results demonstrated that Sema3C was overexpressed in 169 of 216 (78.2%) interpretable glioma patients compared with 3 of 15 (20.0%) interpretable non-neoplastic brain cases (p = 0.0001). Sema3C overexpression was significantly associated with histologic type (p = 0.008), high Ki67 labeling index (p = 0.02), tumor grade (p = 0.002) and wild type IDH1 (p = 0.0001). Importantly, its overexpression predicts the shorter overall survival of glioma patients (p = 0.0017), especially the ones with high grade (p = 0.0124). Functionally, Sema3C silencing significantly reduced the proliferation and invasion of glioma cells, indicating an oncogenic role of Sema3C in glioma in vitro. To elucidate the reason accounting for its overexpression, it is identified miR-142-5p as a tumor suppressor that directly targets Sema3C in glioma cells. miR-142-5p and Sema3C were co-regulators of epithelial-mesenchymal transition. Clinically, miR-142-5p expression was conversely related with Sema3C expression in glioma samples. Together, we identified that Sema3C could promote the progression of glioma and its expression was negatively regulated by miR-142-5p in vitro. Thus, the miR-142-5p-Sema3C axis plays importantly in glioma and holds potential to be therapeutic targets as well.
Collapse
Affiliation(s)
- Haidong Zhang
- Department of Neurology, Jining NO.1 People's Hospital
| | - Hui Ma
- Department of Neurology, Jining NO.1 People's Hospital
| | - Wenling Zhang
- Department of Neurology, Jining NO.1 People's Hospital
| | - Deyi Duan
- Department of Neurology, Jining NO.1 People's Hospital
| | - Guangting Zhu
- Department of Neurology, Jining NO.1 People's Hospital
| | - Wei Cao
- Department of Neurology, Jining NO.1 People's Hospital
| | - Bin Liu
- Department of Neurology, Jining NO.1 People's Hospital
| |
Collapse
|
13
|
Imoto T, Kondo S, Wakisaka N, Hai PT, Seishima N, Kano M, Ueno T, Mizokami H, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Moriyama-Kita M, Yoshizaki T. Overexpression of Semaphorin 3A is a Marker Associated with Poor Prognosis in Patients with Nasopharyngeal Carcinoma. Microorganisms 2020; 8:microorganisms8030423. [PMID: 32192122 PMCID: PMC7143379 DOI: 10.3390/microorganisms8030423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Semaphorins were discovered as guidance signals that mediate neural development. Recent studies suggest that semaphorin 3A (Sema3A), a member of the semaphorin family, is involved in the development of several cancers. This study aimed to analyze the association of Sema3A with the clinical features of nasopharyngeal carcinoma (NPC), an Epstein–Barr virus-associated carcinoma, and the Epstein–Barr virus primary oncogene latent membrane protein 1 (LMP1). The expression of Sema3A and LMP1 was immunohistochemically examined in the 35 NPC specimens. The mean expression scores for Sema3A and LMP1 were 20.8% ± 14.5% and 13.9% ± 14.8%, respectively. The expression of Sema3A significantly correlated with that of LMP1 (r = 0.41, p = 0.014). In addition, the Sema3A high cohort showed significantly poorer prognosis than the Sema3A low cohort. Sema3A expression was higher in the LMP1-positive KH-1 and KR-4 cell lines compared to the LMP1-negative HeLa cells. Overexpression of LMP1 in the LMP1-negative AdAH cell line upregulated Sema3A expression, both at the transcriptional and translational level. Finally, Sema3A expression was associated with poor prognosis in patients with NPC. Our data suggest that LMP1 induces the expression of Sema3A, which may promote tumor progression in NPC.
Collapse
|
14
|
PlexinB1 Promotes Nuclear Translocation of the Glucocorticoid Receptor. Cells 2019; 9:cells9010003. [PMID: 31861264 PMCID: PMC7017238 DOI: 10.3390/cells9010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/29/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022] Open
Abstract
Androgen receptor (AR) and glucocorticoid receptor (GR) are nuclear receptors whose function depends on their entry into the nucleus where they activate transcription of an overlapping set of genes. Both AR and GR have a role in resistance to androgen deprivation therapy (ADT), the mainstay of treatment for late stage prostate cancer. PlexinB1, a receptor for semaphorins, has been implicated in various cancers including prostate cancer and has a role in resistance to ADT. We show here that activation of PlexinB1 by Sema4D and Sema3C results in translocation of endogenous GR to the nucleus in prostate cancer cells, and that this effect is dependent on PlexinB1 expression. Sema4D/Sema3C promotes the translocation of GR-GFP to the nucleus and mutation of the nuclear localization sequence (NLS1) of GR abrogates this response. These findings implicate the importin α/β system in the Sema4D/Sema3C-mediated nuclear import of GR. Knockdown of PlexinB1 in prostate cancer cells decreases the levels of glucocorticoid-responsive gene products and antagonizes the decrease in cell motility and cell area of prostate cancer cells upon dexamethasone treatment, demonstrating the functional significance of these findings. These results show that PlexinB1 activation has a role in the trafficking and activation of the nuclear receptor GR and thus may have a role in resistance to androgen deprivation therapy in late stage prostate cancer.
