1
|
Yuan S, Hoggard NK, Kantake N, Hildreth BE, Rosol TJ. Effects of Dickkopf-1 (DKK-1) on Prostate Cancer Growth and Bone Metastasis. Cells 2023; 12:2695. [PMID: 38067123 PMCID: PMC10705757 DOI: 10.3390/cells12232695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoblastic bone metastases are commonly detected in patients with advanced prostate cancer (PCa) and are associated with an increased mortality rate. Dickkopf-1 (DKK-1) antagonizes canonical WNT/β-catenin signaling and plays a complex role in bone metastases. We explored the function of cancer cell-specific DKK-1 in PCa growth, metastasis, and cancer-bone interactions using the osteoblastic canine PCa cell line, Probasco. Probasco or Probasco + DKK-1 (cells transduced with human DKK-1) were injected into the tibia or left cardiac ventricle of athymic nude mice. Bone metastases were detected by bioluminescent imaging in vivo and evaluated by micro-computed tomography and histopathology. Cancer cell proliferation, migration, gene/protein expression, and their impact on primary murine osteoblasts and osteoclasts, were evaluated in vitro. DKK-1 increased cancer growth and stimulated cell migration independent of canonical WNT signaling. Enhanced cancer progression by DKK-1 was associated with increased cell proliferation, up-regulation of NF-kB/p65 signaling, inhibition of caspase-dependent apoptosis by down-regulation of non-canonical WNT/JNK signaling, and increased expression of epithelial-to-mesenchymal transition genes. In addition, DKK-1 attenuated the osteoblastic activity of Probasco cells, and bone metastases had decreased cancer-induced intramedullary woven bone formation. Decreased bone formation might be due to the inhibition of osteoblast differentiation and stimulation of osteoclast activity through a decrease in the OPG/RANKL ratio in the bone microenvironment. The present study indicated that the cancer-promoting role of DKK-1 in PCa bone metastases was associated with increased growth of bone metastases, reduced bone induction, and altered signaling through the canonical WNT-independent pathway. DKK-1 could be a promising therapeutic target for PCa.
Collapse
Affiliation(s)
- Shiyu Yuan
- Department of Biological Sciences, The Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, OH 45701, USA;
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| | - Nathan K. Hoggard
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| | - Noriko Kantake
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| | - Blake E. Hildreth
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Thomas J. Rosol
- Department of Biological Sciences, The Molecular and Cellular Biology Program, College of Arts and Sciences, Ohio University, Athens, OH 45701, USA;
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.K.H.); (N.K.)
| |
Collapse
|
2
|
Chen B, Slocombe RF, Georgy SR. Advances in organoid technology for veterinary disease modeling. Front Vet Sci 2023; 10:1234628. [PMID: 37920327 PMCID: PMC10618422 DOI: 10.3389/fvets.2023.1234628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Organoids are in vitro organ-like structures that faithfully recapitulate many characteristics of a specific organ. During the past decades, major progress has been accomplished in establishing three-dimensional (3D) culture systems toward stem cell-derived organoids. As a significant technological breakthrough, these amazing 3D organoid constructs bridge the conventional 2D in vitro models and in vivo animal models and provide an unprecedented opportunity to investigate the complexities of veterinary diseases ranging from their pathogenesis to the prevention, therapy, or even future organ replacement strategies. In this review, we briefly discuss several definitions used in organoid research and highlight the currently known achievements in modeling veterinary diseases, including infectious and inflammatory diseases, cancers, and metabolic diseases. The applications of organoid technology in veterinary disease modeling are still in their infancy stage but the future is promising.
Collapse
Affiliation(s)
| | | | - Smitha Rose Georgy
- Section of Anatomic Pathology, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
3
|
Kobayashi M, Onozawa M, Watanabe S, Nagashima T, Tamura K, Kubo Y, Ikeda A, Ochiai K, Michishita M, Bonkobara M, Kobayashi M, Hori T, Kawakami E. Establishment of a BRAF V595E-mutant canine prostate cancer cell line and the antitumor effects of MEK inhibitors against canine prostate cancer. Vet Comp Oncol 2023; 21:221-230. [PMID: 36745053 DOI: 10.1111/vco.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/07/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
Canine prostate cancer (cPCa) is a malignant neoplasm with no effective therapy. The BRAF V595E mutation, corresponding to the human BRAF V600E mutation, is found frequently in cPCa. Activating BRAF mutations are recognized as oncogenic drivers, and blockade of MAPK/ERK phosphorylation may be an effective therapeutic target against BRAF-mutated tumours. The aim of this study was to establish a novel cPCa cell line and to clarify the antitumor effects of MEK inhibitors on cPCa in vitro and in vivo. We established the novel CHP-2 cPCa cell line that was derived from the prostatic tissue of a cPCa patient. Sequencing of the canine BRAF gene in two cPCa cell lines revealed the presence of the BRAF V595E mutation. MEK inhibitors (trametinib, cobimetinib and mirdametinib) strongly suppressed cell proliferation in vitro, and trametinib showed the highest efficacy against cPCa cells with minimal cytotoxicity to non-cancer COPK cells. Furthermore, we orally administered 0.3 or 1.0 mg/kg trametinib to CHP-2 xenografted mice and examined its antitumor effects in vivo. Trametinib reduced tumour volume, decreased phosphorylated ERK levels, and lowered Ki-67 expression in xenografts in a dose-dependent manner. Although no clear adverse events were observed with administration, trametinib-treated xenografts showed osteogenesis that was independent of dosage. Our results indicate that trametinib induces cell cycle arrest by inhibiting ERK activation, resulting in cPCa tumour regression in a dose-dependent manner. MEK inhibitors, in addition to BRAF inhibitors, may be a targeted agent option for cPCa with the BRAF V595E mutation.
