1
|
Han X, Zhang A, Wang P, Bi H, Ren K, Li E, Yang X, Aydemir I, Tao K, Lin J, Abdulkadir SA, Yang J, Ji P. Pleckstrin-2 Mediates the Activation of AKT in Prostate Cancer and Is Repressed by Androgen Receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1986-1996. [PMID: 39069167 PMCID: PMC11423716 DOI: 10.1016/j.ajpath.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Phosphoinositide 3-kinase (PI3K)-AKT and androgen receptor (AR) pathways are commonly activated in prostate cancers. Their reciprocal regulation makes advanced prostate cancers difficult to treat. The current study shows that pleckstrin-2 (PLEK2), a proto-oncoprotein involved in the activation and stabilization of AKT, connects these two pathways. Genetic evidence provided herein suggests that Plek2 deficiency largely reverted tumorigenesis in Pten prostate-specific knockout mice and that overexpression of PLEK2 promoted the proliferation and colony formation of prostate cancer cells in vitro. In addition, PLEK2 was negatively regulated by AR, AR transcriptionally repressed PLEK2 through binding to the PLEK2 promoter region, and overexpression of AR reduced PLEK2 expression, which inactivated AKT. Conversely, knockdown of AR in prostate cancer cells increased PLEK2 expression and activated the AKT pathway. This reciprocal inhibitory loop can be pharmacologically targeted using the PLEK2 inhibitor. PLEK2 inhibitor dose-dependently inhibited prostate cancer cell proliferation with the inactivation of AKT. Overall, the current study uncovered a crucial role of PLEK2 in prostate cancer proliferation and provided the rationale for targeting PLEK2 to treat prostate cancers.
Collapse
Affiliation(s)
- Xu Han
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Ali Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Pan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Honghao Bi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Ermin Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Ximing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Inci Aydemir
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Kara Tao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeffrey Lin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sarki A Abdulkadir
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois; Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.
| |
Collapse
|
2
|
Kuo YY, Huo C, Li CY, Chuu CP. Caffeic acid phenethyl ester suppresses the expression of androgen receptor variant 7 via inhibition of CDK1 and AKT. Cancer Gene Ther 2024; 31:807-815. [PMID: 38480977 DOI: 10.1038/s41417-024-00753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/23/2024]
Abstract
Androgen receptor (AR) splice variant 7 (AR-V7) is capable to enter nucleus and activate downstream signaling without ligand. AR-V7 assists the tumor growth, cancer metastasis, cancer stemness, and the evolvement of therapy-resistant prostate cancer (PCa). We discovered that caffeic acid phenethyl ester (CAPE) can repress the expression and downstream signaling of AR-V7 in PCa cells. CAPE blocked the gene transcription, nuclear localization, and protein abundance of AR-V7. CAPE inhibited the expression of U2AF65, SF2 and hnRNPF, which were splicing factors for AR-V7 intron. Additionally, CAPE decreased protein stability of AR-V7 and enhanced the proteosome-degradation of AR-V7. We observed that CDK1 and AKT regulated the expression and stability of AR-V7 via phosphorylation of Ser81 and Ser213, respectively. CAPE decreased the expression of CDK1 and AKT. Overexpression of CDK1 restored the abundance of AR-V7 in CAPE-treated PCa cells. Overexpression of AR-V7, AKT or CDK1 rescued the proliferation of PCa cells under CAPE treatment. Intraperitoneal injection of 10 mg/kg CAPE retarded the growth of 22Rv1 xenografts in nude mice and suppressed the protein levels of AR-V7, CDK1 and AKT in 22Rv1 xenografts. Our study provided the rationale of applying CAPE for inhibition of AR-V7 in prostate tumors.
Collapse
Affiliation(s)
- Ying-Yu Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Chieh Huo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan.
- PhD Program for Aging and Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan.
- Department of Life Sciences, National Central University, Taoyuan City, Taiwan.
| |
Collapse
|
3
|
Martin-Caraballo M. Regulation of Molecular Biomarkers Associated with the Progression of Prostate Cancer. Int J Mol Sci 2024; 25:4171. [PMID: 38673756 PMCID: PMC11050209 DOI: 10.3390/ijms25084171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Androgen receptor signaling regulates the normal and pathological growth of the prostate. In particular, the growth and survival of prostate cancer cells is initially dependent on androgen receptor signaling. Exposure to androgen deprivation therapy leads to the development of castration-resistant prostate cancer. There is a multitude of molecular and cellular changes that occur in prostate tumor cells, including the expression of neuroendocrine features and various biomarkers, which promotes the switch of cancer cells to androgen-independent growth. These biomarkers include transcription factors (TP53, REST, BRN2, INSM1, c-Myc), signaling molecules (PTEN, Aurora kinases, retinoblastoma tumor suppressor, calcium-binding proteins), and receptors (glucocorticoid, androgen receptor-variant 7), among others. It is believed that genetic modifications, therapeutic treatments, and changes in the tumor microenvironment are contributing factors to the progression of prostate cancers with significant heterogeneity in their phenotypic characteristics. However, it is not well understood how these phenotypic characteristics and molecular modifications arise under specific treatment conditions. In this work, we summarize some of the most important molecular changes associated with the progression of prostate cancers and we describe some of the factors involved in these cellular processes.
Collapse
Affiliation(s)
- Miguel Martin-Caraballo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
4
|
Miller KJ, Henry I, Maylin Z, Smith C, Arunachalam E, Pandha H, Asim M. A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Front Oncol 2023; 13:1129140. [PMID: 36937454 PMCID: PMC10014620 DOI: 10.3389/fonc.2023.1129140] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.
Collapse
Affiliation(s)
| | | | - Zoe Maylin
- *Correspondence: Zoe Maylin, ; Mohammad Asim,
| | | | | | | | | |
Collapse
|
5
|
The Crucial Role of AR-V7 in Enzalutamide-Resistance of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14194877. [PMID: 36230800 PMCID: PMC9563243 DOI: 10.3390/cancers14194877] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Androgen receptor splice variant 7 (AR-V7) has always been considered a key driver for triggering enzalutamide resistance of castration-resistant prostate cancer (CRPC). In recent years, both the homeostasis of AR-V7 protein and AR-V7’s relationship with LncRNAs have gained great attention with in-depth studies. Starting from protein stability and LncRNA, the paper discusses and summarizes the mechanisms and drugs that affect the CRPC patients’ sensitivity to enzalutamide by regulating the protein or transcriptional stability of AR-V7, hoping to provide therapeutic ideas for subsequent research to break through the CRPC therapeutic bottleneck. Abstract Prostate cancer (PCa) has the second highest incidence of malignancies occurring in men worldwide. The first-line therapy of PCa is androgen deprivation therapy (ADT). Nonetheless, most patients progress to castration-resistant prostate cancer (CRPC) after being treated by ADT. As a second-generation androgen receptor (AR) antagonist, enzalutamide (ENZ) is the current mainstay of new endocrine therapies for CRPC in clinical use. However, almost all patients develop resistance during AR antagonist therapy due to various mechanisms. At present, ENZ resistance (ENZR) has become challenging in the clinical treatment of CRPC. AR splice variant 7 (AR-V7) refers to a ligand-independent and constitutively active variant of the AR and is considered a key driver of ENZR in CRPC. In this review, we summarize the mechanisms and biological behaviors of AR-V7 in ENZR of CRPC to contribute novel insights for CRPC therapy.