Collapse
|
15
|
Hui DHF, Tam KJ, Jiao IZF, Ong CJ. Semaphorin 3C as a Therapeutic Target in Prostate and Other Cancers. Int J Mol Sci 2019; 20:E774. [PMID: 30759745 PMCID: PMC6386986 DOI: 10.3390/ijms20030774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
The semaphorins represent a large family of signaling molecules with crucial roles in neuronal and cardiac development. While normal semaphorin function pertains largely to development, their involvement in malignancy is becoming increasingly evident. One member, Semaphorin 3C (SEMA3C), has been shown to drive a number of oncogenic programs, correlate inversely with cancer prognosis, and promote the progression of multiple different cancer types. This report surveys the body of knowledge surrounding SEMA3C as a therapeutic target in cancer. In particular, we summarize SEMA3C's role as an autocrine andromedin in prostate cancer growth and survival and provide an overview of other cancer types that SEMA3C has been implicated in including pancreas, brain, breast, and stomach. We also propose molecular strategies that could potentially be deployed against SEMA3C as anticancer agents such as biologics, small molecules, monoclonal antibodies and antisense oligonucleotides. Finally, we discuss important considerations for the inhibition of SEMA3C as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Daniel H F Hui
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Kevin J Tam
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Ivy Z F Jiao
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Christopher J Ong
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
16
|
Class-3 Semaphorins and Their Receptors: Potent Multifunctional Modulators of Tumor Progression. Int J Mol Sci 2019; 20:ijms20030556. [PMID: 30696103 PMCID: PMC6387194 DOI: 10.3390/ijms20030556] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022] Open
Abstract
Semaphorins are the products of a large gene family containing 28 genes of which 21 are found in vertebrates. Class-3 semaphorins constitute a subfamily of seven vertebrate semaphorins which differ from the other vertebrate semaphorins in that they are the only secreted semaphorins and are distinguished from other semaphorins by the presence of a basic domain at their C termini. Class-3 semaphorins were initially characterized as axon guidance factors, but have subsequently been found to regulate immune responses, angiogenesis, lymphangiogenesis, and a variety of additional physiological and developmental functions. Most class-3 semaphorins transduce their signals by binding to receptors belonging to the neuropilin family which subsequently associate with receptors of the plexin family to form functional class-3 semaphorin receptors. Recent evidence suggests that class-3 semaphorins also fulfill important regulatory roles in multiple forms of cancer. Several class-3 semaphorins function as endogenous inhibitors of tumor angiogenesis. Others were found to inhibit tumor metastasis by inhibition of tumor lymphangiogenesis, by direct effects on the behavior of tumor cells, or by modulation of immune responses. Notably, some semaphorins such as sema3C and sema3E have also been found to potentiate tumor progression using various mechanisms. This review focuses on the roles of the different class-3 semaphorins in tumor progression.
Collapse
|
17
|
Lee CCW, Munuganti RSN, Peacock JW, Dalal K, Jiao IZF, Shepherd A, Liu L, Tam KJ, Sedgwick CG, Bhasin S, Lee KCK, Gooding L, Vanderkruk B, Tombe T, Gong Y, Gleave ME, Cherkasov A, Ong CJ. Targeting Semaphorin 3C in Prostate Cancer With Small Molecules. J Endocr Soc 2018; 2:1381-1394. [PMID: 30534631 PMCID: PMC6280316 DOI: 10.1210/js.2018-00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Despite the amenability of early-stage prostate cancer to surgery and radiation therapy, locally advanced and metastatic prostate cancer is clinically problematic. Chemical castration is often used as a first-line therapy for advanced disease, but progression to the castration-resistant prostate cancer phase occurs with dependable frequency, largely through mutations to the androgen receptor (AR), aberrant AR signaling, and AR-independent mechanisms, among other causes. Semaphorin 3C (SEMA3C) is a secreted signaling protein that is essential for cardiac and neuronal development and has been shown to be regulated by the AR, to drive epithelial-to-mesenchymal transition and stem features in prostate cells, to activate receptor tyrosine kinases, and to promote cancer progression. Given that SEMA3C is linked to several key aspects of prostate cancer progression, we set out to explore SEMA3C inhibition by small molecules as a prospective cancer therapy. A homology-based SEMA3C protein structure was created, and its interaction with the neuropilin (NRP)-1 receptor was modeled to guide the development of the corresponding disrupting compounds. Experimental screening of 146 in silico‒identified molecules from the National Cancer Institute library led to the discovery of four promising candidates that effectively bind to SEMA3C, inhibit its association with NRP1, and attenuate prostate cancer growth. These findings provide proof of concept for the feasibility of inhibiting SEMA3C with small molecules as a therapeutic approach for prostate cancer.
Collapse
Affiliation(s)
- Chung C W Lee
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - James W Peacock
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kush Dalal
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ivy Z F Jiao
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ashley Shepherd
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Liangliang Liu
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Kevin J Tam
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin G Sedgwick
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Satyam Bhasin
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Kevin C K Lee
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Luke Gooding
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Benjamin Vanderkruk
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Tabitha Tombe
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Yifan Gong
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Martin E Gleave
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher J Ong
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
CDK8 regulates the angiogenesis of pancreatic cancer cells in part via the CDK8-β-catenin-KLF2 signal axis. Exp Cell Res 2018; 369:304-315. [PMID: 29856990 DOI: 10.1016/j.yexcr.2018.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND CDK8 is associated with the transcriptional Mediator complex and has been shown to regulate several transcription factors implicated in cancer. As a pancreatic cancer oncogene, the role of CDK8 in cancer angiogenesis remains unclear. Here, we investigated the contribution of CDK8 in pancreatic cancer angiogenesis and examined the underlying molecular mechanisms. METHODS CDK8 expression was evaluated via immunohistochemistry, western blotting, and qRT-PCR in relation to the clinicopathological characteristics of pancreatic cancer patients. The effects of silencing or overexpressing CDK8 on cancer angiogenesis were assessed in vitro by western blotting assays in pancreatic cancer cell lines and in vivo with nude mice xenograft models. RESULTS Compared with adjacent normal tissues, pancreatic cancer tissues showed upregulation of CDK8 expression, which was inversely correlated with T grade, liver metastasis, size, lymph node metastasis and poor survival. CDK8 overexpression promoted angiogenesis in pancreatic cancer via activation of the CDK8-β-catenin-KLF2 signaling axis, as demonstrated by the upregulation and downregulation of signals representing the rate-limiting steps in angiogenesis. Silencing CDK8 inhibited angiogenesis in pancreatic cancer in vitro. Additionally, these results were confirmed in nude mice xenograft models in vivo. CONCLUSIONS CDK8 promotes angiogenesis in pancreatic cancer via activation of the CDK8-β-catenin-KLF2 signaling axis, thus providing valid targets for the treatment of pancreatic cancer.