Collapse
Affiliation(s)
- Masanori Kobayashi
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Moe Onozawa
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Shiho Watanabe
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kyoichi Tamura
- Laboratory of Veterinary Clinical Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yoshiaki Kubo
- Veterinary Medical Teaching Hospital, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Akiko Ikeda
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Makoto Bonkobara
- Laboratory of Veterinary Clinical Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masato Kobayashi
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tatsuya Hori
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Eiichi Kawakami
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
- Japan Institute of Small Animal Reproduction (Bio Art), Tokyo, Japan
| |
Collapse
|
4
|
Berry MR, Fadl-Alla BA, Samuelson J, Rosol TJ, Fan TM. Investigating PSMA differential expression in canine uroepithelial carcinomas to aid disease-based stratification and guide therapeutic selection. BMC Vet Res 2022; 18:441. [PMID: 36539731 PMCID: PMC9764509 DOI: 10.1186/s12917-022-03544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In male dogs, uroepithelial cancers include invasive urothelial carcinoma (iUC) and prostate carcinoma (PCA). The inability to distinguish iUC involving the prostate from PCA results in indiscriminate clinical management strategies that could be suboptimal as first-line chemotherapy for iUC (cisplatin) and PCA (docetaxel) differ in people. Prostate specific membrane antigen (PSMA) is a transmembrane protein, and its overexpression has been identified in human prostate carcinoma and neovasculature associated with solid tumor growth. This study investigates whether differential PSMA expression exists between presumptive canine iUC and PCA among cell lines and archived patient samples, which might allow for improved accuracy in disease-based stratification and optimal chemotherapy selection. Additionally, in vitro sensitivities of reported canine iUC and PCA cell lines to uroepithelial directed chemotherapeutic agents were characterized. RESULTS Normalized PSMA gene and protein expressions were not significantly different between 5 iUC and 4 PCA cell lines. PSMA protein expression was uniformly observed in uroepithelial cancers regardless of anatomic origin from archived patient samples, further confirming that PSMA cannot differentiate iUC from PCA. In vitro sensitivity of cell lines to uroepithelial directed chemotherapeutics revealed that vinblastine exerted the broadest cytotoxic activity. CONCLUSIONS Differential expression of PSMA was not identified between canine iUC and PCA cell lines or archived patient samples, and PSMA alone cannot be used for disease stratification. Nonetheless given its conserved overexpression, PSMA may be a targetable surface marker for both canine iUC and PCA. Lastly, in uroepithelial carcinomas, vinblastine might exert the broadest anticancer activity regardless of cellular origin.
Collapse
Affiliation(s)
- Matthew R. Berry
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802 USA
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802 USA
| | - Bahaa A. Fadl-Alla
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802 USA
| | - Jonathan Samuelson
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802 USA
| | - Thomas J. Rosol
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802 USA
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802 USA
- Cancer Center at Illinois, University of Illinois, Urbana, IL 61802 USA
| |
Collapse
|
5
|
Packeiser EM, Taher L, Kong W, Ernst M, Beck J, Hewicker-Trautwein M, Brenig B, Schütz E, Murua Escobar H, Nolte I. RNA-seq of nine canine prostate cancer cell lines reveals diverse therapeutic target signatures. Cancer Cell Int 2022; 22:54. [PMID: 35109825 PMCID: PMC8812184 DOI: 10.1186/s12935-021-02422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Canine prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) are typically characterized by metastasis and chemoresistance. Cell lines are important model systems for developing new therapeutic strategies. However, as they adapt to culturing conditions and undergo clonal selection, they can diverge from the tissue from which they were originally derived. Therefore, a comprehensive characterization of cell lines and their original tissues is paramount. METHODS This study compared the transcriptomes of nine canine cell lines derived from PAC, PAC metastasis and TCC to their respective original primary tumor or metastasis tissues. Special interests were laid on cell culture-related differences, epithelial to mesenchymal transition (EMT), the prostate and bladder cancer pathways, therapeutic targets in the PI3K-AKT signaling pathway and genes correlated with chemoresistance towards doxorubicin and carboplatin. RESULTS Independent analyses for PAC, PAC metastasis and TCC revealed 1743, 3941 and 463 genes, respectively, differentially expressed in the cell lines relative to their original tissues (DEGs). While genes associated with tumor microenvironment were mostly downregulated in the cell lines, patient-specific EMT features were conserved. Furthermore, examination of the prostate and bladder cancer pathways revealed extensive concordance between cell lines and tissues. Interestingly, all cell lines preserved downstream PI3K-AKT signaling, but each featured a unique therapeutic target signature. Additionally, resistance towards doxorubicin was associated with G2/M cell cycle transition and cell membrane biosynthesis, while carboplatin resistance correlated with histone, m- and tRNA processing. CONCLUSION Comparative whole-transcriptome profiling of cell lines and their original tissues identifies models with conserved therapeutic target expression. Moreover, it is useful for selecting suitable negative controls, i.e., cell lines lacking therapeutic target expression, increasing the transfer efficiency from in vitro to primary neoplasias for new therapeutic protocols. In summary, the dataset presented here constitutes a rich resource for canine prostate and bladder cancer research.
Collapse
Affiliation(s)
- Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Weibo Kong
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Mathias Ernst
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | - Bertram Brenig
- University of Göttingen, Institute of Veterinary Medicine, Göttingen, Germany
| | | | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany.
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany.
- Comprehensive Cancer Center Mecklenburg-Vorpommern (CCC-MV), Campus Rostock, University of Rostock, 18057, Rostock, Germany.
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
6
|
Ryman‐Tubb T, Lothion‐Roy JH, Metzler VM, Harris AE, Robinson BD, Rizvanov AA, Jeyapalan JN, James VH, England G, Rutland CS, Persson JL, Kenner L, Rubin MA, Mongan NP, de Brot S. Comparative pathology of dog and human prostate cancer. Vet Med Sci 2022; 8:110-120. [PMID: 34628719 PMCID: PMC8788985 DOI: 10.1002/vms3.642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Though relatively rare in dogs, prostate cancer (PCa) is the most common non-cutaneous cancer in men. Human and canine prostate glands share many functional, anatomical and physiological features. Due to these similarities, canine PCa has been proposed as a model for PCa in men. PCa is typically androgen-dependent at diagnosis in men and for this reason, androgen deprivation therapies (ADT) are important treatments for advanced PCa in men. In contrast, there is some evidence that PCa is diagnosed more commonly in castrate dogs, at which point, limited therapeutic options are available. In men, a major limitation of current ADT is that progression to a lethal and incurable form of PCa, termed castrate-resistant prostate cancer (CRPC), is common. There is, therefore, an urgent need for a better understanding of the mechanism of PCa initiation and progression to CRPC to enable the development of novel therapeutic approaches. This review focuses on the functional, physiological, endocrine and histopathological similarities and differences in the prostate gland of these species. In particular, we focus on common physiological roles for androgen signalling in the prostate of men and dogs, we review the short- and longer-term effects of castration on PCa incidence and progression in the dog and relate how this knowledge may be relevant to understanding the mechanisms of CRPC in men.
