1
|
Lee GH, Lee HY, Zhao L, Rashid MMU, Kim MK, Jeong YB, Chae HJ, Shin YS. The Role of Reactive Oxygen Species, Inflammation, and Endoplasmic Reticulum Stress Response in the Finasteride Protective Effect against Benign Prostate Hyperplasia. World J Mens Health 2024; 42:600-609. [PMID: 37853537 PMCID: PMC11216955 DOI: 10.5534/wjmh.230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE Benign prostate hyperplasia (BPH) is a common age-related chronic condition. Its pathogenesis involves androgen imbalance, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress. This study aims to assess the protective effect of finasteride, a 5α-reductase inhibitor, against testosterone propionate (TP)-induced BPH in rats and explore its potential mechanism of action. MATERIALS AND METHODS TP-induced BPH rats received either saline or finasteride (1 mg/kg) orally once a day for 7 weeks. Prior to sacrificing the animals, blood samples were collected. After sacrifice, prostate and tissue around the prostate were dissected from seminal vesical for further analysis. Body weight, prostate weight, dihydrotestosterone (DHT), 5α-reductase type 2 (5-AR2), and prostate-specific antigen (PSA) levels were measured. In addition, HIF-1α, VEGF, MMP-2 expressions in prostate, oxidative stress, inflammation, and ER stress responses were analyzed to understand the mechanism of action of finasteride. RESULTS Finasteride administration inhibited prostate enlargement, DHT, 5-AR2, and PSA levels in BPH rats. Additionally, finasteride inhibited angiogenesis markers such as HIF-1α, VEGF, and MMP-2. Moreover, components of oxidative stress, inflammation, and ER stress responses were significantly regulated by finasteride treatment. CONCLUSIONS This study suggests that finasteride prevents BPH-associated symptoms by regulating angiogenesis, reactive oxygen species, ER stress responses, and inflammation, another mechanism to explain the effect of the 5α-reductase against BPH.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Hwa-Young Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
| | - Luo Zhao
- Department of Urology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Mohammad Mamun Ur Rashid
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Korea
| | - Myung Ki Kim
- Department of Urology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Young Beom Jeong
- Department of Urology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Han-Jung Chae
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Korea
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Korea.
| | - Yu Seob Shin
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
- Department of Urology, Jeonbuk National University Medical School, Jeonju, Korea.
| |
Collapse
|
2
|
Montico F, Lamas CDA, Rossetto IMU, Baseggio AM, Cagnon VHA. Lobe-specific responses of TRAMP mice dorsolateral prostate following celecoxib and nintedanib therapy. J Mol Histol 2023; 54:379-403. [PMID: 37335420 DOI: 10.1007/s10735-023-10130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Delayed cancer progression in the ventral prostate of the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model has been previously reported upon celecoxib and nintedanib co-administration. Herein, we sought to further investigate the effects of these drugs association in some of their direct molecular targets (COX-2, VEGF and VEGFR-2) and in reactive stroma markers (TGF-β, αSMA, vimentin and pro-collagen 1) in the dorsolateral prostate, looking for lobe-specific responses. Male TRAMP mice were treated with celecoxib (10 mg/Kg, i.o.) and/or nintedanib (15 mg/Kg, i.o.) for 6 weeks and prostate was harvested for morphological and protein expression analyses. Results showed that combined therapy resulted in unique antitumor effects in dorsolateral prostate, especially due to the respective stromal or epithelial antiproliferative actions of these drugs, which altogether led to a complete inversion in high-grade (HGPIN) versus low-grade (LGPIN) premalignant lesion incidences in relation to controls. At the molecular level, this duality in drug action was paralleled by the differential down/upregulation of TGF-β signaling by celecoxib/nintedanib, thus leading to associated changes in stroma composition towards regression or quiescence, respectively. Additionally, combined therapy was able to promote decreased expression of inflammatory (COX-2) and angiogenesis (VEGF/VEGFR-2) mediators. Overall, celecoxib and nintedanib association provided enhanced antitumor effects in TRAMP dorsolateral as compared to former registers in ventral prostate, thus demonstrating lobe-specific responses of this combined chemoprevention approach. Among these responses, we highlight the ability in promoting TGF-β signaling and its associated stromal maturation/stabilization, thus yielding a more quiescent stromal milieu and resulting in greater epithelial proliferation impairment.