Collapse
|
6
|
Zhao Y, Hu X, Yu H, Liu X, Sun H, Shao C. Alternations of gene expression in PI3K and AR pathways and DNA methylation features contribute to metastasis of prostate cancer. Cell Mol Life Sci 2022; 79:436. [PMID: 35864178 PMCID: PMC11072339 DOI: 10.1007/s00018-022-04456-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The molecular heterogeneity of prostate cancer (PCa) gives rise to distinct tumor subclasses based on epigenetic modification and gene expression signatures. Identification of clinically actionable molecular subtypes of PCa is key to improving patient outcome, and the balance between specific pathways may influence PCa outcome. It is also urgent to identify progression-related markers through cytosine-guanine (CpG) methylation in predicting metastasis for patients with PCa. METHODS We performed bioinformatics analysis of transcriptomic, and clinical data in an integrated cohort of 551 prostate samples. The datasets included retrospective The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. Two algorithms, Least Absolute Shrinkage and Selector Operation and Support Vector Machine-Recursive Feature Elimination, were used to select significant CpGs. RESULTS We found that PCa progression is more likely to occur after the third year through conditional survival (CS) analysis, and prostate-specific antigen (PSA) was a better predictor of Progression-free survival (PFS) than Gleason score (GS). Our study first demonstrated that PCa tumors have distinct expression profiles based on the expression of genes involved in androgen receptor (AR) and PI3K-AKT, which influence disease outcome. Our results also indicated that there are multiple phenotypes relevant to the AR-PI3K axis in PCa, where tumors with mixed phenotype may be more aggressive or have worse outcome than quiescent phenotype. In terms of epigenetics, we obtained CpG sites and their corresponding genes which have a good predictive value of PFS. However, various evidences showed that the predictive value of CpGs corresponding genes was much lower than GpG sites in Overall survival (OS) and PFS. CONCLUSIONS PCa classification specific to AR and PI3K pathways provides novel biological insight into previously established PCa subtypes and may help develop personalized therapies. Our results support the potential clinical utility of DNA methylation signatures to distinguish tumor metastasis and to predict prognosis and outcomes.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Xin Hu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Huimin Sun
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Chen Shao
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
7
|
Ma N, Liu H, Wu Y, Yao M, Zhang B. Inhibition of N-Acetyltransferase 10 Suppresses the Progression of Prostate Cancer through Regulation of DNA Replication. Int J Mol Sci 2022; 23:ijms23126573. [PMID: 35743017 PMCID: PMC9223896 DOI: 10.3390/ijms23126573] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer suppression through the inhibition of N-acetyltransferase 10 (NAT10) by its specific inhibitor Remodelin has been demonstrated in a variety of human cancers. Here, we report the inhibitory effects of Remodelin on prostate cancer (PCa) cells and the possible associated mechanisms. The prostate cancer cell lines VCaP, LNCaP, PC3, and DU145 were used. The in vitro proliferation, migration, and invasion of cells were measured by a cell proliferation assay, colony formation, wound healing, and Transwell assays, respectively. In vivo tumor growth was analyzed by transplantation into nude mice. The inhibition of NAT10 by Remodelin not only suppressed growth, migration, and invasion in vitro, but also the in vivo cancer growth of prostate cancer cells. The involvement of NAT10 in DNA replication was assessed by EdU labeling, DNA spreading, iPOND, and ChIP-PCR assays. The inhibition of NAT10 by Remodelin slowed DNA replication. NAT10 was detected in the prereplication complex, and it could also bind to DNA replication origins. Furthermore, the interaction between NAT10 and CDC6 was analyzed by Co-IP. The altered expression of NAT10 was measured by immunofluorescence staining and Western blotting. Remodelin markedly reduced the levels of CDC6 and AR. The expression of NAT10 could be altered under either castration or noncastration conditions, and Remodelin still suppressed the growth of in vitro-induced castration-resistant prostate cancers. The analysis of a TCGA database revealed that the overexpression of NAT10, CDC6, and MCM7 in prostate cancers were correlated with the Gleason score and node metastasis. Our data demonstrated that Remodelin, an inhibitor of NAT10, effectively inhibits the growth of prostate cancer cells under either no castration or castration conditions, likely by impairing DNA replication.
Collapse
Affiliation(s)
| | | | | | | | - Bo Zhang
- Correspondence: ; Tel.: +86-10-82802627
| |
Collapse
|
8
|
Gao Y, Ha YS, Kwon TG, Cho YC, Lee S, Lee JN. Characterization of Kinase Expression Related to Increased Migration of PC-3M Cells Using Global Comparative Phosphoproteome Analysis. Cancer Genomics Proteomics 2021; 17:543-553. [PMID: 32859632 DOI: 10.21873/cgp.20210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIM Prostate cancer (PCa) is the second-most commonly occurring cancer among men, worldwide. Although the mechanisms associated with the progression of castration-resistant prostate cancer (CRPC) have been widely studied, the mechanism associated with more distant metastases from the bone remains unknown. This study aimed to characterize potential pathogenic kinases associated with highly metastatic PCa, that may regulate phosphorylation in extensively involved and diverse signaling pathways that are associated with the development of various cancers. MATERIALS AND METHODS A mass spectrometry (MS)-based comparative phosphoproteome strategy was utilized to identify differentially expressed kinases between the highly aggressive PCa cell-lines PC-3 and PC-3M. RESULTS Among 2,968 phosphorylation sites in PCa cells, 151 differently expressed phosphoproteins were identified. Seven motifs: -SP-, -SxxE-, -PxS-, -PxSP-, -SxxK-, -SPxK-, and -SxxxxxP- were found to be highly expressed in PC-3M cells. Based on these motifs, the kinases p21-activated kinase (PAK)2, Ste20-like kinase (SLK), mammalian Ste20-like kinase (MST)4, mitogen-activated kinase kinase (MAP2K)2, and A-Raf proto-oncogene serine/threonine kinase (ARAF) were up-regulated in PC-3M cells. CONCLUSION PAK2, SLK, MST4, MAP2K2, and ARAF are kinases that are potentially associated with the progression of increased migration in PC-3M cells and may represent molecule regulators or drug targets for highly metastatic PCa therapy.
Collapse
Affiliation(s)
- Yan Gao
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Moon SJ, Jeong BC, Kim HJ, Lim JE, Kim HJ, Kwon GY, Jackman JA, Kim JH. Bruceantin targets HSP90 to overcome resistance to hormone therapy in castration-resistant prostate cancer. Am J Cancer Res 2021; 11:958-973. [PMID: 33391515 PMCID: PMC7738850 DOI: 10.7150/thno.51478] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Aberrant androgen receptor (AR) signaling via full-length AR (AR-FL) and constitutively active AR variant 7 (AR-V7) plays a key role in the development of castration-resistant prostate cancer (CRPC) and resistance to hormone therapies. Simultaneous targeting of AR-FL and AR-V7 may be a promising strategy to overcome resistance to hormone therapy. This study aimed to identify novel drug candidates co-targeting AR-FL and AR-V7 activities and elucidate their molecular mechanism of anti-CRPC activities. Methods: Using a CRPC cell-based reporter assay system, we screened a small library of antimalarial agents to explore the possibility of repositioning them for CRPC treatment and identified bruceantin (BCT) as a potent anti-CRPC drug candidate. A series of cell-based, molecular, biochemical, and in vivo approaches were performed to evaluate the therapeutic potential and molecular mechanism of BCT in CRPC. These approaches include reporter gene assays, cell proliferation, RNA-seq, qRT-PCR, mouse xenografts, co-immunoprecipitation, GST pull-down, immobilized BCT pull-down, molecular modeling, and bioinformatic analyses. Results: We identified BCT as a highly potent inhibitor co-targeting AR-FL and AR-V7 activity. BCT inhibits the transcriptional activity of AR-FL/AR-V7 and downregulates their target genes in CRPC cells. In addition, BCT efficiently suppresses tumor growth and metastasis of CRPC cells. Mechanistically, BCT disrupts the interaction of HSP90 with AR-FL/AR-V7 by directly binding to HSP90 and inhibits HSP90 chaperone function, leading to degradation of AR-FL/AR-V7 through the ubiquitin-proteasome system. Clinically, HSP90 expression is upregulated and correlated with AR/AR-V7 levels in CRPC. Conclusion: Our findings suggest that BCT could serve as a promising therapeutic candidate against CRPC and highlight the potential benefit of targeting AR-FL/AR-V7-HSP90 axis to overcome resistance caused by aberrant AR-FL/AR-V7 signaling.
Collapse
|
10
|
Chen Y, Lan T. Molecular Origin, Expression Regulation, and Biological Function of Androgen Receptor Splicing Variant 7 in Prostate Cancer. Urol Int 2020; 105:337-353. [PMID: 32957106 DOI: 10.1159/000510124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
The problem of resistance to therapy in prostate cancer (PCa) is multifaceted. Key determinants of drug resistance include tumor burden and growth kinetics, tumor heterogeneity, physical barriers, immune system and microenvironment, undruggable cancer drivers, and consequences of therapeutic pressures. With regard to the fundamental importance of the androgen receptor (AR) in all stages of PCa from tumorigenesis to progression, AR is postulated to have a continued critical role in castration-resistant prostate cancer (CRPC). Suppression of AR signaling mediated by the full-length AR (AR-FL) is the therapeutic goal of all AR-directed therapies. However, AR-targeting agents ultimately lead to AR aberrations that promote PCa progression and drug resistance. Among these AR aberrations, androgen receptor variant 7 (AR-V7) is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-AR therapies in CRPC. Meanwhile, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. In the present review of the current literature, we have summarized the origin, alternative splicing, expression induction, protein conformation, interaction with coregulators, relationship with AR-FL, transcriptional activity, and biological function of AR-V7 in PCa development and therapeutic resistance. We hope this review will help further understand the molecular origin, expression regulation, and role of AR-V7 in the progression of PCa and provide insight into the design of novel selective inhibitors of AR-V7 in PCa treatment.
