1
|
Song R, J Sutton G, Li F, Liu Q, Wong JJL. Variable calling of m6A and associated features in databases: a guide for end-users. Brief Bioinform 2024; 25:bbae434. [PMID: 39258883 PMCID: PMC11388104 DOI: 10.1093/bib/bbae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
N6-methyladenosine (m$^{6}$A) is a widely-studied methylation to messenger RNAs, which has been linked to diverse cellular processes and human diseases. Numerous databases that collate m$^{6}$A profiles of distinct cell types have been created to facilitate quick and easy mining of m$^{6}$A signatures associated with cell-specific phenotypes. However, these databases contain inherent complexities that have not been explicitly reported, which may lead to inaccurate identification and interpretation of m$^{6}$A-associated biology by end-users who are unaware of them. Here, we review various m$^{6}$A-related databases, and highlight several critical matters. In particular, differences in peak-calling pipelines across databases drive substantial variability in both peak number and coordinates with only moderate reproducibility, and the inclusion of peak calls from early m$^{6}$A sequencing protocols may lead to the reporting of false positives or negatives. The awareness of these matters will help end-users avoid the inclusion of potentially unreliable data in their studies and better utilize m$^{6}$A databases to derive biologically meaningful results.
Collapse
Affiliation(s)
- Renhua Song
- Epigenetics and RNA Biology Laboratory, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Gavin J Sutton
- Epigenetics and RNA Biology Laboratory, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Fuyi Li
- College of Information Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Qian Liu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Maryland Pkwy, NV 89154, United States
- School of Life Sciences, College of Sciences, University of Nevada, Las Vegas, Maryland Pkwy, NV 89154, United States
| | - Justin J-L Wong
- Epigenetics and RNA Biology Laboratory, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
2
|
Andersson N, Saba KH, Magnusson L, Nilsson J, Karlsson J, Nord KH, Gisselsson D. Inactivation of RB1, CDKN2A, and TP53 have distinct effects on genomic stability at side-by-side comparison in karyotypically normal cells. Genes Chromosomes Cancer 2023; 62:93-100. [PMID: 36124964 PMCID: PMC10091693 DOI: 10.1002/gcc.23096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022] Open
Abstract
Chromosomal instability is a common feature in malignant tumors. Previous studies have indicated that inactivation of the classical tumor suppressor genes RB1, CDKN2A, and TP53 may contribute to chromosomal aberrations in cancer by disrupting different aspects of the cell cycle and DNA damage checkpoint machinery. We performed a side-by-side comparison of how inactivation of each of these genes affected chromosomal stability in vitro. Using CRISPR-Cas9 technology, RB1, CDKN2A, and TP53 were independently knocked out in karyotypically normal immortalized cells, after which these cells were followed over time. Bulk RNA sequencing revealed a distinct phenotype with upregulation of pathways related to cell cycle control and proliferation in all three knockouts. Surprisingly, the RB1 and CDKN2A knocked out cell lines did not harbor more copy number aberrations than wild-type cells, despite culturing for months. The TP53-knocked out cells, in contrast, showed a massive amount of copy number alterations and saltatory evolution through whole genome duplication. This side-by-side comparison indicated that the effects on chromosomal stability from inactivation of RB1 and CDKN2A are negligible compared to inactivation of TP53, under the same conditions in a nonstressful environment, even though partly overlapping regulatory pathways are affected. Our data suggest that loss of RB1 and CDKN2A alone is not enough to trigger surviving detectable aneuploid clones while inactivation of TP53 on its own caused massive CIN leading to saltatory clonal evolution in vitro and clonal selection.