Collapse
Affiliation(s)
- Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil.
| | - Celina de Almeida Lamas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil
| | - Isabela Maria Urra Rossetto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil
| | - Andressa Mara Baseggio
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-852, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil
| |
Collapse
|
3
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Lamas CA, Kido LA, Montico F, Collares-Buzato CB, Maróstica MR, Cagnon VHA. A jaboticaba extract prevents prostatic damage associated with aging and high-fat diet intake. Food Funct 2020; 11:1547-1559. [DOI: 10.1039/c9fo02621e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Jaboticaba extract prevented the prostatic lesion development in aging and/or overweight mice, mainly interfering in cell proliferation, hormonal and angiogenesis pathways.
Collapse
Affiliation(s)
- C. A. Lamas
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| | - L. A. Kido
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| | - F. Montico
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| | - C. B. Collares-Buzato
- Department of Biochemistry and Tissue Biology
- Biology Institute
- University of Campinas
- São Paulo
- Brazil
| | - M. R. Maróstica
- Department of Food and Nutrition
- School of Food Engineering
- University of Campinas
- São Paulo
- Brazil
| | - V. H. A. Cagnon
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| |
Collapse
|
5
|
Figueroa V, Rodríguez MS, Lanari C, Lamb CA. Nuclear action of FGF members in endocrine-related tissues and cancer: Interplay with steroid receptor pathways. Steroids 2019; 152:108492. [PMID: 31513818 DOI: 10.1016/j.steroids.2019.108492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
Abstract
Dysregulation of the fibroblast growth factors/fibroblast growth factor receptor (FGF/FGFR) pathway has been implicated in a wide range of human disorders and several members have been localized in the nuclear compartment. Hormone-activated steroid receptors or ligand independent activated receptors form nuclear complexes that activate gene transcription. This review aims to highlight the interplay between the steroid receptor and the FGF/FGFR pathways and focuses on the current knowledge on nuclear action of FGF members in endocrine-related tissues and cancer. The nuclear trafficking and targets of FGF/FGFR members and the available evidence on the interplay with steroid hormones and receptors is described. Finally, the data on aberrant FGF/FGFR signaling is summarized and the nuclear action of FGF members on endocrine resistant breast cancer is highlighted. Identifying the mechanisms underlying FGF-induced endocrine resistance will be important to understand how to efficiently target endocrine-related diseases and even enhance or restore endocrine sensitivity in hormone receptor positive tumors.
Collapse
Affiliation(s)
- Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Caroline Ana Lamb
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| |
Collapse
|
6
|
Mateus PAM, Kido LA, Silva RS, Cagnon VHA, Montico F. Association of anti-inflammatory and antiangiogenic therapies negatively influences prostate cancer progression in TRAMP mice. Prostate 2019; 79:515-535. [PMID: 30585351 DOI: 10.1002/pros.23758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic inflammation has been implicated in cancer etiology and angiogenesis is stimulated in this disease. In prostate, the crosstalk between malignant epithelial cells and their microenvironment is an essential step of tumorigenesis during which glandular stroma undergo changes designated as reactive stroma. Thus, the aim herewith was to evaluate the effects of associating anti-inflammatory and antiangiogenic therapies on cancer progression, correlating them with steroid hormone receptor (AR and ERα), reactive stroma (vimentin, αSMA, and TGF-β), and cell proliferation (PCNA) markers expression in the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model. METHODS TRAMP mice (12-week old) were divided into the groups: Control (TRCON): received the vehicles used for drug dilution; Celecoxib (TRCEL): received oral doses of the anti-inflammatory drug celecoxib (15 mg/kg) twice daily; Nintedanib (TRNTB): received oral doses of the antiangiogenic drug nintedanib (10 mg/kg) daily; Nintedanib+Celecoxib (TRNTCEL): received the combination of drugs. After 6 weeks, mice were euthanized and ventral prostate samples were harvested for morphological, immunohistochemical, and Western blotting analyses. RESULTS While celecoxib led to fibromuscular hypertrophy attenuation, nintedanib significantly reduced the incidence of well-differentiated adenocarcinoma (WDAC) foci in relation to controls, both when administered per se or in association to celecoxib. Furthermore, drug combination was associated with unique effects, including lower incidence of HGPIN lesions; lower AR stromal distribution; changes in ERα localization from epithelial nuclei to stroma as well as significant decrease of TGF-β levels and associated angiogenesis. In parallel, all treatments applied resulted in reduced inflammatory marker and vimentin (VIM) expression. CONCLUSIONS Celecoxib plus nintedanib is an effective antitumor combination against prostate cancer progression in TRAMP mice, showing remarkable efficacy in relation to isolated therapies. Importantly, this efficacy might be due to drug association effect on driving AR and mainly ERα distribution in the prostatic tissue towards benign patterns. In addition, celecoxib and nintedanib impaired the development of a stromal reaction by reducing the recruitment of reactive stroma cells and maintaining a normal smooth muscle cell-rich prostate stroma in TRAMP mice. Collectively, these findings pointed to the beneficial effects of combining anti-inflammatory and antiangiogenic strategies to prevent or delay prostatic tumorigenesis.