Collapse
Affiliation(s)
- Toby Ryman‐Tubb
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Jennifer H. Lothion‐Roy
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Veronika M. Metzler
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Anna E. Harris
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | | | - Albert A. Rizvanov
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
- Institute of Fundamental Medicine and ScienceKazan Federal UniversityKazanTatarstanRussia
| | - Jennie N. Jeyapalan
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Victoria H. James
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Gary England
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Catrin S. Rutland
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Jenny L. Persson
- Department of Molecular BiologyUmeå UniversitetUmeåSweden
- Department of Biomedical SciencesMalmö UniversitetMalmöSweden
| | - Lukas Kenner
- Department of Experimental PathologyLaboratory Animal Pathology Medical University WienViennaAustria
| | - Mark A. Rubin
- Bern Center for Precision MedicineUniversity of Bern and InselspitalBernSwitzerland
- Department of BioMedical ResearchUniversity of Bern and InselspitalBernSwitzerland
| | - Nigel P. Mongan
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
- Department of PharmacologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Simone de Brot
- BioDiscovery InstituteSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
- COMPATH, Institute of Animal PathologyUniversity of BernBernSwitzerland
| |
Collapse
|
7
|
Elshafae SM, Kohart NA, Breitbach JT, Hildreth BE, Rosol TJ. The Effect of a Histone Deacetylase Inhibitor (AR-42) and Zoledronic Acid on Adult T-Cell Leukemia/Lymphoma Osteolytic Bone Tumors. Cancers (Basel) 2021; 13:cancers13205066. [PMID: 34680215 PMCID: PMC8533796 DOI: 10.3390/cancers13205066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Adult T-cell leukemia (ATL) Leukemia is an aggressive, peripheral blood (T-cell) neoplasm associated with human T-cell leukemia virus type 1 (HTLV-1) infection. Recent studies have implicated dysregulated histone deacetylases in ATL pathogenesis. ATL modulates the bone microenvironment of patients and activates osteoclasts (bone resorbing cells) that cause severe bone loss. The objective of this study was to assess the individual and dual effects of AR-42 (HDACi) and zoledronic acid (Zol) on the growth of ATL cells in vitro and in vivo. AR-42 and Zol reduced the viability of ATL cells in vitro. Additionally, Zol and Zol/AR-42 decreased ATL tumor growth and halted osteolysis in bone tumor xenografts in immunodeficient mice in vivo. Our study suggests that dual targeting of ATL cells (using HDACi) and bone osteoclasts (using bisphosphonates) may be exploited as a valuable approach to reduce bone tumor burden and improve the life quality of ATL patients. Abstract Adult T-cell leukemia/lymphoma (ATL) is an intractable disease affecting nearly 4% of Human T-cell Leukemia Virus Type 1 (HTLV-1) carriers. Acute ATL has a unique interaction with bone characterized by aggressive bone invasion, osteolytic metastasis, and hypercalcemia. We hypothesized that dual tumor and bone-targeted therapies would decrease tumor burden in bone, the incidence of metastasis, and ATL-associated osteolysis. Our goal was to evaluate dual targeting of both ATL bone tumors and the bone microenvironment using an anti-tumor HDACi (AR-42) and an osteoclast inhibitor (zoledronic acid, Zol), alone and in combination. Our results showed that AR-42, Zol, and AR-42/Zol significantly decreased the viability of multiple ATL cancer cell lines in vitro. Zol and AR-42/Zol decreased tumor growth in vivo. Zol ± AR-42 significantly decreased ATL-associated bone resorption and promoted new bone formation. AR-42-treated ATL cells had increased mRNA levels of PTHrP, ENPP2 (autotaxin) and MIP-1α, and TAX viral gene expression. AR-42 alone had no significant effect on tumor growth or osteolysis in mice. These findings indicate that Zol adjuvant therapy has the potential to reduce growth of ATL in bone and its associated osteolysis.
Collapse
Affiliation(s)
- Said M. Elshafae
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia 13736, Egypt
| | - Nicole A. Kohart
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
| | - Justin T. Breitbach
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.M.E.); (N.A.K.); (J.T.B.)
| | - Blake E. Hildreth
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Thomas J. Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +1-740-593-2405
| |
Collapse
|
8
|
Price MJ, Baëta C, Dalton TE, Nguyen A, Lavau C, Pennington Z, Sciubba DM, Goodwin CR. Animal Models of Metastatic Lesions to the Spine: a Focus on Epidural Spinal Cord Compression. World Neurosurg 2021; 155:122-134. [PMID: 34343682 DOI: 10.1016/j.wneu.2021.07.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022]
Abstract
Epidural spinal cord compression (ESCC) secondary to spine metastases is one of the most devastating sequelae of primary cancer as it may lead to muscle weakness, paresthesia, pain, and paralysis. Spine metastases occur through a multi-step process that can result in eventual ESCC; however, the lack of a preclinical model to effectively recapitulate each step of this metastatic cascade and the symptom burden of ESCC has limited our understanding of this disease process. In this review, we discuss animal models that best recapitulate ESCC; we start with a broad discussion of commonly used models of bone metastasis and end with a focused discussion of models used to specifically study ESCC. Orthotopic models offer the most authentic recapitulation of metastasis development; however, they rarely result in symptomatic ESCC and are challenging to replicate. Conversely, models that involve injection of tumor cells directly into the bloodstream or bone better mimic the symptoms of ESCC; however, they provide limited insight into the epithelial to mesenchymal transition (EMT) and natural hematogenous spread of tumor cell. Therefore, until an ideal model is created, it is critical to select an animal model that is specifically designed to answer the scientific question of interest.
Collapse
Affiliation(s)
- Meghan J Price
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - César Baëta
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Tara E Dalton
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Annee Nguyen
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Catherine Lavau
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zach Pennington
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Northwell Health, Manhasset, New York, USA
| | - C Rory Goodwin
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
9
|
Khodamoradi P, Amniattalab A, Alizadeh S. Overexpression of GDNF and FGF-1 in Canine Benign Prostatic Hyperplasia: Evidence for a Pathogenetic Role of Neural Growth Factor. J Comp Pathol 2021. [DOI: https://doi.org/10.1016/j.jcpa.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Khodamoradi P, Amniattalab A, Alizadeh S. Overexpression of GDNF and FGF-1 in Canine Benign Prostatic Hyperplasia: Evidence for a Pathogenetic Role of Neural Growth Factor. J Comp Pathol 2021; 182:43-53. [PMID: 33494907 DOI: 10.1016/j.jcpa.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/02/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Benign prostatic hyperplasia (BPH) is common in aged dogs, but the pathogenesis has not been clearly elucidated. A total of 33 male Iranian dogs of mixed breed and in three age groups (under 3 years [n = 10]; 3-6 years [n = 15]; over 6 years [n = 8]), were investigated. BPH was confirmed by ultrasonography and histopathology in 13 cases. The highest prevalence of BPH was in the 3-6 years age group (8/15; 53.3%). Examination of sections of prostate that had been stained with Masson's trichrome revealed that the intensity of stromal smooth muscle cell staining (P <0.05) and the number of fibroblasts (P = 0.002) were significantly increased in BPH compared with normal prostate glands. Prostate cells from dogs with BPH (n = 13) had a significantly higher intensity of cytoplasmic immunolabelling with antibodies against glial cell line-derived neurotrophic factor (GDNF), cytokeratin (CK) AE1/AE3, vimentin, fibroblast growth factor-1 (FGF-1) and prostate-specific antigen (PSA), compared with normal prostate glands (n = 20) (P = 0.001), except for PSA, which was negative in both normal and BPH affected prostates. The overexpression of GDNF and FGF-1 in stromal and epithelial cells of prostate glands of dogs with BPH suggests that GDNF has a paracrine or autocrine role in stimulating cellular proliferation. GDNF overexpression may also play a pathogenetic role in promoting chronic prostatitis and increasing fibrosis and the smooth muscle component of the prostate gland in BPH.