Collapse
Affiliation(s)
- Ye Chen
- Department of Surgery and Anesthesiology, Joint Logistic Support 940 Hospital of CPLA, Lanzhou, China
| | - Tian Lan
- Department of Urology, Joint Logistic Support 940 Hospital of CPLA, Lanzhou, China,
| |
Collapse
|
11
|
Shao C, Yu B, Liu Y. Androgen receptor splicing variant 7: Beyond being a constitutively active variant. Life Sci 2019; 234:116768. [PMID: 31445027 DOI: 10.1016/j.lfs.2019.116768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Abstract
In prostate cancer development, the androgen receptor (AR) signaling plays a crucial role during both formation of early prostate lesions and progression to the lethal, incurable castration resistant stage. Accordingly, numerous approaches have been developed to inhibit AR activity including androgen deprivation therapy, application of the AR antagonists as well as the use of taxanes. However, these treatments, although effective initially, resistance inevitably occur for most of the patients within several years and limiting the therapeutic efficacy. Of note, alterations and reactivation of the AR signaling pathway have been demonstrated as the major reasons for the observed resistance. Accumulating evidences have suggested that synthesis of AR splicing variants, in particular, the constitutively active AR-V7, is one of the most important mechanisms that contribute to the abnormal AR signaling. In addition, clinical data also highlight the potential of using AR-V7 as a predictive biomarker and a therapeutic target in metastatic castration resistant prostate cancer (mCRPC). In this review, we summarize the recent findings concerning the specific role of AR-V7 in CRPC progression, drug resistance and its potential value in clinical assessment.
Collapse
Affiliation(s)
- Chen Shao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Bingbing Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
12
|
Shiota M, Ushijima M, Imada K, Kashiwagi E, Takeuchi A, Inokuchi J, Tatsugami K, Kajioka S, Eto M. Cigarette smoking augments androgen receptor activity and promotes resistance to antiandrogen therapy. Prostate 2019; 79:1147-1155. [PMID: 31077419 DOI: 10.1002/pros.23828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cigarette smoking is associated with worse outcomes in prostate cancer, whose growth is dependent on androgen receptor (AR) signaling. We aimed to elucidate the biological effect of cigarette smoking on AR signaling and its clinical influence on oncological outcome. METHODS Gene expression levels after exposure to tobacco smoke condensate (TSC) were evaluated by quantitative real-time polymerase chain reaction and Western blot analysis in prostate cancer cells. Cellular sensitivities to enzalutamide and docetaxel after TSC exposure were evaluated using a prostate cancer cell proliferation assay. Prognosis was compared between current smokers and nonsmokers when treated with AR-axis-targeting (ARAT) agent enzalutamide and docetaxel. RESULTS Expression of AR variants as well as prostate-specific antigen was augmented after TSC exposure, which occurred after Akt phosphorylation. These inductions were suppressed by Akt inhibitor LY294002 as well as antioxidant N-acetylcysteine. Consistently, TSC exposure augmented cellular resistance to enzalutamide. In clinical data, cigarette smoking was associated with worse progression-free survival and cancer-specific survival when patients with prostate cancer were treated with ARAT agents but not docetaxel. CONCLUSIONS It was suggested that cigarette smoking leads to detrimental oncological outcome when prostate cancer patients are treated with ARAT agents through induction of aberrant AR signaling. Accordingly, we recommend that patients with advanced prostate cancer should refrain from cigarette smoking.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Miho Ushijima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenjiro Imada
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsunori Tatsugami
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Yan Y, Huang H. Interplay Among PI3K/AKT, PTEN/FOXO and AR Signaling in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:319-331. [DOI: 10.1007/978-3-030-32656-2_14] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Hillebrand AC, Pizzolato LS, Branchini G, Brum IS. Androgenic modulation of AR-Vs. Endocrine 2018; 62:477-486. [PMID: 30027434 DOI: 10.1007/s12020-018-1682-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE The importance of androgen receptor variants (AR-Vs) is recognized in prostate cancer. AR-Vs have been the focus of many studies. Expression of AR-Vs has been proposed as a biomarker for resistance to androgen deprivation therapy for metastatic disease. Herein, we show dynamic changes in AR-Vs expression in response to androgen modulation. METHODS The C4-2B cell line was exposed to low (10-13 M) and high (10-8 M) androgen (dihydrotestosterone, DHT) levels, with or without flutamide. mRNA and protein expression levels were assessed by qPCR and immunohistochemistry, respectively. RESULTS We demonstrated that high levels of DHT downregulate AR-FL and AR-Vs. Even though AR-Vs did not present ligand-binding domain, thus were not capable of binding to DHT, they present dynamic changes under androgen treatment. Treatment with flutamide alone or in association with low levels of DHT stimulates growth of prostatic cells. CONCLUSIONS Importantly, we provide evidence that AR-Vs respond differently to androgenic modulation. These findings have implications for a better understanding of the role of AR-Vs in prostate carcinogenesis.
Collapse
Affiliation(s)
- Ana Caroline Hillebrand
- Laboratory of Molecular Endocrine and Tumoral Biology, Department of Physiology, Institute of Basic Sciences of Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Lolita Schneider Pizzolato
- Laboratory of Molecular Endocrine and Tumoral Biology, Department of Physiology, Institute of Basic Sciences of Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Gisele Branchini
- Department of Basic Sciences of Health, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil
| | - Ilma Simoni Brum
- Laboratory of Molecular Endocrine and Tumoral Biology, Department of Physiology, Institute of Basic Sciences of Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil.
- Laboratory of Molecular Obstetrics and Gynecology, Experimental Research Center, Department of Obstetrics and Gynecology, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-903, Brazil.
| |
Collapse
|
15
|
Zhang M, Suarez E, Vasquez JL, Nathanson L, Peterson LE, Rajapakshe K, Basil P, Weigel NL, Coarfa C, Agoulnik IU. Inositol polyphosphate 4-phosphatase type II regulation of androgen receptor activity. Oncogene 2018; 38:1121-1135. [PMID: 30228349 PMCID: PMC6377303 DOI: 10.1038/s41388-018-0498-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/05/2018] [Accepted: 08/24/2018] [Indexed: 11/18/2022]
Abstract
Activation and transcriptional reprogramming of AR in advanced prostate cancer frequently coincides with the loss of two tumor suppressors, INPP4B and PTEN, which are highly expressed in human and mouse prostate epithelium. While regulation of AR signaling by PTEN has been described by multiple groups, it is not known whether the loss of INPP4B affects AR activity. Using prostate cancer cell lines we showed that INPP4B regulates AR transcriptional activity and the oncogenic signaling pathways Akt and PKC. Analysis of gene expression in prostate cancer patient cohorts showed a positive correlation between INPP4B expression and both AR mRNA levels and AR transcriptional output. Using an Inpp4b-/- mouse model, we demonstrated that INPP4B suppresses Akt and PKC signaling pathways and modulates AR transcriptional activity in normal mouse prostate. Remarkably, PTEN protein levels and phosphorylation of S380 were the same in Inpp4b-/- and WT males, suggesting that the observed changes were due exclusively to the loss of INPP4B. Our data show that INPP4B modulates AR activity in normal prostate and its loss contributes to the AR-dependent transcriptional profile in prostate cancer.
Collapse
Affiliation(s)
- Manqi Zhang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Egla Suarez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Judy L Vasquez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Leif E Peterson
- Center for Biostatistics, Houston Methodist Research Institute, Houston, TX, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Paul Basil
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nancy L Weigel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Biomolecular Science Institute, School of Integrated Science and Humanity, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
16
|
Del Re M, Crucitta S, Restante G, Rofi E, Arrigoni E, Biasco E, Sbrana A, Coppi E, Galli L, Bracarda S, Santini D, Danesi R. Pharmacogenetics of androgen signaling in prostate cancer: Focus on castration resistance and predictive biomarkers of response to treatment. Crit Rev Oncol Hematol 2018; 125:51-59. [DOI: 10.1016/j.critrevonc.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/24/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
|
17
|
Abstract
INTRODUCTION The androgen receptor variant AR-V7 is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-androgen receptor (AR) therapies in castration-resistant prostate cancer (CRPC). Accordingly, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. Areas covered: We review proposed mechanisms of drug resistance in relation to AR-V7 status, the mechanisms of generation of AR-V7, and its transcriptome, cistrome, and interactome. Pharmacological agents that interfere with these processes are being developed to counteract pan AR and AR-V7-specific signaling. Also, we address the current status of the preclinical and clinical studies targeting AR-V7 signaling. Expert opinion: AR-V7 is considered a true therapeutic target, however, it remains to be determined if AR-V7 is a principal driver or merely a bystander requiring heterodimerization with co-expressed full-length AR or other variants to drive CRPC progression. While untangling AR-V7 biology, multiple strategies are being developed to counteract drug resistance, including selective blockade of AR-V7 signaling as well as inhibition of pan-AR signaling. Ideally anti-AR therapies will be combined with agents preventing activation and enrichment of AR negative tumor cells that are otherwise depressed by AR activity axis.