Collapse
Affiliation(s)
- Pedro Augusto Marischka Mateus
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rafael Sauce Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- School of Medicine, University of Western São Paulo (UNOESTE), Jaú, São Paulo, Brazil
| |
Collapse
|
7
|
Kido LA, de Almeida Lamas C, Maróstica MR, Cagnon VHA. Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model: A good alternative to study PCa progression and chemoprevention approaches. Life Sci 2019; 217:141-147. [DOI: 10.1016/j.lfs.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022]
|
8
|
Nogueira Pangrazi E, da Silva RF, Kido LA, Montico F, Cagnon VHA. Nintedanib treatment delays prostate dorsolateral lobe cancer progression in the TRAMP model: contribution to the epithelial-stromal interaction balance. Cell Biol Int 2017; 42:153-168. [PMID: 28980742 DOI: 10.1002/cbin.10881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/30/2017] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) progression mechanism has been linked to epithelial proliferation, tumor invasion ability, and growth factors. Nintedanib (BIBF 1120) has been reported as being FGF and VEGF pathway inhibitors, exhibiting antitumor activity. Thus, the objective herein was to characterize the early Nintedanib treatment effects on the structure and molecules involved in the basal membrane, the extracellular matrix (ECM) maintenance, in addition to the angiogenesis and mitogenic processes at different grades of prostatic tumor development in TRAMP mice. Therefore, 45 male TRAMP mice were divided into control groups: 8-week-old mice (TC8), 12-week-old mice (TC12), and 16-week-old mice (TC16); and treated groups with 10 mg/kg/day Nintedanib dose for 4 weeks. The treated groups were euthanized at 12 (TN12) and 16 (TN16) weeks of age. Samples from the dorsolateral lobe were collected and processed for light microscopy, immunohistochemistry, Western blotting, and microvessel density analysis. The results showed that early Nintedanib treatment led to an increase of healthy epithelium frequency and a reduction of LGPIN and a maximum vascularization density in the TN12 group. Also, treatment led to a well-differentiated adenocarcinoma decrease and an α and β dystroglycan and also laminin 1 increase in the TN16 group. IGFR1 decreased in the TN16 group. To conclude, early Nintedanib treatment led to a reduction in cancer severity, interfering in both ECM compounds and angiogenesis process to then contribute to a balance, not only in the prostatic epithelium and stroma, but also in the epithelial-stromal interaction during PCa progression.