Collapse
Affiliation(s)
- Pouya Khodamoradi
- Department of Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Amir Amniattalab
- Department of Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | - Siamak Alizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
11
|
Nascimento-Gonçalves E, Ferreira R, Oliveira PA, Colaço BJA. An Overview of Current Alternative Models for Use in the Context of Prostate Cancer Research. Altern Lab Anim 2020; 48:58-69. [PMID: 32614643 DOI: 10.1177/0261192920929701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer is one of the most commonly diagnosed cancers worldwide, particularly in elderly populations. To mitigate the expected increase in prostate cancer-related morbidity and mortality as a result of an expanding aged population, safer and more effective therapeutics are required. To this end, plenty of research is focusing on the mechanisms underlying cancer initiation and development, the metastatic process and on the discovery of new therapies. While animal models are used (mainly rats and mice) for the study of prostate cancer, alternative models and methods are increasingly being considered to replace, or at least reduce, the number of animals used in this particular field of research. In this review, we cover some of the alternative models that are currently available for use in the study of prostate cancer, including: mathematical models; 2-D and 3-D cell cultures; microfluidic devices; the chicken egg chorioallantoic membrane-based model; and zebrafish embryo-based models. The main advantages and limitations, as well as some examples of applications, are given for each type of model. According to our analysis, immortalised cell lines are still the most commonly used models in the field of prostate cancer research. However, the use of alternative models for prostate cancer research will likely become more prevalent in the coming years partly because of the increasing societal pressure to reduce the numbers of laboratory animals. In this context, the development and dissemination of effective non-animal alternative models assumes particular relevance and will be instrumental in leveraging their success. Taking these perspectives into account, we believe that technological advances will lead to more effective cell culture systems, namely 3-D cultures or organ-on-a-chip devices, which can be used to replace animal-based models in prostate cancer research.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, 386361University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Organic Chemistry, Natural Products and Foodstuffs (QOPNA/LAQV), Department of Chemistry, 56062University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Organic Chemistry, Natural Products and Foodstuffs (QOPNA/LAQV), Department of Chemistry, 56062University of Aveiro, Aveiro, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, 386361University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Bruno Jorge Antunes Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences, 56066University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Zootechnics, 56066University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
12
|
Elshafae SM, Dirksen WP, Alasonyalilar-Demirer A, Breitbach J, Yuan S, Kantake N, Supsavhad W, Hassan BB, Attia Z, Rosol TJ. Canine prostatic cancer cell line (LuMa) with osteoblastic bone metastasis. Prostate 2020; 80:698-714. [PMID: 32348616 PMCID: PMC7291846 DOI: 10.1002/pros.23983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Osteoblastic bone metastasis represents the most common complication in men with prostate cancer (PCa). During progression and bone metastasis, PCa cells acquire properties similar to bone cells in a phenomenon called osteomimicry, which promotes their ability to metastasize, proliferate, and survive in the bone microenvironment. The mechanism of osteomimicry resulting in osteoblastic bone metastasis is unclear. METHODS We developed and characterized a novel canine prostatic cancer cell line (LuMa) that will be useful to investigate the relationship between osteoblastic bone metastasis and osteomimicry in PCa. The LuMa cell line was established from a primary prostate carcinoma of a 13-year old mixed breed castrated male dog. Cell proliferation and gene expression of LuMa were measured and compared to three other canine prostatic cancer cell lines (Probasco, Ace-1, and Leo) in vitro. The effect of LuMa cells on calvaria and murine preosteoblastic (MC3T3-E1) cells was measured by quantitative reverse-transcription polymerase chain reaction and alkaline phosphatase assay. LuMa cells were transduced with luciferase for monitoring in vivo tumor growth and metastasis using different inoculation routes (subcutaneous, intratibial [IT], and intracardiac [IC]). Xenograft tumors and metastases were evaluated using radiography and histopathology. RESULTS After left ventricular injection, LuMa cells metastasized to bone, brain, and adrenal glands. IT injections induced tumors with intramedullary new bone formation. LuMa cells had the highest messenger RNA levels of osteomimicry genes (RUNX2, RANKL, and Osteopontin [OPN]), CD44, E-cadherin, and MYOF compared to Ace-1, Probasco, and Leo cells. LuMa cells induced growth in calvaria defects and modulated gene expression in MC3T3-E1 cells. CONCLUSIONS LuMa is a novel canine PCa cell line with osteomimicry and stemness properties. LuMa cells induced osteoblastic bone formation in vitro and in vivo. LuMa PCa cells will serve as an excellent model for studying the mechanisms of osteomimicry and osteoblastic bone and brain metastasis in prostate cancer.