Collapse
Affiliation(s)
- Takuma Uo
- a Department of Medicine , University of Washington , Seattle , WA , USA
| | - Stephen R Plymate
- a Department of Medicine , University of Washington , Seattle , WA , USA.,b Geriatrics Research Education and Clinical Center VA Puget Sound Health Care System , Seattle , WA , USA
| | - Cynthia C Sprenger
- a Department of Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
18
|
Stossi F, Dandekar RD, Bolt MJ, Newberg JY, Mancini MG, Kaushik AK, Putluri V, Sreekumar A, Mancini MA. High throughput microscopy identifies bisphenol AP, a bisphenol A analog, as a novel AR down-regulator. Oncotarget 2017; 7:16962-74. [PMID: 26918604 PMCID: PMC4941363 DOI: 10.18632/oncotarget.7655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/17/2016] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer remains a deadly disease especially when patients become resistant to drugs that target the Androgen Receptor (AR) ligand binding domain. At this stage, patients develop recurring castrate-resistant prostate cancers (CRPCs). Interestingly, CRPC tumors maintain dependency on AR for growth; moreover, in CRPCs, constitutively active AR splice variants (e.g., AR-V7) begin to be expressed at higher levels. These splice variants lack the ligand binding domain and are rendered insensitive to current endocrine therapies. Thus, it is of paramount importance to understand what regulates the expression of AR and its splice variants to identify new therapeutic strategies in CRPCs. Here, we used high throughput microscopy and quantitative image analysis to evaluate effects of selected endocrine disruptors on AR levels in multiple breast and prostate cancer cell lines. Bisphenol AP (BPAP), which is used in chemical and medical industries, was identified as a down-regulator of both full length AR and the AR-V7 splice variant. We validated its activity by performing time-course, dose-response, Western blot and qPCR analyses. BPAP also reduced the percent of cells in S phase, which was accompanied by a ~60% loss in cell numbers and colony formation in anchorage-independent growth assays. Moreover, it affected mitochondria size and cell metabolism. In conclusion, our high content analysis-based screening platform was used to classify the effect of compounds on endogenous ARs, and identified BPAP as being capable of causing AR (both full-length and variants) down-regulation, cell cycle arrest and metabolic alterations in CRPC cell lines.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Radhika D Dandekar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justin Y Newberg
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maureen G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akash K Kaushik
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Schreyer E, Barthélémy P, Cottard F, Ould Madi-Berthélémy P, Schaff-Wendling F, Kurtz JE, Céraline J. [Androgen receptor variants in prostate cancer]. Med Sci (Paris) 2017; 33:758-764. [PMID: 28945566 DOI: 10.1051/medsci/20173308021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer is a public health concern as it currently represents the most frequent malignancy in men in Europe. Progression of this hormone-dependent cancer is driven by androgens. Thus, the most common treatment for patients with advanced prostate cancer consists in an androgen ablation by castration therapy. However, the majority of patients relapses and develops a castration-resistant prostate cancer. This failure of androgen deprivation is related to the emergence of mutant and splice variants of the androgen receptor. Indeed, androgen receptor variants are ligand-independent, constitutively active and thus able to induce resistance to castration. This review focuses on AR variants signaling pathways and their role in resistance to castration and prostate cancer progression.
Collapse
Affiliation(s)
- Edwige Schreyer
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | - Philippe Barthélémy
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France - Service d'oncologie et d'hématologie, Hôpitaux universitaires de Strasbourg, 67000 Strasbourg, France
| | - Félicie Cottard
- Department of urology, Center for Clinical research, University Freiburg Medical Center, Breisacherstrasse 66, D-79106 Freiburg, Allemagne
| | - Pauline Ould Madi-Berthélémy
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | - Frédérique Schaff-Wendling
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France - Service d'oncologie et d'hématologie, Hôpitaux universitaires de Strasbourg, 67000 Strasbourg, France
| | - Jean-Emmanuel Kurtz
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France - Service d'oncologie et d'hématologie, Hôpitaux universitaires de Strasbourg, 67000 Strasbourg, France
| | - Jocelyn Céraline
- Université de Strasbourg, Inserm, VSDSC UMR-S 1113, IGBMC, 1, rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France - Service d'oncologie et d'hématologie, Hôpitaux universitaires de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
20
|
Szafran AT, Stephan C, Bolt M, Mancini MG, Marcelli M, Mancini MA. High-Content Screening Identifies Src Family Kinases as Potential Regulators of AR-V7 Expression and Androgen-Independent Cell Growth. Prostate 2017; 77:82-93. [PMID: 27699828 PMCID: PMC5956900 DOI: 10.1002/pros.23251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/28/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. METHODS We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. RESULTS Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous-AR-V7-expressing prostate cancer cell lines and also overcame bicalutamide resistance observed in the 22RV1 cell line. CONCLUSIONS SFKs, especially Src and Fyn, may be important upstream regulators of AR-V7 expression and represent promising targets in a subset of CRPCs expressing high levels of AR-V7. Prostate 77:82-93, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Cliff Stephan
- Texas A&M University Health Science Center Institute for Bioscience and Technology, Houston, TX 77030
| | - Michael Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Marco Marcelli
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Department of Medicine, Baylor College of Medicine, Houston TX 77030 (USA)
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston TX 77030 (USA)
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 701304
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 701304
| |
Collapse
|
21
|
Cao S, Zhan Y, Dong Y. Emerging data on androgen receptor splice variants in prostate cancer. Endocr Relat Cancer 2016; 23:T199-T210. [PMID: 27702752 PMCID: PMC5107136 DOI: 10.1530/erc-16-0298] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022]
Abstract
Androgen receptor splice variants are alternatively spliced variants of androgen receptor, which are C-terminally truncated and lack the canonical ligand-binding domain. Accumulating evidence has indicated a significant role of androgen receptor splice variants in mediating resistance of castration-resistant prostate cancer to current therapies and in predicting therapeutic responses. As such, there is an urgent need to target androgen receptor splicing variants for more effective treatment of castration-resistant prostate cancer. Identification of precise and critical targeting points to deactivate androgen receptor splicing variants relies on a deep understanding of how they are generated and the mechanisms of their action. In this review, we will focus on the emerging data on their generation, clinical significance and mechanisms of action as well as the therapeutic influence of these findings.
Collapse
Affiliation(s)
- Subing Cao
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Yang Zhan
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Yan Dong
- College of Life SciencesJilin University, Changchun, Jilin, China
- Department of Structural and Cellular BiologyTulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| |
Collapse
|
22
|
Abstract
Prostate cancer (PCa) is one of the most lethal cancers in western countries. Androgen receptor (AR) signaling pathway plays a key role in PCa progression. Despite the initial effectiveness of androgen deprivation therapy (ADT)for treatment of patients with advanced PCa, most of them will develop resistance to ADT and progress to metastatic castration resistant prostate cancer (mCRPC). Constitutively transcriptional activated AR splice variants (AR-Vs) have emerged as critical players in the development and progression of mCRPC. Among AR-Vs identified to date, AR-V7 (a.k.a. AR3) is one of the most abundant and frequently found in both PCa cell lines and in human prostate tissues. Most of functional studies have been focused on AR-V7/AR3 and revealed its role in regulation of survival, growth, differentiation and migration in prostate cells. In this review, we will summarize our current understanding of regulation of expression and activity of AR-Vs in mCRPC.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yun Qiu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Diving Into Cabazitaxel's Mode of Action: More Than a Taxane for the Treatment of Castration-Resistant Prostate Cancer Patients. Clin Genitourin Cancer 2016; 14:265-70. [DOI: 10.1016/j.clgc.2015.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 11/18/2022]
|
24
|
Caffo O, Maines F, Veccia A, Kinspergher S, Galligioni E. Splice Variants of Androgen Receptor and Prostate Cancer. Oncol Rev 2016; 10:297. [PMID: 27471583 PMCID: PMC4943095 DOI: 10.4081/oncol.2016.297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/13/2016] [Indexed: 11/23/2022] Open
Abstract
Over the last ten years, two new-generation hormonal drugs and two chemotherapeutic agents have been approved for the treatment of metastatic castration-resistant prostate cancer. Unfortunately, some patients have primary resistance to them and the others eventually develop secondary resistance. It has recently been suggested that the presence of androgen receptor splice variants plays a leading role in the primary and secondary resistance to the new hormonal drugs, whereas their presence seem to have only a partial effect on the activity of the chemotherapeutic agents. The aim of this paper is to review the published data concerning the role of androgen receptor splice variants in prostate cancer biology, and their potential use as biomarkers when making therapeutic decisions.