Collapse
|
19
|
Tam KJ, Dalal K, Hsing M, Cheng CW, Khosravi S, Yenki P, Tse C, Peacock JW, Sharma A, Chiang YT, Wang Y, Cherkasov A, Rennie PS, Gleave ME, Ong CJ. Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget 2018; 8:9617-9633. [PMID: 28038451 PMCID: PMC5354758 DOI: 10.18632/oncotarget.14168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily of transcription factors and is central to prostate cancer (PCa) progression. Ligand-activated AR engages androgen response elements (AREs) at androgen-responsive genes to drive the expression of gene batteries involved in cell proliferation and cell fate. Understanding the transcriptional targets of the AR has become critical in apprehending the mechanisms driving treatment-resistant stages of PCa. Although AR transcription regulation has been extensively studied, the signaling networks downstream of AR are incompletely described. Semaphorin 3C (SEMA3C) is a secreted signaling protein with roles in nervous system and cardiac development but can also drive cellular growth and invasive characteristics in multiple cancers including PCa. Despite numerous findings that implicate SEMA3C in cancer progression, regulatory mechanisms governing its expression remain largely unknown. Here we identify and characterize an androgen response element within the SEMA3C locus. Using the AR-positive LNCaP PCa cell line, we show that SEMA3C expression is driven by AR through this element and that AR-mediated expression of SEMA3C is dependent on the transcription factor GATA2. SEMA3C has been shown to promote cellular growth in certain cell types so implicit to our findings is the discovery of direct regulation of a growth factor by AR. We also show that FOXA1 is a negative regulator of SEMA3C. These findings identify SEMA3C as a novel target of AR, GATA2, and FOXA1 and expand our understanding of semaphorin signaling and cancer biology.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Kush Dalal
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael Hsing
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Chi Wing Cheng
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Shahram Khosravi
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Parvin Yenki
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Charan Tse
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Aishwariya Sharma
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Yan Ting Chiang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Alamri A, Soussi Gounni A, Kung SKP. View Point: Semaphorin-3E: An Emerging Modulator of Natural Killer Cell Functions? Int J Mol Sci 2017; 18:E2337. [PMID: 29113093 PMCID: PMC5713306 DOI: 10.3390/ijms18112337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022] Open
Abstract
Semaphorin-3E (Sema-3E) is a member of a large family of proteins originally identified as axon guidance cues in neural development. It is expressed in different cell types, such as immune cells, cancer cells, neural cells, and epithelial cells. Subsequently, dys-regulation of Sema-3E expression has been reported in various biological processes that range from cancers to autoimmune and allergic diseases. Recent work in our laboratories revealed a critical immunoregulatory role of Sema-3E in experimental allergic asthma. We further speculate possible immune modulatory function(s) of Sema-3E on natural killer (NK) cells.
Collapse
Affiliation(s)
- Abdulaziz Alamri
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Abdelilah Soussi Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Sam K P Kung
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| |
Collapse
|
21
|
Nouri M, Caradec J, Lubik AA, Li N, Hollier BG, Takhar M, Altimirano-Dimas M, Chen M, Roshan-Moniri M, Butler M, Lehman M, Bishop J, Truong S, Huang SC, Cochrane D, Cox M, Collins C, Gleave M, Erho N, Alshalafa M, Davicioni E, Nelson C, Gregory-Evans S, Karnes RJ, Jenkins RB, Klein EA, Buttyan R. Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance. Oncotarget 2017; 8:18949-18967. [PMID: 28145883 PMCID: PMC5386661 DOI: 10.18632/oncotarget.14850] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023] Open
Abstract
Treatment-induced neuroendocrine transdifferentiation (NEtD) complicates therapies for metastatic prostate cancer (PCa). Based on evidence that PCa cells can transdifferentiate to other neuroectodermally-derived cell lineages in vitro, we proposed that NEtD requires first an intermediary reprogramming to metastable cancer stem-like cells (CSCs) of a neural class and we demonstrate that several different AR+/PSA+ PCa cell lines were efficiently reprogrammed to, maintained and propagated as CSCs by growth in androgen-free neural/neural crest (N/NC) stem medium. Such reprogrammed cells lost features of prostate differentiation; gained features of N/NC stem cells and tumor-initiating potential; were resistant to androgen signaling inhibition; and acquired an invasive phenotype in vitro and in vivo. When placed back into serum-containing mediums, reprogrammed cells could be re-differentiated to N-/NC-derived cell lineages or return back to an AR+ prostate-like state. Once returned, the AR+ cells were resistant to androgen signaling inhibition. Acute androgen deprivation or anti-androgen treatment in serum-containing medium led to the transient appearance of a sub-population of cells with similar characteristics. Finally, a 132 gene signature derived from reprogrammed PCa cell lines distinguished tumors from PCa patients with adverse outcomes. This model may explain neural manifestations of PCa associated with lethal disease. The metastable nature of the reprogrammed stem-like PCa cells suggests that cycles of PCa cell reprogramming followed by re-differentiation may support disease progression and therapeutic resistance. The ability of a gene signature from reprogrammed PCa cells to identify tumors from patients with metastasis or PCa-specific mortality implies that developmental reprogramming is linked to aggressive tumor behaviors.