Collapse
Affiliation(s)
- Said M. Elshafae
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Pathology, Faculty of Veterinary medicine, Benha University, Benha, Egypt
- Dept. of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Wessel P. Dirksen
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Aylin Alasonyalilar-Demirer
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, Turkey
| | - Justin Breitbach
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Shiyu Yuan
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Noriko Kantake
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Wachiraphan Supsavhad
- Dept. of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Bardes B. Hassan
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Zayed Attia
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Sadat City University, Sadat City, Egypt
| | - Thomas J. Rosol
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Correspondence to: Dr. Thomas Rosol, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 225 Irvine Hall, Athens, OH 45701, USA. , Phone: 740.593.2405
| |
Collapse
|
13
|
Liu W, Sender S, Kong W, Beck J, Sekora A, Bornemann-Kolatzki K, Schuetz E, Junghanss C, Brenig B, Nolte I, Murua Escobar H. Establishment and characterization of stable red, far-red (fR) and near infra-red (NIR) transfected canine prostate cancer cell lines. Cancer Cell Int 2020; 20:139. [PMID: 32368185 PMCID: PMC7189542 DOI: 10.1186/s12935-020-01211-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/15/2020] [Indexed: 01/05/2023] Open
Abstract
Background Canine prostate cancer represents a unique model for human prostate cancer. In vitro systems offer various possibilities but Xenograft in vivo imaging allows studying complex tasks as tumor progression and drug intervention longitudinal. Herein, we established three canine prostate carcinoma cell lines stably expressing fluorescent proteins allowing deep tissue in vivo imaging. Methods Three canine prostate carcinoma (cPC) cell lines were stably transfected with fluorescent proteins in red, far-red and near infra-red spectrum, followed by G418 selection. Fluorescent protein expression was demonstrated by microscopy, flow cytometry and a NightOWL LB 983 in vivo imaging system. Cellular and molecular characteristics of the generated cell lines were compared to the parental cell line CT1258. Cell proliferation, metabolic activity and sphere formation capacity were analyzed. Stem cell marker expression was examined by qPCR and genomic copy number variation by genomic DNA whole genome sequencing. Results Three stably fluorescent protein transfected cPC cell lines were established and characterized. Compared to the parental cell line, no significant difference in cell proliferation and metabolic activity were detected. Genomic copy number variation analyses and stem cell marker gene expression revealed in general no significant changes. However, the generated cell line CT1258-mKate2C showed uniquely no distal CFA16 deletion and an elevated metabolic activity. The introduced fluorescencent proteins allowed highly sensitive detection in an in vivo imaging system starting at cell numbers of 0.156 × 106. Furthermore, we demonstrated a similar sphere formation capacity in the fluorescent cell lines. Interestingly, the clone selected CT1258-mKate2C, showed increased sphere formation ability. Discussion Starting from a well characterized cPC cell line three novel fluorescent cell lines were established showing high cellular and molecular similarity to the parental cell line. The introduction of the fluorescent proteins did not alter the established cell lines significantly. The red fluorescence allows deep tissue imaging, which conventional GFP labeling is not able to realize. Conclusion As no significant differences were detected between the established cell lines and the very well characterized parental CT1258 the new fluorescent cell lines allow deep tissue in vivo imaging for perspective in vivo evaluation of novel therapeutic regimens.
Collapse
Affiliation(s)
- Wen Liu
- 1Division of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann Str. 6, 18057 Rostock, Germany.,2Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sina Sender
- 1Division of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann Str. 6, 18057 Rostock, Germany
| | - Weibo Kong
- 1Division of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann Str. 6, 18057 Rostock, Germany.,2Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Anett Sekora
- 1Division of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann Str. 6, 18057 Rostock, Germany
| | | | | | - Christian Junghanss
- 1Division of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann Str. 6, 18057 Rostock, Germany
| | - Bertram Brenig
- 4Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Ingo Nolte
- 2Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hugo Murua Escobar
- 1Division of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann Str. 6, 18057 Rostock, Germany.,2Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
14
|
Packeiser EM, Hewicker-Trautwein M, Thiemeyer H, Mohr A, Junginger J, Schille JT, Murua Escobar H, Nolte I. Characterization of six canine prostate adenocarcinoma and three transitional cell carcinoma cell lines derived from primary tumor tissues as well as metastasis. PLoS One 2020; 15:e0230272. [PMID: 32168360 PMCID: PMC7069630 DOI: 10.1371/journal.pone.0230272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Canine prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) of prostate and urinary bladder are highly invasive and metastatic tumors of closely neighbored organs. Cell lines are valuable tools to investigate tumor mechanisms and therapeutic approaches in vitro. PAC in dogs is infrequent, difficult to differentiate from TCC and usually characterized by poor prognosis, enhancing the value of the few available cell lines. However, as cell lines adapt to culturing conditions, a thorough characterization, ideally compared to original tissue, is indispensable. Herein, six canine PAC cell lines and three TCC cell lines were profiled by immunophenotype in comparison to respective original tumor tissues. Three of the six PAC cell lines were derived from primary tumor and metastases of the same patient. Further, two of the three TCC cell lines were derived from TCCs invading into or originating from the prostate. Cell biologic parameters as doubling times and chemoresistances to commonly used drugs in cancer treatment (doxorubicin, carboplatin and meloxicam) were assessed. All cell lines were immunohistochemically close to the respective original tissue. Compared to primary tumor cell lines, metastasis-derived cell lines were more chemoresistant to doxorubicin, but equally susceptive to carboplatin treatment. Two cell lines were multiresistant. COX-2 enzyme activity was demonstrated in all cell lines. However, meloxicam inhibited prostaglandin E2 production in only seven of nine cell lines and did neither influence metabolic activity, nor proliferation. The characterized nine cell lines represent excellent tools to investigate PAC as well as TCC in prostate and urinary bladder of the dog. Furthermore, the profiled paired cell lines from PAC primary tumor and metastasis provide the unique opportunity to investigate metastasis-associated changes PAC cells undergo in tumor progression. The combination of nine differently chemoresistant PAC and TCC cell lines resembles the heterogeneity of canine lower urinary tract cancer.
Collapse
Affiliation(s)
- Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
| | | | - Heike Thiemeyer
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Annika Mohr
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Junginger
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan Torben Schille
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
| | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
- * E-mail: (HME); (IN)
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail: (HME); (IN)
| |
Collapse
|
15
|
Hassan BB, Altstadt LA, Dirksen WP, Elshafae SM, Rosol TJ. Canine Thyroid Cancer: Molecular Characterization and Cell Line Growth in Nude Mice. Vet Pathol 2020; 57:227-240. [PMID: 32081094 DOI: 10.1177/0300985819901120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Thyroid cancer is the most common endocrine malignancy in dogs. Dogs and humans are similar in the spontaneous development of thyroid cancer and metastasis to lungs; however, thyroid cancer has a higher incidence of metastasis in dogs. This study developed a preclinical nude mouse model of canine thyroid cancer using a canine thyroid adenocarcinoma cell line (CTAC) and measured the expression of important invasion and metastasis genes in spontaneous canine thyroid carcinomas and CTAC cells. CTAC cells were examined by electron microscopy. Short tandem repeat analysis was performed for both the original neoplasm and CTAC cells. CTAC cells were transduced with luciferase and injected subcutaneously and into the tail vein. Tumors and metastases were monitored using bioluminescent imaging and confirmed with gross necropsy and histopathology. Invasion and metastasis genes were characterized in 8 follicular thyroid carcinomas (FTCs), 4 C-cell thyroid carcinomas, 3 normal thyroids, and CTAC cells. CTAC cells grew well as xenografts in the subcutis, and they resembled the primary neoplasm. Metastasis to the kidney and lung occurred infrequently following subcutaneous and tail vein injection of CTAC cells. STR analysis confirmed that CTAC cells were derived from the original neoplasm and were of canine origin. Finally, 24 genes were differentially expressed in spontaneous canine thyroid carcinomas, CTAC, and normal thyroids. This study demonstrated the usefulness of a nude mouse model of experimental canine thyroid carcinoma and identified potential molecular targets of canine follicular and C-cell thyroid carcinoma.