Collapse
Affiliation(s)
- Orazio Caffo
- Medical Oncology Department, Santa Chiara Hospital, Trento, Italy
| | | | | | | | | |
Collapse
|
25
|
Schweizer MT, Plymate SR. Targeting constitutively active androgen receptor splice variants in castration resistant prostate cancer. Expert Opin Ther Targets 2016; 20:903-6. [PMID: 26927611 DOI: 10.1517/14728222.2016.1159676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- M T Schweizer
- a Department of Medicine, Division of Medical Oncology , University of Washington , Seattle , WA , USA.,b Fred Hutchinson Cancer Research Institute, Clinical Research Division , Seattle , WA , USA
| | - S R Plymate
- c Department of Medicine and GRECC VAPSHCE , University of Washington , Seattle , WA , USA
| |
Collapse
|
26
|
CUDC-101, a Novel Inhibitor of Full-Length Androgen Receptor (flAR) and Androgen Receptor Variant 7 (AR-V7) Activity: Mechanism of Action and In Vivo Efficacy. Discov Oncol 2016; 7:196-210. [PMID: 26957440 DOI: 10.1007/s12672-016-0257-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/12/2016] [Indexed: 12/29/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an androgen receptor (AR)-dependent disease expected to cause the death of more than 27,000 Americans in 2015. There are only a few available treatments for CRPC, making the discovery of new drugs an urgent need. We report that CUDC-101 (an inhibitor od HER2/NEU, EGFR and HDAC) inhibits both the full length AR (flAR) and the AR variant AR-V7. This observation prompted experiments to discover which of the known activities of CUDC-101 is responsible for the inhibition of flAR/AR-V7 signaling. We used pharmacologic and genetic approaches, and found that the effect of CUDC-101 on flAR and AR-V7 was duplicated only by other HDAC inhibitors, or by silencing the HDAC isoforms HDAC5 and HDAC10. We observed that CUDC-101 treatment or AR-V7 silencing by RNAi equally reduced transcription of the AR-V7 target gene, PSA, without affecting viability of 22Rv1 cells. However, when cellular proliferation was used as an end point, CUDC-101 was more effective than AR-V7 silencing, raising the prospect that CUDC-101 has additional targets beside AR-V7. In support of this, we found that CUDC-101 increased the expression of the cyclin-dependent kinase inhibitor p21, and decreased that of the oncogene HER2/NEU. To determine if CUDC-101 reduces growth in a xenograft model of prostate cancer, this drug was given for 14 days to castrated male SCID mice inoculated with 22Rv1 cells. Compared to vehicle, CUDC-101 reduced xenograft growth in a statistically significant way, and without macroscopic side effects. These studies demonstrate that CUDC-101 inhibits wtAR and AR-V7 activity and growth of 22Rv1 cells in vitro and in vivo. These effects result from the ability of CUDC-101 to target not only HDAC signaling, which was associated with decreased flAR and AR-V7 activity, but multiple additional oncogenic pathways. These observations raise the possibility that treatment of CRPC may be achieved by using similarly multi-targeted approaches.
Collapse
|
27
|
Hickey TE, Irvine CM, Dvinge H, Tarulli GA, Hanson AR, Ryan NK, Pickering MA, Birrell SN, Hu DG, Mackenzie PI, Russell R, Caldas C, Raj GV, Dehm SM, Plymate SR, Bradley RK, Tilley WD, Selth LA. Expression of androgen receptor splice variants in clinical breast cancers. Oncotarget 2015; 6:44728-44. [PMID: 26554309 PMCID: PMC4792588 DOI: 10.18632/oncotarget.6296] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
The importance of androgen receptor (AR) signaling is increasingly being recognized in breast cancer, which has elicited clinical trials aimed at assessing the efficacy of androgen deprivation therapy (ADT) for metastatic disease. In prostate cancer, resistance to ADT is frequently associated with the emergence of androgen-independent splice variants of the AR (AR variants, AR-Vs) that lack the LBD and are constitutively active. Women with breast cancer may be prone to a similar phenomenon. Herein, we show that in addition to the prototypical transcript, the AR gene produces a diverse range of AR-V transcripts in primary breast tumors. The most frequently and highly expressed variant was AR-V7 (exons 1/2/3/CE3), which was detectable at the mRNA level in > 50% of all breast cancers and at the protein level in a subset of ERα-negative tumors. Functionally, AR-V7 is a constitutively active and ADT-resistant transcription factor that promotes growth and regulates a transcriptional program distinct from AR in ERα-negative breast cancer cells. Importantly, we provide ex vivo evidence that AR-V7 is upregulated by the AR antagonist enzalutamide in primary breast tumors. These findings have implications for treatment response in the ongoing clinical trials of ADT in breast cancer.
Collapse
MESH Headings
- Androgen Antagonists/pharmacology
- Antineoplastic Agents, Hormonal/pharmacology
- Benzamides
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Databases, Genetic
- Drug Resistance, Neoplasm
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- MCF-7 Cells
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Protein Isoforms
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Androgen/drug effects
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Theresa E. Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, The University of Adelaide, SA 5005, Australia
| | - Connie M. Irvine
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, The University of Adelaide, SA 5005, Australia
| | - Heidi Dvinge
- Computational Biology Program, Public Health Sciences Division, Seattle, WA 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gerard A. Tarulli
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, The University of Adelaide, SA 5005, Australia
| | - Adrienne R. Hanson
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, The University of Adelaide, SA 5005, Australia
| | - Natalie K. Ryan
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, The University of Adelaide, SA 5005, Australia
| | - Marie A. Pickering
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, The University of Adelaide, SA 5005, Australia
| | - Stephen N. Birrell
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, The University of Adelaide, SA 5005, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Roslin Russell
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Ganesh V. Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55905, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55905, USA
| | - Stephen R. Plymate
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98109, USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Seattle, WA 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Wayne D. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, The University of Adelaide, SA 5005, Australia
- Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, SA 5005, Australia
| | - Luke A. Selth
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, The University of Adelaide, SA 5005, Australia
- Freemasons Foundation Centre for Men's Health, School of Medicine, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
28
|
Modena A, Ciccarese C, Fantinel E, Bimbatti D, Tortora G, Massari F. Metastatic castration-resistant prostate cancer: targeting the mechanisms of resistance to abiraterone acetate and enzalutamide. Expert Rev Anticancer Ther 2015; 15:1037-48. [DOI: 10.1586/14737140.2015.1063423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Maughan BL, Antonarakis ES. Androgen pathway resistance in prostate cancer and therapeutic implications. Expert Opin Pharmacother 2015; 16:1521-37. [PMID: 26067250 PMCID: PMC4696015 DOI: 10.1517/14656566.2015.1055249] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Metastatic prostate cancer is an incurable disease that is treated with a variety of hormonal therapies targeting various nodes of the androgen receptor (AR) pathway. Invariably patients develop resistance and become castration resistant. Common treatments for castration-resistant disease include novel hormonal therapies, such as abiraterone and enzalutamide, chemotherapy, immunotherapy and radiopharmaceuticals. As this disease generally remains incurable, understanding the molecular underpinnings of resistance pathways is critical in designing therapeutic strategies to delay or overcome such resistance. AREAS COVERED This review will explore the resistance mechanisms relevant to hormonal agents, such as AR-V7 expression and others, as well as discussing new approaches being developed to treat patients with castration-resistant prostate cancer that take advantage of these new insights. A literature search was performed to identify all published clinical trials related to androgen therapy mechanisms of drug resistance in metastatic castration-resistant prostate cancer. EXPERT OPINION Androgen therapy resistance mechanisms are varied, and include modification of all nodes in the androgen signaling pathway. The optimal treatment for men with relapsed metastatic castration-resistant prostate cancer is uncertain at this time. The authors recommend using available clinical data to guide treatment decision making until more specific biomarkers are clinically available.
Collapse
Affiliation(s)
- Benjamin L Maughan
- Medical Oncology Fellow, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, 1650 Orleans St. CRB1 186, Baltimore, MD USA
| | - Emmanuel S Antonarakis
- Assistant Professor of Oncology, Assistant Professor of Urology, Johns Hopkins Sidney Kimmel, Comprehensive, Cancer Center, 1650 Orleans St. CRB1 186, Baltimore, MD, USA, Tel: + 410 502 7528; Fax: + 410 614 8397
| |
Collapse
|
30
|
Abstract
The androgen receptor (AR), ligand-induced transcription factor, is expressed in primary prostate cancer and in metastases. AR regulates multiple cellular events, proliferation, apoptosis, migration, invasion, and differentiation. Its expression in prostate cancer cells is regulated by steroid and peptide hormones. AR downregulation by various compounds which are contained in fruits and vegetables is considered a chemopreventive strategy for prostate cancer. There is a bidirectional interaction between the AR and micro-RNA (miRNA) in prostate cancer; androgens may upregulate or downregulate the selected miRNA, whereas the AR itself is a target of miRNA. AR mutations have been discovered in prostate cancer, and their incidence may increase with tumor progression. AR mutations and increased expression of selected coactivators contribute to the acquisition of agonistic properties of anti-androgens. Expression of some of the coactivators is enhanced during androgen ablation. AR activity is regulated by peptides such as cytokines or growth factors which reduce the concentration of androgen required for maximal stimulation of the receptor. In prostate cancer, variant ARs which exhibit constitutive activity were detected. Novel therapies which interfere with intracrine synthesis of androgens or inhibit nuclear translocation of the AR have been introduced in the clinic.