Collapse
Affiliation(s)
- Mannan Nouri
- Vancouver Prostate Centre, Vancouver, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Josselin Caradec
- Vancouver Prostate Centre, Vancouver, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Amy Anne Lubik
- Vancouver Prostate Centre, Vancouver, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Na Li
- Vancouver Prostate Centre, Vancouver, Canada
| | - Brett G Hollier
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | | | | - Mengqian Chen
- Drug Discovery & Biomedical Sciences, South Carolina College of Pharmacy, Columbia, South Carolina, USA
| | | | | | - Melanie Lehman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | | | | | | - Dawn Cochrane
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
| | - Michael Cox
- Vancouver Prostate Centre, Vancouver, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Colin Collins
- Vancouver Prostate Centre, Vancouver, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Vancouver, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Nicholas Erho
- GenomeDX Biosciences, Vancouver, Canada.,GenomeDX Biosciences, San Diego, California, USA
| | | | - Elai Davicioni
- GenomeDX Biosciences, Vancouver, Canada.,GenomeDX Biosciences, San Diego, California, USA
| | - Colleen Nelson
- Vancouver Prostate Centre, Vancouver, Canada.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Sheryl Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | | | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ralph Buttyan
- Vancouver Prostate Centre, Vancouver, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Tam KJ, Hui DHF, Lee WW, Dong M, Tombe T, Jiao IZF, Khosravi S, Takeuchi A, Peacock JW, Ivanova L, Moskalev I, Gleave ME, Buttyan R, Cox ME, Ong CJ. Semaphorin 3 C drives epithelial-to-mesenchymal transition, invasiveness, and stem-like characteristics in prostate cells. Sci Rep 2017; 7:11501. [PMID: 28904399 PMCID: PMC5597577 DOI: 10.1038/s41598-017-11914-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is among the most commonly-occurring cancers worldwide and a leader in cancer-related deaths. Local non-invasive PCa is highly treatable but limited treatment options exist for those with locally-advanced and metastatic forms of the disease underscoring the need to identify mechanisms mediating PCa progression. The semaphorins are a large grouping of membrane-associated or secreted signalling proteins whose normal roles reside in embryogenesis and neuronal development. In this context, semaphorins help establish chemotactic gradients and direct cell movement. Various semaphorin family members have been found to be up- and down-regulated in a number of cancers. One family member, Semaphorin 3 C (SEMA3C), has been implicated in prostate, breast, ovarian, gastric, lung, and pancreatic cancer as well as glioblastoma. Given SEMA3C's roles in development and its augmented expression in PCa, we hypothesized that SEMA3C promotes epithelial-to-mesenchymal transition (EMT) and stem-like phenotypes in prostate cells. In the present study we show that ectopic expression of SEMA3C in RWPE-1 promotes the upregulation of EMT and stem markers, heightened sphere-formation, and cell plasticity. In addition, we show that SEMA3C promotes migration and invasion in vitro and cell dissemination in vivo.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Daniel H F Hui
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Wilson W Lee
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Mingshu Dong
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Tabitha Tombe
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ivy Z F Jiao
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Shahram Khosravi
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ario Takeuchi
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Larissa Ivanova
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Igor Moskalev
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Ralph Buttyan
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Michael E Cox
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
23
|
Ni Q, Sun J, Ma C, Li Y, Ju J, Sun M. The Neuropilins and Their Ligands in Hematogenous Metastasis of Salivary Adenoid Cystic Carcinoma-An Immunohistochemical Study. J Oral Maxillofac Surg 2017; 76:569-579. [PMID: 28961428 DOI: 10.1016/j.joms.2017.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE We investigated the expression of neuropilin-1 (NRP1), neuropilin-2 (NRP2), vascular endothelial growth factor-A (VEGF-A), semaphorin-3A (Sema-3A), and semaphorin-3F (Sema-3F) in normal salivary gland (NSG) tissue, nonmetastatic salivary adenoid cystic carcinoma (SACC), and metastatic SACC to better understand their role in intratumoral angiogenesis and hematogenous metastasis of SACC. PATIENTS AND METHODS The study included 60 SACC patients, equally divided between nonmetastatic SACC and metastatic SACC. We used 30 NSG samples as the control. The expression of cytokines was studied by immunohistochemistry and compared using the integrated optical density. The relationship between NRP1, NRP2, VEGF-A, and Sema-3A expression and microvessel density (MVD) was analyzed in the 3 groups. RESULTS In metastatic SACC, the expression levels of NRP1 and VEGF-A were significantly greater than those in nonmetastatic SACC and NSG. The expression of Sema-3A and Sema-3F was significantly lower in metastatic SACC than that in nonmetastatic SACC and NSG (P < .0001). No significant differences were found in NRP2 expression among the 3 groups (P = .43). The MVD of metastatic SACC was significantly greater than that of nonmetastatic SACC and NSG (P < .0001). However, the lymphatic vessel density of the 3 groups was not significantly different statistically. The relationship between MVD and NRP1 or VEGF-A showed a significant positive correlation (P < .0001, for both). However, a significant negative correlation was found between the MVD and Sema-3A or Sema-3F expression (P < .0001, for both). CONCLUSIONS Hematogenous metastasis of SACC is correlated with high expression of NRP1 and VEGF-A and low expression of Sema-3A and Sema-3F. The increased numbers of microvessels induced by VEGF-A signaling, combined with NRP1, could be one of the key reasons leading to the enhanced hematogenous metastasis in SACC.
Collapse
Affiliation(s)
- Qianwei Ni
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; and Department of Oral and Maxillofacial Surgery, General Hospital of Xinjiang Military Region, Urumqi, People's Republic of China
| | - Jinlong Sun
- Resident, Department of Stomatology, Navy General Hospital, Beijing, People's Republic of China
| | - Chao Ma
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yun Li
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jun Ju
- Resident, Center of Otolaryngology of PLA, Navy General Hospital, Beijing, People's Republic of China
| | - Moyi Sun
- Professor, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
24
|
Li X, Chen Q, Yin D, Shi S, Yu L, Zhou S, Chen E, Zhou Z, Shi Y, Fan J, Zhou J, Dai Z. Novel role of semaphorin 3A in the growth and progression of hepatocellular carcinoma. Oncol Rep 2017; 37:3313-3320. [PMID: 28498470 DOI: 10.3892/or.2017.5616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/20/2016] [Indexed: 11/06/2022] Open
Abstract