Collapse
Affiliation(s)
- Ellen Nogueira Pangrazi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-865, São Paulo, Brazil
| | - Raquel F da Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-865, São Paulo, Brazil
| | - Larissa A Kido
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-865, São Paulo, Brazil
| | - Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-865, São Paulo, Brazil
| | - Valéria H A Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-865, São Paulo, Brazil
| |
Collapse
|
9
|
Kido LA, Montico F, Vendramini-Costa DB, Pilli RA, Cagnon VHA. Goniothalamin and Celecoxib Effects During Aging: Targeting Pro-Inflammatory Mediators in Chemoprevention of Prostatic Disorders. Prostate 2017; 77:838-848. [PMID: 28191652 DOI: 10.1002/pros.23324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/25/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Prostate is highly affected by aging, which lead to inflammatory disorders that can predispose to cancer development. Chemoprevention has emerged as a new therapeutic approach, intensifying studies evaluating the biological properties of new compounds. The aim of this study was to characterize the inflammatory responses in the prostate ventral lobe from senile mice treated with Goniothalamin (GTN), a promising natural compound with anti-inflammatory and antiproliferative properties. Its activity was compared to Celecoxib, an established nonsteroidal anti-inflammatory drug (NSAID). METHODS The animals were divided into: Control groups; Young (18-week-old FVB), Senile (52-week-old FVB). Treated groups: Senile-Goniothalamin (150 mg/kg orally), Senile-Celecoxib (10 mg/kg orally). The ventral lobe was collected after 4 weeks for light microscopy, immunohistochemistry, ELISA, and Western blotting analysis. RESULTS Both treatments were efficient in controlling the inflammatory process in the prostate from senile mice, maintaining the glandular morphology integrity. GTN reduced all inflammatory mediators evaluated (TNF-α, COX-2, iNOS) and different from Celecoxib, it also decreased the protein levels of NF-kB and p-NF-kB. CONCLUSIONS Finally, GTN and Celecoxib controlled inflammation in the prostate, and sensitized the senescent microenvironment to anti-inflammatory stimuli. Thus, both treatments are indicated as potential drugs in the prostatic diseases prevention during senescence. Prostate 77:838-848, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Ronaldo Aloise Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valeria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
da Silva RF, Nogueira-Pangrazi E, Kido LA, Montico F, Arana S, Kumar D, Raina K, Agarwal R, Cagnon VHA. Nintedanib antiangiogenic inhibitor effectiveness in delaying adenocarcinoma progression in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP). J Biomed Sci 2017; 24:31. [PMID: 28499383 PMCID: PMC5429557 DOI: 10.1186/s12929-017-0334-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/03/2017] [Indexed: 02/08/2023] Open
Abstract
Background In recent times, anti-cancer treatments have focused on Fibroblast Growth Factor (FGF) and Vascular-Endothelial Growth Factor (VEGF) pathway inhibitors so as to target tumor angiogenesis and cellular proliferation. One such drug is Nintedanib; the present study evaluated the effectiveness of Nintedanib treatment against in vitro proliferation of human prostate cancer (PCa) cell lines, and growth and progression of different grades of PCa lesions in pre-clinical PCa transgenic adenocarcinoma for the mouse prostate (TRAMP) model. Methods Both androgen-independent (LNCaP) and androgen-dependent (PC3) PCa cell lines were treated with a range of Nintedanib doses for 72 h, and effect on cell growth and expression of angiogenesis associated VEGF receptors was analyzed. In pre-clinical efficacy evaluation, male TRAMP mice starting at 8 and 12 weeks of age were orally-fed with vehicle control (10% Tween 20) or Nintedanib (10 mg/Kg/day in vehicle control) for 4 weeks, and sacrificed immediately after 4 weeks of drug treatment or sacrificed 6–10 weeks after stopping drug treatments. At the end of treatment schedule, mice were sacrificed and ventral lobe of prostate was excised along with essential metabolic organ liver, and subjected to histopathological and extensive molecular evaluations. Results The total cell number decreased by 56–80% in LNCaP and 45–93% in PC3 cells after 72 h of Nintedanib treatment at 2.5–25 μM concentrations. In pre-clinical TRAMP studies, Nintedanib led to a delay in tumor progression in all treatment groups; the effect was more pronounced when treatment was given at the beginning of the glandular lesion development and continued till study end. A decreased microvessel density and VEGF immunolocalization was observed, besides decreased expression of Androgen Receptor (AR), VEGFR-1 and FGFR-3 in some of the treated groups. No changes were observed in the histological liver analysis. Conclusions Nintedanib treatment was able to significantly decrease the growth of PCa cell lines and also delay growth and progression of PCa lesions to higher grades of malignancy (without inducing any hepatotoxic effects) in TRAMP mice. Furthermore, it was observed that Nintedanib intervention is more effective when administered during the early stages of neoplastic development, although the drug is capable of reducing cell proliferation even after treatment interruption.