Collapse
Affiliation(s)
- Bardes B Hassan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lucas A Altstadt
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Wessel P Dirksen
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Said M Elshafae
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia, Egypt
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
16
|
Kohart NA, Elshafae SM, Supsahvad W, Alasonyalilar-Demirer A, Panfil AR, Xiang J, Dirksen WP, Veis DJ, Green PL, Weilbaecher KN, Rosol TJ. Mouse model recapitulates the phenotypic heterogeneity of human adult T-cell leukemia/lymphoma in bone. J Bone Oncol 2019; 19:100257. [PMID: 31871882 PMCID: PMC6911918 DOI: 10.1016/j.jbo.2019.100257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022] Open
Abstract
Adult T-cell leukemia/lymphoma has a unique relationship to bone including latency in the marrow, and development of bone invasion, osteolytic tumors and humoral hypercalcemia of malignancy. To study these conditions, we established and characterized a novel mouse model of ATL bone metastasis. Patient-derived ATL cell lines including three that do not express HTLV-1 oncoprotein Tax (ATL-ED, RV-ATL, TL-Om1), an in vitro transformed human T-cell line with high Tax expression (HT-1RV), and an HTLV-1 negative T-cell lymphoma (Jurkat) were injected intratibially into NSG mice, and were capable of proliferating and modifying the bone microenvironment. Radiography, μCT, histopathology, immunohistochemistry, plasma calcium concentrations, and qRT-PCR for several tumor-bone signaling mRNAs were performed. Luciferase-positive ATL-ED bone tumors allowed for in vivo imaging and visualization of bone tumor growth and metastasis over time. ATL-ED and HT-1RV cells caused mixed osteolytic/osteoblastic bone tumors, TL-Om1 cells exhibited minimal bone involvement and aggressive local invasion into the adjacent soft tissues, Jurkat cells proliferated within bone marrow and induced minimal bone cell response, and RV-ATL cells caused marked osteolysis. This mouse model revealed important mechanisms of human ATL bone neoplasms and will be useful to investigate biological interactions, potential therapeutic targets, and new bone-targeted agents for the prevention of ATL metastases to bone.
Collapse
Key Words
- ATL, adult T-cell leukemia/lymphoma
- Bone resorption
- HHM, humoral hypercalcemia of malignancy
- HTLV-1
- HTLV-1, Human T-cell leukemia virus type 1
- Hbz, HTLV-1 basic zipper protein
- Lymphoma
- Metastasis
- Mouse model
- NK, natural killer
- NOD, non-obese diabetic
- NSG, NOD-scid IL2Rgammanull
- SCID, CB17-Prkdcscid
- Tax, transcriptional activator from the X region
- qRT-PCR, quantitative real-time polymerase chain reaction
- μCT, micro-computed tomography
Collapse
Affiliation(s)
- Nicole A. Kohart
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Said M. Elshafae
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia 3736, Egypt
| | - Wachirapan Supsahvad
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Aylin Alasonyalilar-Demirer
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Amanda R. Panfil
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jingyu Xiang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wessel P. Dirksen
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Deborah J. Veis
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick L. Green
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Katherine N. Weilbaecher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 225 Irvine Hall, Athens, OH 45701, USA
| |
Collapse
|
17
|
Kohart NA, Elshafae SM, Demirer AA, Dirksen WP, Breitbach JT, Shu ST, Xiang J, Weilbaecher KN, Rosol TJ. Parathyroid hormone-related protein promotes bone loss in T-cell leukemia as well as in solid tumors. Leuk Lymphoma 2019; 61:409-419. [PMID: 31592701 DOI: 10.1080/10428194.2019.1672055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) are important factors that increase bone resorption and hypercalcemia in adult T-cell leukemia (ATL). We investigated the role of PTHrP and MIP-1α in the development of local osteolytic lesions in T-cell leukemia through overexpression in Jurkat T-cells. Injections of Jurkat-PTHrP and Jurkat-MIP-1α into the tibia and the left ventricle of NSG mice were performed to evaluate tumor growth and metastasis in vivo. Jurkat-pcDNA tibial neoplasms grew at a significantly greater rate and total tibial tumor burden was significantly greater than Jurkat-PTHrP neoplasms. Despite the lower tibial tumor burden, Jurkat-PTHrP bone neoplasms had significantly greater osteolysis than Jurkat-pcDNA and Jurkat-MIP-1α neoplasms. Jurkat-PTHrP and Jurkat-pcDNA cells preferentially metastasized to bone following intracardiac injection, though the overall metastatic burden was lower in Jurkat-PTHrP mice. These findings demonstrate that PTHrP induced pathologic osteolysis in T-cell leukemia but did not increase the incidence of skeletal metastasis.
Collapse
Affiliation(s)
- Nicole A Kohart
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Said M Elshafae
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia, Egypt
| | - Aylin A Demirer
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Wessel P Dirksen
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Justin T Breitbach
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingyu Xiang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas J Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
18
|
Thiemeyer H, Taher L, Schille JT, Harder L, Hungerbuehler SO, Mischke R, Hewicker-Trautwein M, Kiełbowicz Z, Brenig B, Schütz E, Beck J, Murua Escobar H, Nolte I. Suitability of ultrasound-guided fine-needle aspiration biopsy for transcriptome sequencing of the canine prostate. Sci Rep 2019; 9:13216. [PMID: 31519932 PMCID: PMC6744464 DOI: 10.1038/s41598-019-49271-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Ultrasound-guided fine-needle aspiration (US-FNA) biopsy is a widely used minimally invasive sampling procedure for cytological diagnosis. This study investigates the feasibility of using US-FNA samples for both cytological diagnosis and whole transcriptome RNA-sequencing analysis (RNA-Seq), with the ultimate aim of improving canine prostate cancer management. The feasibility of the US-FNA procedure was evaluated intra vitam on 43 dogs. Additionally, aspirates from 31 euthanised dogs were collected for standardising the procedure. Each aspirate was separated into two subsamples: for cytology and RNA extraction. Additional prostate tissue samples served as control for RNA quantity and quality evaluation, and differential expression analysis. The US-FNA sampling procedure was feasible in 95% of dogs. RNA isolation of US-FNA samples was successfully performed using phenol-chloroform extraction. The extracted RNA of 56% of a subset of US-FNA samples met the quality requirements for RNA-Seq. Expression analysis revealed that only 153 genes were exclusively differentially expressed between non-malignant US-FNAs and tissues. Moreover, only 36 differentially expressed genes were associated with the US-FNA sampling technique and unrelated to the diagnosis. Furthermore, the gene expression profiles clearly distinguished between non-malignant and malignant samples. This proves US-FNA to be useful for molecular profiling.