Semaphorin 3A (SEMA3A), a secretory protein, is a founding member of the semaphorin family and functions in both the biological behavior of tumor cells and the modulation of tumor-associated macrophages. However, the role of SEMA3A in hepatocellular carcinoma (HCC) is still not well established. In the present study, we investigated the expression levels of SEMA3A in 80 HCC tissues and cell lines, using RT-qPCR, western blotting and immunohistochemistry. Expression profile analysis revealed that SEMA3A was significantly overexpressed in human HCC patients and positively correlated with the metastatic potential of HCC cells. Lentiviral transfection into PLC/PRF/5 and HCCLM3 cells was performed to stably upregulate and downregulate the expression of SEMA3A in HCC cells. Cell Counting Kit-8 (CCK-8), wound-healing and invasion assays revealed that SEMA3A promoted the proliferation and migration of HCC cells in vitro. Proteome profiler antibody microarray analysis revealed that overexpression of SEMA3A in HCC cells induced a significant increase in the expression levels of gelsolin-like capping protein (CapG), galectin-3, enolase 2 and epithelial cell adhesion molecule (EpCAM). Furthermore, the upregulation of SEMA3A in HCC cells promoted tumor growth and progression in an HCC mouse model. These results indicate that SEMA3A enhances CapG, galectin-3, enolase 2 and EpCAM expression to promote HCC progression and is a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Xuedong Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qing Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Dan Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shiming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lei Yu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shaolai Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Erbao Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhengjun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yinghong Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
25
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The role of the semaphorins in cancer. Cell Adh Migr 2016; 10:652-674. [PMID: 27533782 PMCID: PMC5160032 DOI: 10.1080/19336918.2016.1197478] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
The semaphorins were initially characterized as axon guidance factors, but have subsequently been implicated also in the regulation of immune responses, angiogenesis, organ formation, and a variety of additional physiological and developmental functions. The semaphorin family contains more then 20 genes divided into 7 subfamilies, all of which contain the signature sema domain. The semaphorins transduce signals by binding to receptors belonging to the neuropilin or plexin families. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signaling. Recent evidence suggests that semaphorins also fulfill important roles in the etiology of multiple forms of cancer. Some semaphorins have been found to function as bona-fide tumor suppressors and to inhibit tumor progression by various mechanisms while other semaphorins function as inducers and promoters of tumor progression.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yelena Mumblat
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tatyana Smolkin
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Shira Toledano
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbal Nir-Zvi
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
26
|
Rehman M, Gurrapu S, Cagnoni G, Capparuccia L, Tamagnone L. PlexinD1 Is a Novel Transcriptional Target and Effector of Notch Signaling in Cancer Cells. PLoS One 2016; 11:e0164660. [PMID: 27749937 PMCID: PMC5066946 DOI: 10.1371/journal.pone.0164660] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022] Open
Abstract
The secreted semaphorin Sema3E controls cell migration and invasiveness in cancer cells. Sema3E-receptor, PlexinD1, is frequently upregulated in melanoma, breast, colon, ovarian and prostate cancers; however, the mechanisms underlying PlexinD1 upregulation and the downstream events elicited in tumor cells are still unclear. Here we show that the canonical RBPjk-dependent Notch signaling cascade controls PlexinD1 expression in primary endothelial and cancer cells. Transcriptional activation was studied by quantitative PCR and promoter activity reporter assays. We found that Notch ligands and constitutively activated intracellular forms of Notch receptors upregulated PlexinD1 expression; conversely RNAi-based knock-down, or pharmacological inhibition of Notch signaling by gamma-secretase inhibitors, downregulated PlexinD1 levels. Notably, both Notch1 and Notch3 expression positively correlates with PlexinD1 levels in prostate cancer, as well as in other tumor types. In prostate cancer cells, Sema3E-PlexinD1 axis was previously reported to regulate migration; however, implicated mechanisms were not elucidated. Here we show that in these cells PlexinD1 activity induces the expression of the transcription factor Slug, downregulates E-cadherin levels and enhances cell migration. Moreover, our mechanistic data identify PlexinD1 as a pivotal mediator of this signaling axis downstream of Notch in prostate cancer cells. In fact, on one hand, PlexinD1 is required to mediate cell migration and E-cadherin regulation elicited by Notch. On the other hand, PlexinD1 upregulation is sufficient to induce prostate cancer cell migration and metastatic potential in mice, leading to functional rescue in the absence of Notch. In sum, our work identifies PlexinD1 as a novel transcriptional target induced by Notch signaling, and reveals its role promoting prostate cancer cell migration and downregulating E-cadherin levels in Slug-dependent manner. Collectively, these findings suggest that Notch-PlexinD1 signaling axis may be targeted to impair prostate cancer cell invasiveness and metastasis.
Collapse
MESH Headings
- Animals
- Benzazepines/pharmacology
- Cadherins/genetics
- Cadherins/metabolism
- Cell Adhesion Molecules, Neuronal/antagonists & inhibitors
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line, Tumor
- Cell Movement/drug effects
- Diamines/pharmacology
- Down-Regulation/drug effects
- Enzyme Inhibitors/pharmacology
- HEK293 Cells
- Human Umbilical Vein Endothelial Cells
- Humans
- Intracellular Signaling Peptides and Proteins
- Jagged-1 Protein/pharmacology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Membrane Glycoproteins
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Microscopy, Fluorescence
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Notch/antagonists & inhibitors
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction/drug effects
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/metabolism
- Thiazoles/pharmacology
- Transplantation, Heterologous
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Michael Rehman
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Sreeharsha Gurrapu
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Gabriella Cagnoni
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Lorena Capparuccia
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Luca Tamagnone
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Torino, Italy
- * E-mail:
| |
Collapse
|
27
|
Chen H, Xie GH, Wang WW, Yuan XL, Xing WM, Liu HJ, Chen J, Dou M, Shen LS. Epigenetically downregulated Semaphorin 3E contributes to gastric cancer. Oncotarget 2016; 6:20449-65. [PMID: 26036259 PMCID: PMC4653017 DOI: 10.18632/oncotarget.3936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022] Open
Abstract
Axon guidance protein Semaphorin 3E (Sema3E) promotes tumor metastasis and suppresses tumor cell death. Here, we demonstrated that Sema3E was decreased in gastric cancer. Its levels were inversely associated with tumor progression. Levels of Sema3E were associated with low p300 and high class I histone deacetylase (class I HDAC). Ectopic expression of Sema3E inhibited proliferation and colony formation of gastric cancer cell lines in vitro and xenografts in vivo. Sema3E overexpression inhibited migration and invasion of gastric cancer cells, which was associated with induction of E-cadherin and reduction of Akt and ERK1/2 phosphorylation. We suggest that silencing of Sema3E contributes to the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guo-Hua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wei-Wei Wang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiang-Liang Yuan
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wen-Ming Xing
- Department of Academy, Shanghai Association for Science & Technology, Shanghai 200020, China