Collapse
Affiliation(s)
- Zoran Culig
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria,
| | | |
Collapse
|
31
|
Farooqi AA, Sarkar FH. Overview on the complexity of androgen receptor-targeted therapy for prostate cancer. Cancer Cell Int 2015; 15:7. [PMID: 25705125 PMCID: PMC4336517 DOI: 10.1186/s12935-014-0153-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022] Open
Abstract
In the past decades, the field of prostate cancer (PCa) biology has developed exponentially and paralleled with that has been the growing interest in translation of laboratory findings into clinical practice. Based on overwhelming evidence of high impact research findings which support the underlying cause of insufficient drug efficacy in patients progressing on standard androgen deprivation therapy (ADT) is due to persistent activation of the androgen receptor (AR) signaling axis. Therefore, newer agents must be discovered especially because newer ADT such as abiraterone and enzalutamide are becoming ineffective due to rapid development of resistance to these agents. High-throughput technologies are generating massive and highly dimensional genetic variation data that has helped in developing a better understanding of the dynamic repertoire of AR and AR variants. Full length AR protein and its variants modulate a sophisticated regulatory system to orchestrate cellular responses. We partition this multicomponent review into subsections addressing the underlying mechanisms of resistance to recent therapeutics, positive and negative regulators of AR signaling cascade, and how SUMOylation modulates AR induced transcriptional activity. Experimentally verified findings obtained from cell culture and preclinical studies focusing on the potential of natural agents in inhibiting mRNA/protein levels of AR, nuclear accumulation and enhanced nuclear export of AR are also discussed. We also provide spotlight on molecular basis of enzalutamide resistance with an overview of the strategies opted to overcome such resistance. AR variants are comprehensively described and different mechanisms that regulate AR variant expression are also discussed. Reconceptualization of phenotype- and genotype-driven studies have convincingly revealed that drug induced resistance is a major stumbling block in standardization of therapy. Therefore, we summarize succinctly the knowledge of drug resistance especially to ADT and potential avenues to overcome such resistance for improving the treatment outcome of PCa patients.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- />Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, 35 Km Ferozepur Road, Lahore, Pakistan
| | - Fazlul H Sarkar
- />Departments of Pathology and Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC, 4100 JohnR Street, Detroit, MI 48201 USA
| |
Collapse
|
32
|
Liu G, Sprenger C, Wu PJ, Sun S, Uo T, Haugk K, Epilepsia KS, Plymate S. MED1 mediates androgen receptor splice variant induced gene expression in the absence of ligand. Oncotarget 2015; 6:288-304. [PMID: 25481872 PMCID: PMC4381595 DOI: 10.18632/oncotarget.2672] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/02/2014] [Indexed: 11/25/2022] Open
Abstract
The appearance of constitutively active androgen receptor splice variants (AR-Vs) has been proposed as one of the causes of castration-resistant prostate cancer (CRPC). However, the underlying mechanism of AR-Vs in CRPC transcriptional regulation has not been defined. A distinct transcriptome enriched with cell cycle genes, e.g. UBE2C, has been associated with AR-Vs, which indicates the possibility of an altered transcriptional mechanism when compared to full-length wild-type AR (ARfl). Importantly, a recent study reported the critical role of p-MED1 in enhancing UBE2C expression through a locus looping pattern, which only occurs in CRPC but not in androgen-dependent prostate cancer (ADPC). To investigate the potential correlation between AR-V and MED1, in the present study we performed protein co-immunoprecipitation, chromatin immunoprecipitation, and cell proliferation assays and found that MED1 is necessary for ARv567es induced UBE2C up-regulation and subsequent prostate cancer cell growth. Furthermore, p-MED1 is bound to ARv567es independent of full-length AR; p-MED1 has higher recruitment to UBE2C promoter and enhancer regions in the presence of ARv567es. Our data indicate that p-MED1 serves as a key mediator in ARv567es induced gene expression and suggests a mechanism by which AR-Vs promote the development and progression of CRPC.
Collapse
Affiliation(s)
- Gang Liu
- Department of Medicine, University of Washington, Seattle 98104, WA
| | - Cynthia Sprenger
- Department of Medicine, University of Washington, Seattle 98104, WA
- Veteran Affairs Puget Sound Health Care System, Seattle 98104, WA
| | - Pin-Jou Wu
- Department of Medicine, University of Washington, Seattle 98104, WA
| | - Shihua Sun
- Department of Medicine, University of Washington, Seattle 98104, WA
| | - Takuma Uo
- Department of Medicine, University of Washington, Seattle 98104, WA
| | - Kathleen Haugk
- Veteran Affairs Puget Sound Health Care System, Seattle 98104, WA
| | | | - Stephen Plymate
- Department of Medicine, University of Washington, Seattle 98104, WA
- Veteran Affairs Puget Sound Health Care System, Seattle 98104, WA
| |
Collapse
|
33
|
Szafran AT, Mancini MA. The myImageAnalysis project: a web-based application for high-content screening. Assay Drug Dev Technol 2014; 12:87-99. [PMID: 24547743 DOI: 10.1089/adt.2013.532] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A major challenge faced by screening centers developing image-based assays is the wide range of assays needed compared to the limited resources that are available to effectively analyze and manage them. To overcome this limitation, we have developed the web-based myImageAnalysis (mIA) application, integrated with an open database connectivity compliant database and powered by Pipeline Pilot (PLP) that incorporates dataset tracking, scheduling and archiving, image analysis, and data reporting. For system administrators, mIA provides automated methods for managing and archiving data. For the biologist, this application allows those without any programming or image analysis experience to quickly develop, validate, and share results of complex image-based assays. Further, the structure of the application within PLP allows those with experience in PLP programming to easily add additional analysis tools as required. The tools within mIA allow users to assess basic (cell count, protein per cell, protein subcellular localization) and more advanced (engineered cell lines analysis, cell toxicity) biological image-based assays that employ advanced statistics and provides key assay performance metrics.
Collapse
Affiliation(s)
- Adam T Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine , Houston, Texas
| | | |
Collapse
|
34
|
Ware KE, Garcia-Blanco MA, Armstrong AJ, Dehm SM. Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocr Relat Cancer 2014; 21:T87-T103. [PMID: 24859991 PMCID: PMC4277180 DOI: 10.1530/erc-13-0470] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As prostate cancer (PCa) progresses to the lethal castration resistant and metastatic form, genetic and epigenetic adaptation, clonal selection, and evolution of the tumor microenvironment contribute to the emergence of unique biological characteristics under the selective pressure of external stresses. These stresses include the therapies applied in the clinic or laboratory and the exposures of cancers to hormonal, paracrine, or autocrine stimuli in the context of the tumor micro- and macro-environment. The androgen receptor (AR) is a key gene involved in PCa etiology and oncogenesis, including disease development, progression, response to initial hormonal therapies, and subsequent resistance to hormonal therapies. Alterations in the AR signaling pathway have been observed in certain selection contexts and contribute to the resistance to agents that target hormonal regulation of the AR, including standard androgen deprivation therapy, antiandrogens such as enzalutamide, and androgen synthesis inhibition with abiraterone acetate. One such resistance mechanism is the synthesis of constitutively active AR variants lacking the canonical ligand-binding domain. This review focuses on the etiology, characterization, biological properties, and emerging data contributing to the clinical characteristics of AR variants, and suggests approaches to full-length AR and AR variant biomarker validation, assessment, and systemic targeting in the clinic.