Collapse
Affiliation(s)
- H Thiemeyer
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Department of Haematology/Oncology/Palliative Care, Rostock University Medical Centre, Rostock, Germany
| | - L Taher
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - J T Schille
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Department of Haematology/Oncology/Palliative Care, Rostock University Medical Centre, Rostock, Germany
| | - L Harder
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - S O Hungerbuehler
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - R Mischke
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - M Hewicker-Trautwein
- Institute of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Z Kiełbowicz
- Department and Clinic of Veterinary Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - B Brenig
- University of Göttingen, Institute of Veterinary Medicine, Göttingen, Germany
| | - E Schütz
- Chronix Biomedical, Göttingen, Germany
| | - J Beck
- Chronix Biomedical, Göttingen, Germany
| | - H Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Department of Haematology/Oncology/Palliative Care, Rostock University Medical Centre, Rostock, Germany
| | - I Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
19
|
Comprehensive Genomic Profiling of Androgen-Receptor-Negative Canine Prostate Cancer. Int J Mol Sci 2019; 20:ijms20071555. [PMID: 30925701 PMCID: PMC6480132 DOI: 10.3390/ijms20071555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
Canine carcinomas have been considered natural models for human diseases; however, the genomic profile of canine prostate cancers (PCs) has not been explored. In this study, 14 PC androgen-receptor-negative cases, 4 proliferative inflammatory atrophies (PIA), and 5 normal prostate tissues were investigated by array-based comparative genomic hybridization (aCGH). Copy number alterations (CNAs) were assessed using the Canine Genome CGH Microarray 4 × 44K (Agilent Technologies). Genes covered by recurrent CNAs were submitted to enrichment and cross-validation analysis. In addition, the expression levels of TP53, MDM2 and ZBTB4 were evaluated in an independent set of cases by qPCR. PC cases presented genomic complexity, while PIA samples had a small number of CNAs. Recurrent losses covering well-known tumor suppressor genes, such as ATM, BRCA1, CDH1, MEN1 and TP53, were found in PC. The in silico functional analysis showed several cancer-related genes associated with canonical pathways and interaction networks previously described in human PC. The MDM2, TP53, and ZBTB4 copy number alterations were translated into altered expression levels. A cross-validation analysis using The Cancer Genome Atlas (TCGA) database for human PC uncovered similarities between canine and human PCs. Androgen-receptor-negative canine PC is a complex disease characterized by high genomic instability, showing a set of genes with similar alterations to human cancer.
Collapse
|
20
|
Emerging and Established Models of Bone Metastasis. Cancers (Basel) 2018; 10:cancers10060176. [PMID: 29865211 PMCID: PMC6024970 DOI: 10.3390/cancers10060176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death and drives patient morbidity as well as healthcare costs. Bone is the primary site of metastasis for several cancers—breast and prostate cancers in particular. Efforts to treat bone metastases have been stymied by a lack of models to study the progression, cellular players, and signaling pathways driving bone metastasis. In this review, we examine newly described and classic models of bone metastasis. Through the use of current in vivo, microfluidic, and in silico computational bone metastasis models we may eventually understand how cells escape the primary tumor and how these circulating tumor cells then home to and colonize the bone marrow. Further, future models may uncover how cells enter and then escape dormancy to develop into overt metastases. Recreating the metastatic process will lead to the discovery of therapeutic targets for disrupting and treating bone metastasis.
Collapse
|
21
|
Zhang Z, Liu J, Wang Y, Tan X, Zhao W, Xing X, Qiu Y, Wang R, Jin M, Fan G, Zhang P, Zhong Y, Kong D. Phosphatidylinositol 3-kinase β and δ isoforms play key roles in metastasis of prostate cancer DU145 cells. FASEB J 2018; 32:5967-5975. [PMID: 29792732 DOI: 10.1096/fj.201800183r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metastasis is the main cause of the lethality of prostate cancer. Class I phosphatidylinositol 3-kinases (PI3Ks), which contain 4 isoforms, α, β, δ, and γ, are known to play important roles in cell growth, migration, invasion, and so on. However, the respective role of each PI3K isoform in cancer cell migration and invasion remains unknown. In a study that aimed to elucidate the respective role of the 4 PI3K isoforms, we investigated the change in migratory and invasive ability of DU145 cells after treatment with each PI3K isoform-specific inhibitor. Both migration and invasion of DU145 cells were potently blocked by each of the PI3Kβ inhibitors (GSK2636771 and TGX221) and PI3Kδ inhibitors (CAL101 and IC87114) while not obviously affected by PI3Kα inhibitor BYL719 or PI3Kγ inhibitor AS252424. Furthermore, knocking down PI3Kβ or PI3Kδ isoform led to a significant decrease in migration of DU145. The results suggest that PI3Kβ and PI3Kδ play key roles in prostate cancer cell migration, while PI3Kα and PI3Kγ might be redundant. Oral administration of GSK2636771 (100 mg/kg) and CAL101 (30 mg/kg) inhibited tumor growth in bone, an experimental model by intratibia injection of DU145 cells, with improved bone structure and bone mineral density analyzed by micro-computed tomography. Tissue staining indicated reduction of metastatic DU145 cells and osteoclasts in the bones of GSK2636771- and CAL101-treated mice compared to the untreated group. In summary, our results indicated the distinct roles of 4 PI3K isoforms in the migration of prostate cancer DU145 cells, and they demonstrated the in vitro and in vivo antimetastatic effect of PI3K-isoform specific inhibitors, most of which are in clinical trials.-Zhang, Z., Liu, J., Wang, Y., Tan, X., Zhao, W., Xing, X., Qiu, Y., Wang, R., Jin, M., Fan, G., Zhang, P., Zhong, Y., Kong, D. Phosphatidylinositol 3-kinase β and δ isoforms play key roles in metastasis of prostate cancer DU145 cells.