| | - Hong-Jing Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jin Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Min Dou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Li-Song Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
28
|
Anderson JE, Do MKQ, Daneshvar N, Suzuki T, Dort J, Mizunoya W, Tatsumi R. The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres. Biol Rev Camb Philos Soc 2016; 92:1389-1405. [PMID: 27296513 DOI: 10.1111/brv.12286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 01/03/2023]
Abstract
Current research on skeletal muscle injury and regeneration highlights the crucial role of nerve-muscle interaction in the restoration of innervation during that process. Activities of muscle satellite or stem cells, recognized as the 'currency' of myogenic repair, have a pivotal role in these events, as shown by ongoing research. More recent investigation of myogenic signalling events reveals intriguing roles for semaphorin3A (Sema3A), secreted by activated satellite cells, in the muscle environment during development and regeneration. For example, Sema3A makes important contributions to regulating the formation of blood vessels, balancing bone formation and bone remodelling, and inflammation, and was recently implicated in the establishment of fibre-type distribution through effects on myosin heavy chain gene expression. This review highlights the active or potential contributions of satellite-cell-derived Sema3A to regulation of the processes of motor neurite ingrowth into a regenerating muscle bed. Successful restoration of functional innervation during muscle repair is essential; this review emphasizes the integrative role of satellite-cell biology in the progressive coordination of adaptive cellular and tissue responses during the injury-repair process in voluntary muscle.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Junio Dort
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| |
Collapse
|
29
|
Fonseca FP, Bingle L, Santos-Silva AR, Lopes MA, de Almeida OP, de Andrade BAB, Mariano FV, Kowalski LP, Rangel ALCA, Martins MD, Meurer L, Speight PM, Vargas PA. Semaphorins and neuropilins expression in salivary gland tumors. J Oral Pathol Med 2015. [DOI: 10.1111/jop.12341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Felipe P. Fonseca
- Piracicaba Dental School and Faculty of Medicine; University of Campinas; Piracicaba Brazil
- Department of Oral and Maxillofacial Pathology; School of Clinical Dentistry; The University of Sheffield; Sheffield UK
| | - Lynne Bingle
- Department of Oral and Maxillofacial Pathology; School of Clinical Dentistry; The University of Sheffield; Sheffield UK
| | - Alan R. Santos-Silva
- Piracicaba Dental School and Faculty of Medicine; University of Campinas; Piracicaba Brazil
| | - Márcio A. Lopes
- Piracicaba Dental School and Faculty of Medicine; University of Campinas; Piracicaba Brazil
| | - Oslei P. de Almeida
- Piracicaba Dental School and Faculty of Medicine; University of Campinas; Piracicaba Brazil
| | | | - Fernanda V. Mariano
- Piracicaba Dental School and Faculty of Medicine; University of Campinas; Piracicaba Brazil
| | - Luiz P. Kowalski
- Department of Otorhinolaryngology and Head and Neck Surgery; A.C. Camargo Cancer Center; Sao Paulo Brazil
| | | | - Manoela D. Martins
- Medical and Dental Schools; Federal University of Rio Grande do Sul; Rio Grande do Sul Brazil
| | - Luise Meurer
- Medical and Dental Schools; Federal University of Rio Grande do Sul; Rio Grande do Sul Brazil
| | - Paul M. Speight
- Department of Oral and Maxillofacial Pathology; School of Clinical Dentistry; The University of Sheffield; Sheffield UK
| | - Pablo A. Vargas
- Piracicaba Dental School and Faculty of Medicine; University of Campinas; Piracicaba Brazil
- Department of Oral Pathology and Oral Biology; School of Dentistry; Faculty of Health Sciences; University of Pretoria; Pretoria South Africa
| |
Collapse
|
30
|
Man J, Shoemake J, Zhou W, Fang X, Wu Q, Rizzo A, Prayson R, Bao S, Rich JN, Yu JS. Sema3C promotes the survival and tumorigenicity of glioma stem cells through Rac1 activation. Cell Rep 2014; 9:1812-1826. [PMID: 25464848 DOI: 10.1016/j.celrep.2014.10.055] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/30/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
Different cancer cell compartments often communicate through soluble factors to facilitate tumor growth. Glioma stem cells (GSCs) are a subset of tumor cells that resist standard therapy to contribute to disease progression. How GSCs employ a distinct secretory program to communicate with and nurture each other over the nonstem tumor cell (NSTC) population is not well defined. Here, we show that GSCs preferentially secrete Sema3C and coordinately express PlexinA2/D1 receptors to activate Rac1/nuclear factor (NF)-κB signaling in an autocrine/paracrine loop to promote their own survival. Importantly, Sema3C is not expressed in neural progenitor cells (NPCs) or NSTCs. Disruption of Sema3C induced apoptosis of GSCs, but not NPCs or NSTCs, and suppressed tumor growth in orthotopic models of glioblastoma. Introduction of activated Rac1 rescued the Sema3C knockdown phenotype in vivo. Our study supports the targeting of Sema3C to break this GSC-specific autocrine/paracrine loop in order to improve glioblastoma treatment, potentially with a high therapeutic index.
Collapse
Affiliation(s)
- Jianghong Man
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jocelyn Shoemake
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Anthony Rizzo
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Richard Prayson
- Department of Anatomic Pathology, Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jennifer S Yu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
31
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
32
|
Rosenberg EE, Gerashchenko GV, Kashuba VI. Comparative analysis of gene expression in normal and cancer human prostate cell lines. UKRAINIAN BIOCHEMICAL JOURNAL 2014; 86:119-28. [DOI: 10.15407/ubj86.02.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
33
|
Choi YI, Duke-Cohan JS, Tan J, Gui J, Singh MK, Epstein JA, Reinherz EL. Plxnd1 expression in thymocytes regulates their intrathymic migration while that in thymic endothelium impacts medullary topology. Front Immunol 2013; 4:392. [PMID: 24312099 PMCID: PMC3832804 DOI: 10.3389/fimmu.2013.00392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/07/2013] [Indexed: 02/02/2023] Open
Abstract
An important role for plexinD1 in thymic development is inferred from studies of germline Plxnd1 knockout (KO) mice where mislocalized CD69+ thymocytes as well as ectopic thymic subcapsular medullary structures were observed. Given embryonic lethality of the Plxnd1−/− genotype, fetal liver transplantation was employed in these prior analyses. Such embryonic hematopoietic reconstitution may have transferred Plxnd1 KO endothelial and/or epithelial stem cells in addition to Plxnd1 KO lymphoid progenitors, thereby contributing to that phenotype. Here we use Plxnd1flox/flox mice crossed to pLck-Cre, pKeratin14-Cre, or pTek-Cre transgenic animals to create cell-type specific conditional knockout (CKO) lines involving thymocytes (D1ThyCKO), thymic epithelium (D1EpCKO), and thymic endothelium (D1EnCKO), respectively. These CKOs allowed us to directly assess the role of plexinD1 in each lineage. Loss of plexinD1 expression on double positive (DP) thymocytes leads to their aberrant migration and cortical retention after TCR-mediated positive selection. In contrast, ectopic medulla formation is a consequence of loss of plexinD1 expression on endothelial cells, in turn linked to dysregulation of thymic angiogenesis. D1EpCKO thymi manifest neither abnormality. Collectively, our findings underscore the non-redundant roles for plexinD1 on thymocytes and endothelium, including the dynamic nature of medulla formation resulting from crosstalk between these thymic cellular components.