Collapse
Affiliation(s)
- Raquel Frenedoso da Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-865, Campinas, São Paulo, Brazil
| | - Ellen Nogueira-Pangrazi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-865, Campinas, São Paulo, Brazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-865, Campinas, São Paulo, Brazil
| | - Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-865, Campinas, São Paulo, Brazil
| | - Sarah Arana
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, 13083-865, Campinas, São Paulo, Brazil.
| |
Collapse
|
11
|
Hetzl AC, Montico F, Kido LA, Cagnon VHA. Prolactin, EGFR, vimentin and α-actin profiles in elderly rat prostate subjected to steroid hormonal imbalance. Tissue Cell 2016; 48:189-96. [DOI: 10.1016/j.tice.2016.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
|
12
|
Kido LA, Montico F, Sauce R, Macedo AB, Minatel E, Costa DBV, Carvalho JED, Pilli RA, Cagnon VHA. Anti-inflammatory therapies in TRAMP mice: delay in PCa progression. Endocr Relat Cancer 2016; 23:235-50. [PMID: 26772819 DOI: 10.1530/erc-15-0540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 01/08/2023]
Abstract
The aim of this study was to characterize the structural and molecular biology as well as evaluate the immediate and late responses of prostatic cancer in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model after treatment with goniothalamin (GTN) and celecoxib. The treated mice received GTN (150 mg/kg, gavage) or celecoxib (10 mg/kg, gavage) from 8 to 12 weeks of age. They were killed at different ages: the immediate-response groups at 12 weeks and the late-response groups at 22 weeks. The ventral prostate was collected for light microscopy, immunohistochemistry, western blotting, TUNEL, and ELISA. Morphological analyses indicated that GTN treatment delayed the progression of prostatic adenocarcinoma, leading to a significant decrease of prostatic lesion frequency in both experimental period responses to this treatment, mainly high-grade prostatic intraepithelial neoplasia and well-differentiated adenocarcinoma. Also, the celecoxib treatment showed a particular decrease in the proliferative processes (PCNA) in both the experimental periods. Despite celecoxib diminishing the COX2 and IGFR1 levels, GTN presented higher action spectrum considering the decrease of a greater molecular number involved in the proliferative and inflammatory processes in prostatic cancer. Goniothalamin attenuated the pro-inflammatory response in TRAMP prostatic microenvironment, delaying prostate cancer (PCa) progression. Celecoxib treatment was efficient in the regulation of COX2 in the TRAMP mice, mainly in the advanced disease grade. Finally, we concluded that inflammatory process control in early grades of PCa was crucial for the downregulation of the signaling pathways involved in the proliferative processes in advanced cancer grades.
Collapse
Affiliation(s)
- Larissa Akemi Kido
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabio Montico
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rafael Sauce
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline Barbosa Macedo
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Elaine Minatel
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Débora Barbosa Vendramini Costa
- Chemical, Biological and Agricultural Pluridisciplinary Research CenterCPQBA, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil Department of Organic ChemistryInstitute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Ernesto de Carvalho
- Chemical, Biological and Agricultural Pluridisciplinary Research CenterCPQBA, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil Faculty of Pharmaceutical SciencesUniversity of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ronaldo Aloise Pilli
- Department of Organic ChemistryInstitute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valeria Helena Alves Cagnon
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Wu L, Yao C, Xiong Z, Zhang R, Wang Z, Wu Y, Qin Q, Hua Y. The effects of a picosecond pulsed electric field on angiogenesis in the cervical cancer xenograft models. Gynecol Oncol 2016; 141:175-81. [PMID: 26851601 DOI: 10.1016/j.ygyno.