Collapse
Affiliation(s)
- Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Yingying Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiao Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wennan Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoxue Xing
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
22
|
Elshafae SM, Kohart NA, Altstadt LA, Dirksen WP, Rosol TJ. The Effect of a Histone Deacetylase Inhibitor (AR-42) on Canine Prostate Cancer Growth and Metastasis. Prostate 2017; 77:776-793. [PMID: 28181686 DOI: 10.1002/pros.23318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/20/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Canine prostate cancer (PCa) is an excellent preclinical model for human PCa. AR-42 is a histone deacetylase inhibitor (HDACi) developed at The Ohio State University that inhibits the proliferation of several cancers, including multiple myeloma, lung, and hepatocellular cancer. In this study, we investigated whether AR-42 would prevent or decrease. The growth and metastasis of a canine PCa (Ace-1 cells) to bone in vitro and in vivo. METHODS Proliferation, cell viability, invasion, and metastasis of a canine prostate cancer cell line (Ace-1) were measured following treatment with AR-42. Expression of anoikis resistance, epithelial-to-mesenchymal transition (EMT), and stem cell-related markers were also evaluated. To assess the efficacy of AR-42 on prevention of PCa metastasis to bone, Ace-1 cells were injected in the left cardiac ventricle of nude mice, mice were treated with AR-42, and the incidence and growth of bone metastasis were measured. Bioluminescence was performed to monitor the bone metastases in nude mice. RESULTS AR-42 inhibited the in vitro proliferation of Ace-1 cells in a time- and dose-dependent manner. The IC50 concentration of AR-42 for Ace-1 cells was 0.42 μM after 24 hr of treatment. AR-42 induced apoptosis, decreased cell migration, and increased the stem cell properties of Ace-1 cells in vitro. AR-42 downregulated E-cadherin, N-cadherin, TWIST, MYOF, anoikis resistance, and osteomimicry genes, while it upregulated SNAIL, PTEN, FAK, and ZEB1 gene expression in Ace-1 cells. Importantly, AR-42 decreased the bioluminescence and incidence of bone metastasis in nude mice. In addition, AR-42 induced apoptosis and altered the tumor cell morphology to an irregular cell phenotype with condensed chromatin in the bone metastases. CONCLUSION AR-42 decreased PCa growth and bone metastasis, induced apoptosis, and downregulated osteomimicry genes in PCa cells in the bone microenvironment. Prostate 77:776-793, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Said M Elshafae
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
- Faculty of Veterinary Medicine, Department of Pathology, Benha University, Benha, Egypt
| | - Nicole A Kohart
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Lucas A Altstadt
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Wessel P Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Thomas J Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| |
Collapse
|
23
|
Fernandes RS, dos Santos Ferreira D, de Aguiar Ferreira C, Giammarile F, Rubello D, de Barros ALB. Development of imaging probes for bone cancer in animal models. A systematic review. Biomed Pharmacother 2016; 83:1253-1264. [DOI: 10.1016/j.biopha.2016.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022] Open
|
24
|
Yu C, Wang H, Muscarella A, Goldstein A, Zeng HC, Bae Y, Lee BHI, Zhang XHF. Intra-iliac Artery Injection for Efficient and Selective Modeling of Microscopic Bone Metastasis. J Vis Exp 2016. [PMID: 27768029 DOI: 10.3791/53982] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Intra-iliac artery (IIA) injection is an efficient approach to introduce metastatic lesions of various cancer cells in animals. Compared to the widely used intra-cardiac and intra-tibial injections, IIA injection brings several advantages. First, it can deliver a large quantity of cancer cells specifically to hind limb bones, thereby providing spatiotemporally synchronized early-stage colonization events and allowing robust quantification and swift detection of disseminated tumor cells. Second, it injects cancer cells into the circulation without damaging the local tissues, thereby avoiding inflammatory and wound-healing processes that confound the bone colonization process. Third, IIA injection causes very little metastatic growth in non-bone organs, thereby preventing animals from succumbing to other vital metastases, and allowing continuous monitoring of indolent bone lesions. These advantages are especially useful for the inspection of progression from single cancer cells to multi-cell micrometastases, which has largely been elusive in the past. When combined with cutting-edge approaches of biological imaging and bone histology, IIA injection can be applied to various research purposes related to bone metastases.
Collapse
Affiliation(s)
- Cuijuan Yu
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Department of Molecular and Cellular Biology, Baylor College of Medicine
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Department of Molecular and Cellular Biology, Baylor College of Medicine
| | - Aaron Muscarella
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Department of Molecular and Cellular Biology, Baylor College of Medicine
| | - Amit Goldstein
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Department of Molecular and Cellular Biology, Baylor College of Medicine
| | - Huan-Chang Zeng
- Graduate Program in Developmental Biology, Baylor College of Medicine
| | - Yangjin Bae
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Brendan H I Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine; Department of Molecular and Cellular Biology, Baylor College of Medicine; McNair Medical Institute, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine;
| |
Collapse
|
25
|
p16, pRb, and p53 in Feline Oral Squamous Cell Carcinoma. Vet Sci 2016; 3:vetsci3030018. [PMID: 29056726 PMCID: PMC5606583 DOI: 10.3390/vetsci3030018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022] Open
Abstract
Feline oral squamous cell carcinoma (FOSCC) is a highly aggressive head and neck cancer in cats, but the molecular pathogenesis of this cancer is still uncertain. In this study, p16, p53, and pRb proteins were detected and quantified by immunohistochemistry in forty-three FOSCC primary tumors and three FOSCC xenografts. p16 mRNA levels were also measured in three FOSCC cell lines (SCCF1, F2, and F3), which were consistent with their p16 immunoreactivity. Feline SCCF1 cells had very high levels of p16 protein and mRNA (55-fold greater) compared to SCCF2 and F3. A partial feline p16 cDNA sequence was amplified and sequenced. The average age of cats with FOSCC with high p16 immunoreactivity was significantly lower than the average age in the low p16 group. Eighteen of 43 (42%) FOSCCs had low p16 intensity, while 6/43 (14%) had high p16 immunoreactivity. Feline papillomavirus L1 (major capsid) DNA was not detected in the SCC cell lines or the FOSCCs with high p16 immunostaining. Five of 6 (83%) of the high p16 FOSCC had low p53, but only 1/6 (17%) had low pRb immunoreactivity. In summary, the staining pattern of p16, p53, and pRb in FOSCC was different from human head and neck squamous cell carcinoma and feline cutaneous squamous cell carcinoma. The majority of FOSCCs have low p16 immunostaining intensity, therefore, inactivation of CDKN2A is suspected to play a role in the pathogenesis of FOSCC. A subset of FOSCCs had increased p16 protein, which supports an alternate pathogenesis of cancer in these cats.
Collapse
|
26
|
Simmons JK, Hildreth BE, Supsavhad W, Elshafae SM, Hassan BB, Dirksen WP, Toribio RE, Rosol TJ. Animal Models of Bone Metastasis. Vet Pathol 2015; 52:827-41. [PMID: 26021553 DOI: 10.1177/0300985815586223] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone.
Collapse
Affiliation(s)
- J K Simmons
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - B E Hildreth
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - W Supsavhad
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - S M Elshafae
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - B B Hassan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - W P Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - R E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - T J Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
|