Collapse
Affiliation(s)
- Young I Choi
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute , Boston, MA , USA ; Department of Medicine, Harvard Medical School , Boston, MA , USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Mejhert N, Wilfling F, Esteve D, Galitzky J, Pellegrinelli V, Kolditz CI, Viguerie N, Tordjman J, Näslund E, Trayhurn P, Lacasa D, Dahlman I, Stich V, Lång P, Langin D, Bouloumié A, Clément K, Rydén M. Semaphorin 3C is a novel adipokine linked to extracellular matrix composition. Diabetologia 2013; 56:1792-801. [PMID: 23666167 DOI: 10.1007/s00125-013-2931-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/18/2013] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Alterations in white adipose tissue (WAT) function, including changes in protein (adipokine) secretion and extracellular matrix (ECM) composition, promote an insulin-resistant state. We set out to identify novel adipokines regulated by body fat mass in human subcutaneous WAT with potential roles in adipose function. METHODS Adipose transcriptome data and secretome profiles from conditions with increased/decreased WAT mass were combined. WAT donors were predominantly women. In vitro effects were assessed using recombinant protein. Results were confirmed by quantitative PCR/ELISA, metabolic assays and immunochemistry in human WAT and adipocytes. RESULTS We identified a hitherto uncharacterised adipokine, semaphorin 3C (SEMA3C), the expression of which correlated significantly with body weight, insulin resistance (HOMA of insulin resistance [HOMAIR], and the rate constant for the insulin tolerance test [KITT]) and adipose tissue morphology (hypertrophy vs hyperplasia). SEMA3C was primarily found in mature adipocytes and had no direct effect on human adipocyte differentiation, lipolysis, glucose transport or the expression of β-oxidation genes. This could in part be explained by the significant downregulation of its cognate receptors during adipogenesis. In contrast, in pre-adipocytes, SEMA3C increased the production/secretion of several ECM components (fibronectin, elastin and collagen I) and matricellular factors (connective tissue growth factor, IL6 and transforming growth factor-β1). Furthermore, the expression of SEMA3C in human WAT correlated positively with the degree of fibrosis in WAT. CONCLUSIONS/INTERPRETATION SEMA3C is a novel adipokine regulated by weight changes. The correlation with WAT hypertrophy and fibrosis in vivo, as well as its effects on ECM production in human pre-adipocytes in vitro, together suggest that SEMA3C constitutes an adipocyte-derived paracrine signal that influences ECM composition and may play a pathophysiological role in human WAT.
Collapse
Affiliation(s)
- N Mejhert
- Department of Medicine, Lipid Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tian TV, Tomavo N, Huot L, Flourens A, Bonnelye E, Flajollet S, Hot D, Leroy X, de Launoit Y, Duterque-Coquillaud M. Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2. Oncogene 2013; 33:2204-14. [PMID: 23708657 DOI: 10.1038/onc.2013.176] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/27/2013] [Accepted: 03/18/2013] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PCa) is one of the major public health problems in Western countries. Recently, the TMPRSS2:ERG gene fusion, which results in the aberrant expression of the transcription factor ERG, has been shown to be the most common gene rearrangement in PCa. Previous studies have determined the contributions of this fusion in PCa disease initiation and/or progression in vitro and in vivo. In this study on TMPRSS2:ERG regulation in PCa, we used an androgen receptor and TMPRSS2:ERG fusion double-negative PCa cell model: PC3c. In three cell clones with different TMPRSS2:ERG expression levels, ectopic expression of the fusion resulted in significant induction of cell migration and invasion in a dose-dependent manner. In agreement with this phenotype, high-throughput microarray analysis revealed that a set of genes, functionally associated with cell motility and invasiveness, were deregulated in a dose-dependent manner in TMPRSS2:ERG-expressing cells. Importantly, we identified increased MMP9 (Metalloproteinase 9) and PLXNA2 (Plexin A2) expression in TMPRSS2:ERG-positive PCa samples, and their expression levels were significantly correlated with ERG expression in a PCa cohort. In line with these findings, there was evidence that TMPRSS2:ERG directly and positively regulates MMP9 and PLXNA2 expression in PC3c cells. Moreover, PLXNA2 upregulation contributed to TMPRSS2:ERG-mediated enhancements of PC3c cell migration and invasion. Furthermore, and importantly, PLXNA2 expression was upregulated in metastatic PCa tumors compared with localized primary PCa tumors. This study provides novel insights into the role of the TMPRSS2:ERG fusion in PCa metastasis.
Collapse
Affiliation(s)
- T V Tian
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France [4] Faculté de Médecine Henri Warembourg, Université du Droit et de la Santé Lille II, Lille, France
| | - N Tomavo
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | - L Huot
- 1] Institut Pasteur de Lille/IFR142, Lille, France [2] Université de Lille Nord de France, Lille, France [3] Centre d'Infection et d'Immunité de Lille (CIIL), INSERM U1019, CNRS UMR8204, Lille, France
| | - A Flourens
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | | | - S Flajollet
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | - D Hot
- 1] Institut Pasteur de Lille/IFR142, Lille, France [2] Université de Lille Nord de France, Lille, France [3] Centre d'Infection et d'Immunité de Lille (CIIL), INSERM U1019, CNRS UMR8204, Lille, France
| | - X Leroy
- 1] Université de Lille Nord de France, Lille, France [2] Faculté de Médecine Henri Warembourg, Université du Droit et de la Santé Lille II, Lille, France [3] Centre hospitalier régional et universitaire de Lille, Institut de Pathologie, Lille, France
| | - Y de Launoit
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| | - M Duterque-Coquillaud
- 1] Institut de Biologie de Lille, CNRS UMR8161, Lille, France [2] Institut Pasteur de Lille/IFR142, Lille, France [3] Université de Lille Nord de France, Lille, France
| |
Collapse
|
36
|
Toren PJ, Gleave ME. Evolving landscape and novel treatments in metastatic castrate-resistant prostate cancer. Asian J Androl 2013; 15:342-9. [PMID: 23584378 PMCID: PMC3739642 DOI: 10.1038/aja.2013.38] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 01/23/2023] Open
Abstract
Treatment options for castrate-resistant prostate cancer (CRPC) have advanced in recent years and significantly improved the outlook for patients with this aggressive and lethal disease. Further understanding of the biology of CRPC has led to several new targeted therapies and continues to emphasize the importance of androgen receptor (AR) directed therapy. The treatment landscape is rapidly changing and further biologically rationale, biomarker-based ongoing clinical trials are needed. We review the recent results of major clinical trials in CRPC. New and investigational agents now in clinical evaluation are reviewed including inhibitors of angiogenesis, microtubules, chaperones, AR and intracellular kinases, as well as immunotherapy, radiopharmaceuticals and bone-targeted agents. The recent improvement in prognosis for CRPC brings continued optimism for further improvements. Thoughtful planning of clinical trials and further understanding of the mechanisms of resistance to therapies will allow for continued progress in patient care.