Collapse
Affiliation(s)
- Kathryn E Ware
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| | - Mariano A Garcia-Blanco
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USADepartments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew J Armstrong
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USADepartments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| | - Scott M Dehm
- Departments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USADepartments of Molecular Genetics and MedicineDuke University, 213 Research Dr, 0045 CARL Building, Durham, North Carolina 27710, USADepartment of MedicineDuke Cancer Institute, Duke University, Durham, North Carolina, USAMasonic Cancer CenterUniversity of Minnesota Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USADepartment of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
35
|
Zhao Y, Tindall DJ, Huang H. Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer. Int J Biol Sci 2014; 10:614-9. [PMID: 24948874 PMCID: PMC4062954 DOI: 10.7150/ijbs.8389] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/22/2014] [Indexed: 12/18/2022] Open
Abstract
Androgens and the androgen receptor (AR) are essential for growth and differentiation of the normal prostate gland as well as proliferation and survival of prostate cancer (PCa). Increasing evidence suggests that reactivation of the AR plays a pivotal role in disease progression to castration-resistant PCa (CRPC). Forkhead box (FOX) factors exert two distinct effects on AR function in PCa. The A-class of FOX proteins, especially FOXA1, functions as a pioneer factor to facilitate AR transactivation and PCa growth. In contrast, the O-class of FOX proteins such as FOXO1 and FOXO3, which are downstream effectors of the PTEN tumor suppressor, inhibit the transcriptional activity of either full-length AR or constitutively active splice variants of AR in a direct or indirect manner in PCa. FOXO1 also contributes to taxane-mediated inhibition of the AR and CRPC growth. Therefore, FOX family members not only have a tight relationship with AR, but also represent a pivotal group of proteins to be targeted for PCa therapy. The present review focuses primarily on recent advances in the epigenetic, mechanistic and clinical relevant aspects of regulation of the AR by FOXA1 and FOXO1 factors in PCa.
Collapse
Affiliation(s)
- Yu Zhao
- 1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Donald J Tindall
- 1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 2. Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 3. Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haojie Huang
- 1. Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 2. Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; ; 3. Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
36
|
Abstract
INTRODUCTION The androgen receptor (AR) is a ligand-activated transcription factor that is expressed in primary and metastatic prostate cancers. There are advances in endocrine therapy for prostate cancer that are based on improved understanding of AR function. AREAS COVERED PubMed has been used to include most important publications on targeting the AR in prostate cancer. AR expression may be downregulated by agents used for chemoprevention of prostate cancer or, in models of advanced prostate cancer, by antisense oligonucleotides. New drugs that inhibit the steroidogenic enzyme CYP17A1 (abiraterone acetate) or diminish nuclear translocation of the AR (enzalutamide) have been shown to improve patients' survival in prostate cancer. However, it is clear that there is a development of resistance to these novel therapies. They may include increased expression of truncated, constitutively active AR or activation of the signaling pathway of signal transducers and activators of transcription. EXPERT OPINION Although introduction of novel drugs have improved patients' survival, there is a need to investigate the mechanisms of resistance further. The role of truncated AR and compensatory activation of signaling pathways as well as the development of scientifically justified combination therapies seems to be issues of a high priority.
Collapse
Affiliation(s)
- Zoran Culig
- Innsbruck Medical University, Experimental Urology, Department of Urology , Anichstrasse 35, A-6020 Innsbruck , Austria +43 512 504 24717 ; +43 512 504 24817 ;
| |
Collapse
|
37
|
McCarty MF, Hejazi J, Rastmanesh R. Beyond androgen deprivation: ancillary integrative strategies for targeting the androgen receptor addiction of prostate cancer. Integr Cancer Ther 2014; 13:386-95. [PMID: 24867960 DOI: 10.1177/1534735414534728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The large majority of clinical prostate cancers remain dependent on androgen receptor (AR) activity for proliferation even as they lose their responsiveness to androgen deprivation or antagonism. AR activity can be maintained in these circumstances by increased AR synthesis--often reflecting increased NF-κB activation; upregulation of signaling pathways that promote AR activity in the absence of androgens; and by emergence of AR mutations or splice variants lacking the ligand-binding domain, which render the AR constitutively active. Drugs targeting the N-terminal transactivating domain of the AR, some of which are now in preclinical development, can be expected to inhibit the activity not only of unmutated ARs but also of the mutant forms and splice variants selected for by androgen deprivation. Concurrent measures that suppress AR synthesis or boost AR turnover could be expected to complement the efficacy of such drugs. A number of nutraceuticals that show efficacy in prostate cancer xenograft models--including polyphenols from pomegranate, grape seed, and green tea, the crucifera metabolite diindolylmethane, and the hormone melatonin--have the potential to suppress AR synthesis via downregulation of NF-κB activity; clinical doses of salicylate may have analogous efficacy. The proteasomal turnover of the AR is abetted by diets with a high ratio of long-chain omega-3 to omega-6 fatty acids, which are beneficial in prostate cancer xenograft models; berberine and sulforaphane, by inhibiting AR's interaction with its chaperone Hsp90, likewise promote AR proteasomal degradation and retard growth of human prostate cancer in nude mice. Hinge region acetylation of the AR is required for optimal transactivational activity, and low micromolar concentrations of the catechin epigallocatechin-3-gallate (EGCG) can inhibit such acetylation--possibly explaining the ability of EGCG administration to suppress androgenic activity and cell proliferation in prostate cancer xenografts. Hence, it is proposed that regimens featuring an N-terminal domain-targeting drug, various nutraceuticals/drugs that downregulate NF-κB activity, and/or supplemental intakes of fish oil, berberine, sulforaphane, and EGCG have potential for blocking proliferation of prostate cancer by targeting its characteristic addiction to androgen receptor activity.
Collapse
Affiliation(s)
| | - Jalal Hejazi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Rastmanesh
- National Nutrition and Food Sciences Technology Research Institute, Tehran, Iran
| |
Collapse
|
38
|
Asraf H, Salomon S, Nevo A, Sekler I, Mayer D, Hershfinkel M. The ZnR/GPR39 Interacts With the CaSR to Enhance Signaling in Prostate and Salivary Epithelia. J Cell Physiol 2014; 229:868-77. [DOI: 10.1002/jcp.24514] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 11/18/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Hila Asraf
- Department of Physiology and Cell Biology, Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Shimrit Salomon
- Department of Physiology and Cell Biology, Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Andrey Nevo
- Department of Physiology and Cell Biology, Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Doris Mayer
- Hormones and Signal Transduction Group; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva Israel
| |
Collapse
|
39
|
Thadani-Mulero M, Portella L, Sun S, Sung M, Matov A, Vessella RL, Corey E, Nanus DM, Plymate SR, Giannakakou P. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res 2014; 74:2270-2282. [PMID: 24556717 DOI: 10.1158/0008-5472.can-13-2876] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer growth depends on androgen receptor signaling. Androgen ablation therapy induces expression of constitutively active androgen receptor splice variants that drive disease progression. Taxanes are a standard of care therapy in castration-resistant prostate cancer (CRPC); however, mechanisms underlying the clinical activity of taxanes are poorly understood. Recent work suggests that the microtubule network of prostate cells is critical for androgen receptor nuclear translocation and activity. In this study, we used a set of androgen receptor deletion mutants to identify the microtubule-binding domain of the androgen receptor, which encompasses the DNA binding domain plus hinge region. We report that two clinically relevant androgen receptor splice variants, ARv567 and ARv7, differentially associate with microtubules and dynein motor protein, thereby resulting in differential taxane sensitivity in vitro and in vivo. ARv7, which lacks the hinge region, did not co-sediment with microtubules or coprecipitate with dynein motor protein, unlike ARv567. Mechanistic investigations revealed that the nuclear accumulation and transcriptional activity of ARv7 was unaffected by taxane treatment. In contrast, the microtubule-interacting splice variant ARv567 was sensitive to taxane-induced microtubule stabilization. In ARv567-expressing LuCap86.2 tumor xenografts, docetaxel treatment was highly efficacious, whereas ARv7-expressing LuCap23.1 tumor xenografts displayed docetaxel resistance. Our results suggest that androgen receptor variants that accumulate in CRPC cells utilize distinct pathways of nuclear import that affect the antitumor efficacy of taxanes, suggesting a mechanistic rationale to customize treatments for patients with CRPC, which might improve outcomes.