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The application of picosecond pulsed electric field (psPEF) is a new biomedical engineering technique used in cancer therapy. However, its effects on cervical cancer angiogenesis are not clear. Therefore, the aim of the present study is to investigate the effects of psPEF on angiogenesis in cervical cancer xenograft models. METHODS Xenograft tumors were created by subcutaneously inoculating nude mice (athymic BALB/c nu/nu mice) with HeLa cells, then were placed closely between tweezer-type plate electrodes and subjected to psPEF with a gradually increased electric field intensity (0kV/cm, 50kV/cm, 60kV/cm, 70kV/cm). The direct effect on tumor tissue was observed by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). The changes of blood vessels and oxygen saturation (sO2) of tumors were monitored in vivo by photoacoustic tomography (PAT). The microvessel density (MVD), vascular endothelial growth factor (VEGF) and hypoxia-inducible transcription factors (HIF-1α and HIF-2α) were detected by immunohistochemical technique (IHC). Their protein expressions and gene transcription levels were evaluated using western blot (WB) and quantitative reverse transcription and polymerase chain reaction (RT-PCR). RESULTS PsPEF induced obvious necrosis of cervical cancer tissue; with the increasing of electric field intensity, the MVD, vascular PA signal and sO2 values declined significantly. The protein expression and gene transcription levels of VEGF, HIF1α and HIF2α were significantly decreased at the same time. CONCLUSION PsPEF exhibited dramatic anti-tumor and anti-angiogenesis effects in cervical cancer xenograft models by exerting direct effect on cancer cells and vascular endothelial cells and indirect effect on tumor angiogenesis-related factors.
Collapse
Affiliation(s)
- Limei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 400030 Chongqing, PR China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China
| | - Ruizhe Zhang
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 400030 Chongqing, PR China
| | - Zhiliang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China
| | - Yutong Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China
| | - Qin Qin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China
| | - Yuanyuan Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, PR China.
| |
Collapse
|
14
|
Montico F, Kido LA, San Martin R, Rowley DR, Cagnon VHA. Reactive stroma in the prostate during late life: The role of microvasculature and antiangiogenic therapy influences. Prostate 2015; 75:1643-61. [PMID: 26184673 DOI: 10.1002/pros.23045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/02/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prostate cancer is associated to a reactive stroma microenvironment characterized by angiogenic processes that are favorable for tumor progression. Senescence has been identified as a predisposing factor for prostate malignancies. In turn, the relationships between aging, reactive stroma, and the mechanisms that induce this phenotype are largely unknown. Thus, we investigated the occurrence of reactive stroma in the mouse prostate during advanced age as well as the effects of antiangiogenic and androgen ablation therapies on reactive stroma recruitment. METHODS Male mice (52-week-old FVB) were treated with two classes of angiogenesis inhibitors: direct (TNP-470; 15 mg/kg; s.c.) and/or indirect (SU5416; 6 mg/kg; i.p.). Androgen ablation was carried out by finasteride administration (20 mg/kg; s.c.), alone or in association to both inhibitors. The Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model was used as a paradigm of cancer-associated reactive stroma. The dorsolateral prostate was collected for α-actin (αSMA), vimentin (VIM), and transforming growth factor-beta (TGF-β) immunohistochemical and Western blotting analyses as well as for CD34/αSMA and CD34/VIM colocalization. RESULTS Senescence was associated with increased αSMA, VIM, and TGF-β expression as well as with the recruitment of CD34/αSMA and CD34/VIM dual-positive fibroblasts. These observations were similar to those verified in TRAMP mice. Antiangiogenic treatment promoted the recovery of senescence-associated stromal changes. Hormonal ablation, despite having led to impaired CD34/αSMA and CD34/VIM dual-positive cell recruitment, did not result in decreased stimulus to reactive stroma development, due to enhanced TGF-β expression in relation to the aged controls. CONCLUSIONS Reactive stroma develops in the prostate of non-transgenic mice as a result of aging. The periacinar microvasculature is a candidate source for the recruitment of reactive stroma-associated cells, which may be derived either from perivascular-resident mesenchymal stem cells (MSCs) or from an endothelial-to-mesenchymal transition (EndMT) process. Thus, antiangiogenic therapy is a promising approach for preventing age-associated prostate malignancies by means of its negative interference in the development of reactive stroma phenotype from the vascular wall.
Collapse
Affiliation(s)
- Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rebeca San Martin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - David R Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Valéria H A Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|