Collapse
Affiliation(s)
- Paul J Toren
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | | |
Collapse
|
37
|
Sadeque A, Serão NV, Southey BR, Delfino KR, Rodriguez-Zas SL. Identification and characterization of alternative exon usage linked glioblastoma multiforme survival. BMC Med Genomics 2012. [PMID: 23206951 PMCID: PMC3548711 DOI: 10.1186/1755-8794-5-59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Alternative exon usage (AEU) is an important component of gene regulation. Exon expression platforms allow the detection of associations between AEU and phenotypes such as cancer. Numerous studies have identified associations between gene expression and the brain cancer glioblastoma multiforme (GBM). The few consistent gene expression biomarkers of GBM that have been reported may be due to the limited consideration of AEU and the analytical approaches used. The objectives of this study were to develop a model that accounts for the variations in expression present between the exons within a gene and to identify AEU biomarkers of GBM survival. Methods The expression of exons corresponding to 25,403 genes was related to the survival of 250 individuals diagnosed with GBM in a training data set. Genes exhibiting AEU in the training data set were confirmed in an independent validation data set of 78 patients. A hierarchical mixed model that allows the consideration of covariation between exons within a gene and of the effect of the epidemiological characteristics of the patients was developed to identify associations between exon expression and patient survival. This general model describes all three possible scenarios: multi-exon genes with and without AEU, and single-exon genes. Results AEU associated with GBM survival was identified on 2477 genes (P-value < 5.0E-04 or FDR-adjusted P-value < 0.05). G-protein coupled receptor 98 (Gpr98) and epidermal growth factor (Egf) were among the genes exhibiting AEU with 30 and 9 exons associated with GBM survival, respectively. Pathways enriched among the AEU genes included focal adhesion, ECM-receptor interaction, ABC transporters and pathways in cancer. In addition, 24 multi-exon genes without AEU and 8 single-exon genes were associated with GBM survival (FDR-adjusted P-value < 0.05). Conclusions The inferred patterns of AEU were consistent with in silico AS models. The hierarchical model used offered a flexible and simple way to interpret and identify associations between survival that accommodates multi-exon genes with or without AEU and single exon genes. Our results indicate that differential expression of AEU could be used as biomarker for GBM and potentially other cancers.
Collapse
Affiliation(s)
- Ahmed Sadeque
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
38
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
39
|
Goshima Y, Sasaki Y, Yamashita N, Nakamura F. Class 3 semaphorins as a therapeutic target. Expert Opin Ther Targets 2012; 16:933-44. [DOI: 10.1517/14728222.2012.710201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
|
41
|
Class 3 semaphorins and their receptors in physiological and pathological angiogenesis. Biochem Soc Trans 2011; 39:1565-70. [DOI: 10.1042/bst20110654] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Class 3 semaphorins (Sema3) are a family of secreted proteins that were originally identified as axon guidance factors mediating their signal transduction by forming complexes with neuropilins and plexins. However, the wide expression pattern of Sema3 suggested additional functions other than those associated with the nervous system, and indeed many studies have now indicated that Sema3 proteins and their receptors play a role in angiogenesis. The present review specifically focuses on recent evidence for this role in both physiological and pathological angiogenesis.
Collapse
|
42
|
Tseng CH, Murray KD, Jou MF, Hsu SM, Cheng HJ, Huang PH. Sema3E/plexin-D1 mediated epithelial-to-mesenchymal transition in ovarian endometrioid cancer. PLoS One 2011; 6:e19396. [PMID: 21559368 PMCID: PMC3084850 DOI: 10.1371/journal.pone.0019396] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Cancer cells often employ developmental cues for advantageous growth and metastasis. Here, we report that an axon guidance molecule, Sema3E, is highly expressed in human high-grade ovarian endometrioid carcinoma, but not low-grade or other ovarian epithelial tumors, and facilitates tumor progression. Unlike its known angiogenic activity, Sema3E acted through Plexin-D1 receptors to augment cell migratory ability and concomitant epithelial-to-mesenchymal transition (EMT). Sema3E-induced EMT in ovarian endometrioid cancer cells was dependent on nuclear localization of Snail1 through activation of phosphatidylinositol-3-kinase and ERK/MAPK. RNAi-mediated knockdown of Sema3E, Plexin-D1 or Snail1 in Sema3E-expressing tumor cells resulted in compromised cell motility, concurrent reversion of EMT and diminished nuclear localization of Snail1. By contrast, forced retention of Snail1 within the nucleus of Sema3E-negative tumor cells induced EMT and enhanced cell motility. These results show that in addition to the angiogenic effects of Sema3E on tumor vascular endothelium, an EMT strategy could be exploited by Sema3E/Plexin-D1 signaling in tumor cells to promote cellular invasion/migration.
Collapse
Affiliation(s)
- Chun-Hsien Tseng
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Karl D. Murray
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Mu-Fan Jou
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Su-Ming Hsu
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwai-Jong Cheng
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
- * E-mail: (H-JC); (P-HH)
| | - Pei-Hsin Huang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (H-JC); (P-HH)
| |
Collapse
|