Collapse
Affiliation(s)
- Maria Thadani-Mulero
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA
| | - Luigi Portella
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA
| | - Shihua Sun
- Department of Urology, University of Washington, Seattle, WA, 98195 USA
| | - Matthew Sung
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA
| | - Alexandre Matov
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA
| | - Robert L Vessella
- Department of Urology, University of Washington, Seattle, WA, 98195 USA.,Research Service, Puget Sound VA Health Care System, Seattle, WA, 98116, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, 98195 USA.,Research Service, Puget Sound VA Health Care System, Seattle, WA, 98116, USA
| | - David M Nanus
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA.,Weill Cornell Cancer Center, New York, New York 10065-4896, USA
| | - Stephen R Plymate
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA.,GRECC Seattle VAMC, Seattle, WA 98116, USA
| | - Paraskevi Giannakakou
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York 10065-4896, USA.,Weill Cornell Cancer Center, New York, New York 10065-4896, USA
| |
Collapse
|
40
|
Constitutively-active androgen receptor variants function independently of the HSP90 chaperone but do not confer resistance to HSP90 inhibitors. Oncotarget 2014; 4:691-704. [PMID: 23674566 PMCID: PMC3742830 DOI: 10.18632/oncotarget.975] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The development of lethal, castration resistant prostate cancer is associated with adaptive changes to the androgen receptor (AR), including the emergence of mutant receptors and truncated, constitutively active AR variants. AR relies on the molecular chaperone HSP90 for its function in both normal and malignant prostate cells, but the requirement for HSP90 in environments with aberrant AR expression is largely unknown. Here, we investigated the efficacy of three HSP90 inhibitors, 17-AAG, HSP990 and AUY922, against clinically-relevant AR missense mutants and truncated variants. HSP90 inhibition effectively suppressed the signaling of wild-type AR and all AR missense mutants tested. By contrast, two truncated AR variants, AR-V7 and ARv567es, exhibited marked resistance to HSP90 inhibitors. Supporting this observation, nuclear localization of the truncated AR variants was not affected by HSP90 inhibition and AR variant:HSP90 complexes could not be detected in prostate cancer cells. Interestingly, HSP90 inhibition resulted in accumulation of AR-V7 and ARv567es in both cell lines and human tumor explants. Despite the apparent independence of AR variants from HSP90 and their treatment-associated induction, the growth of cell lines with endogenous or enforced expression of AR-V7 or ARv567es remained highly sensitive to AUY922. This study demonstrates that functional AR variant signaling does not confer resistance to HSP90 inhibition, yields insight into the interaction between AR and HSP90 and provides further impetus for the clinical application of HSP90 inhibitors in advanced prostate cancer.
Collapse
|
41
|
Mateo J, Smith A, Ong M, de Bono JS. Novel drugs targeting the androgen receptor pathway in prostate cancer. Cancer Metastasis Rev 2014; 33:567-79. [DOI: 10.1007/s10555-013-9472-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Chan SC, Dehm SM. Constitutive activity of the androgen receptor. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:327-66. [PMID: 24931201 DOI: 10.1016/b978-0-12-417197-8.00011-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in the United States. The androgen receptor (AR) signaling axis is central to all stages of PCa pathophysiology and serves as the main target for endocrine-based therapy. The most advanced stage of the disease, castration-resistant prostate cancer (CRPC), is presently incurable and accounts for most PCa mortality. In this chapter, we highlight the mechanisms by which the AR signaling axis can bypass endocrine-targeted therapies and drive progression of CRPC. These mechanisms include alterations in growth factor, cytokine, and inflammatory signaling pathways, altered expression or activity of transcriptional coregulators, AR point mutations, and AR gene amplification leading to AR protein overexpression. Additionally, we will discuss the mechanisms underlying the synthesis of constitutively active AR splice variants (AR-Vs) lacking the COOH-terminal ligand-binding domain, as well as the role and regulation of AR-Vs in supporting therapeutic resistance in CRPC. Finally, we summarize the ongoing development of inhibitors targeting discrete AR functional domains as well as the status of new biomarkers for monitoring the AR signaling axis in patients.
Collapse
Affiliation(s)
- Siu Chiu Chan
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
43
|
On the origins of the androgen receptor low molecular weight species. Discov Oncol 2013; 4:259-69. [PMID: 23860689 DOI: 10.1007/s12672-013-0152-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/12/2013] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (CaP), a commonly diagnosed malignancy, is readily treated by androgen ablation. This treatment temporarily halts the disease, but castration-resistant neoplasms that are refractory to current therapies emerge. While these neoplasms are no longer dependent on physiological levels of androgens, they remain reliant on the expression of the androgen receptor (AR). There are multiple mechanisms by which CaP cells circumvent androgen ablation therapies. These include AR mutations that broaden ligand specificity, AR overexpression, AR activation by growth factors and cytokines, overexpression of AR co-activators, altered steroid metabolism, and a locus-wide histone transcriptional activation of some AR targets. This review focuses on a more recently described mechanism: the expression of low molecular weight AR species that are missing the ligand-binding domain and function independently of ligand to drive proliferation. The etiology, biological activity, unique features, predictive value, and therapeutic implication of these androgen receptor isoforms are discussed in depth.
Collapse
|
44
|
Bohrer LR, Liu P, Zhong J, Pan Y, Angstman J, Brand LJ, Dehm SM, Huang H. FOXO1 binds to the TAU5 motif and inhibits constitutively active androgen receptor splice variants. Prostate 2013; 73:1017-27. [PMID: 23389878 PMCID: PMC3915545 DOI: 10.1002/pros.22649] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/08/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Aberrant activation of the androgen receptor (AR) is a major factor highly relevant to castration-resistant progression of prostate cancer (PCa). FOXO1, a key downstream effector of PTEN, inhibits androgen-independent activation of the AR. However, the underlying mechanism remains elusive. METHODS The inhibitory effect of FOXO1 on full-length and constitutively active splice variants of the AR was examined by luciferase reporter assays and real-time reverse transcription polymerase chain reaction (RT-qPCR). In vitro protein binding assays and western blot analyses were used to determine the regions in FOXO1 and AR responsible for their interaction. RESULTS We found that a putative transcription repression domain in the NH2-terminus of FOXO1 is dispensable for FOXO1 inhibition of the AR. In vitro protein binding assays showed that FOXO1 binds to the transcription activation unit 5 (TAU5) motif in the AR NH2-terminal domain (NTD), a region required for recruitment of p160 activators including SRC-1. Ectopic expression of SRC-1 augmented transcriptional activity of some, but not all AR splice variants examined. Forced expression of FOXO1 blocked the effect of SRC-1 on AR variants' transcriptional activity by decreasing the binding of SRC-1 to the AR NTD. Ectopic expression of FOXO1 inhibited expression of endogenous genes activated primarily by alternatively spliced AR variants in human castration-resistant PCa 22Rv1 cells. CONCLUSIONS FOXO1 binds to the TAU5 motif in the AR NTD and inhibits ligand-independent activation of AR splice variants, suggesting the PTEN/FOXO1 pathway as a potential therapeutic target for inhibition of aberrant AR activation and castration-resistant PCa growth.
Collapse
Affiliation(s)
- Laura R. Bohrer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Ping Liu
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jian Zhong
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yunqian Pan
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - James Angstman
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Lucas J. Brand
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Graduate Programin Microbiology, Immunology, and Cancer Biology, Universityof Minnesota, Minneapolis, Minnesota
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Correspondence to: Scott M. Dehm and Haojie Huang, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455. ;
| | - Haojie Huang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Correspondence to: Scott M. Dehm and Haojie Huang, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455. ;
| |
Collapse
|
45
|
McGrath MJ, Binge LC, Sriratana A, Wang H, Robinson PA, Pook D, Fedele CG, Brown S, Dyson JM, Cottle DL, Cowling BS, Niranjan B, Risbridger GP, Mitchell CA. Regulation of the transcriptional coactivator FHL2 licenses activation of the androgen receptor in castrate-resistant prostate cancer. Cancer Res 2013; 73:5066-79. [PMID: 23801747 DOI: 10.1158/0008-5472.can-12-4520] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is now clear that progression from localized prostate cancer to incurable castrate-resistant prostate cancer (CRPC) is driven by continued androgen receptor (AR), signaling independently of androgen. Thus, there remains a strong rationale to suppress AR activity as the single most important therapeutic goal in CRPC treatment. Although the expression of ligand-independent AR splice variants confers resistance to AR-targeted therapy and progression to lethal castrate-resistant cancer, the molecular regulators of AR activity in CRPC remain unclear, in particular those pathways that potentiate the function of mutant AR in CRPC. Here, we identify FHL2 as a novel coactivator of ligand-independent AR variants that are important in CRPC. We show that the nuclear localization of FHL2 and coactivation of the AR is driven by calpain cleavage of the cytoskeletal protein filamin, a pathway that shows differential activation in prostate epithelial versus prostate cancer cell lines. We further identify a novel FHL2-AR-filamin transcription complex, revealing how deregulation of this axis promotes the constitutive, ligand-independent activation of AR variants, which are present in CRPC. Critically, the calpain-cleaved filamin fragment and FHL2 are present in the nucleus only in CRPC and not benign prostate tissue or localized prostate cancer. Thus, our work provides mechanistic insight into the enhanced AR activation, most notably of the recently identified AR variants, including AR-V7 that drives CRPC progression. Furthermore, our results identify the first disease-specific mechanism for deregulation of FHL2 nuclear localization during cancer progression. These results offer general import beyond prostate cancer, given that nuclear FHL2 is characteristic of other human cancers where oncogenic transcription factors that drive disease are activated like the AR in prostate cancer.
Collapse
Affiliation(s)
- Meagan J McGrath
- Department of Biochemistry and Molecular Biology and Immunology, Monash University, Clayton Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|