Collapse
Affiliation(s)
- Natalie Andersson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karim H Saba
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Linda Magnusson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jenny Nilsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jenny Karlsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karolin H Nord
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Division of Oncology-Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.,Clinical Genetics and Pathology, Laboratory Medicine, Lund University Hospital, Skåne Healthcare Region, Lund, Sweden
| |
Collapse
|
3
|
Fontana F, Anselmi M, Limonta P. Molecular mechanisms and genetic alterations in prostate cancer: From diagnosis to targeted therapy. Cancer Lett 2022; 534:215619. [PMID: 35276289 DOI: 10.1016/j.canlet.2022.215619] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
Prostate cancer remains one of the most lethal malignancies among men worldwide. Although the primary tumor can be successfully managed by surgery and radiotherapy, advanced metastatic carcinoma requires better therapeutic approaches. In this context, a deeper understanding of the molecular mechanisms that underlie the initiation and progression of this disease is urgently needed, leading to the identification of new diagnostic/prognostic markers and the development of more effective treatments. Herein, the current state of knowledge of prostate cancer genetic alterations is discussed, with a focus on their potential in tumor detection and staging as well as in the screening of novel therapeutics.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Martina Anselmi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Ge D, Feijó A, Wen Z, Lissovsky A, Zhang D, Cheng J, Yan C, Mu D, Wu X, Xia L, Yang Q. Ancient introgression underlying the unusual mito‐nuclear discordance and coat phenotypic variation in the Moupin pika. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | | | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology Chinese Academy of Sciences Sichuan China
| | - Danping Mu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology Xinjiang University Urumqi China
| | - Xinlai Wu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development Hebei University Baoding China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| |
Collapse
|
5
|
He Y, Liu H, Luo S, Amos CI, Lee JE, Li X, Nan H, Wei Q. Genetic variants of SDCCAG8 and MAGI2 in mitosis-related pathway genes are independent predictors of cutaneous melanoma-specific survival. Cancer Sci 2021; 112:4355-4364. [PMID: 34375487 PMCID: PMC8486203 DOI: 10.1111/cas.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/01/2022] Open
Abstract
Mitosis is a prognostic factor for cutaneous melanoma (CM), but accurate mitosis detection in CM tissues is difficult. Therefore, the 8th Edition of the American Joint Committee on Cancer staging system has removed the mitotic rate as a category criterion of the tumor T-category, based on the evidence that the mitotic rate was not an independent prognostic factor for melanoma survival. As single-nucleotide polymorphisms (SNPs) have been shown to be potential predictors for cutaneous melanoma-specific survival (CMSS), we investigated the potential prognostic value of SNPs in mitosis-related pathway genes in CMSS by analyzing their associations with outcomes of 850 CM patients from The University of Texas MD Anderson Cancer Center in a discovery dataset and validated the findings in another dataset of 409 CM patients from the Harvard University Nurses' Health Study and Health Professionals Follow-up Study. In both datasets, we identified two SNPs (SDCCAG8 rs10803138 G>A and MAGI2 rs3807694 C>T) as independent prognostic factors for CMSS, with adjusted allelic hazards ratios of 1.49 (95% confidence interval = 1.17-1.90, P = .001) and 1.45 (1.13-1.86, P = .003), respectively. Furthermore, their combined unfavorable alleles also predicted a poor survival in both discovery and validation datasets in a dose-response manner (Ptrend = .0006 and .0001, respectively). Additional functional analysis revealed that both SDCCAG8 rs10803138 A and MAGI2 rs3807694 T alleles were associated with elevated mRNA expression levels in normal tissues. Therefore, these findings suggest that SDCCAG8 rs10803138 G>A and MAGI2 rs3807694 C>T are independent prognostic biomarkers for CMSS, possibly by regulating the mRNA expression of the corresponding genes involved in mitosis.
Collapse
Affiliation(s)
- Yuanmin He
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| | - Hongliang Liu
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| | - Sheng Luo
- Department of Biostatistics and BioinformaticsDuke University School of MedicineDurhamNCUSA
| | - Christopher I. Amos
- Institute for Clinical and Translational ResearchBaylor College of MedicineHoustonTXUSA
| | - Jeffrey E. Lee
- Department of Surgical OncologyThe University of Texas M. D. Anderson Cancer CenterHoustonTXUSA
| | - Xin Li
- Department of EpidemiologyRichard M. Fairbanks School of Public HealthIndiana UniversityIndianapolisINUSA
| | - Hongmei Nan
- Department of EpidemiologyRichard M. Fairbanks School of Public HealthIndiana UniversityIndianapolisINUSA
| | - Qingyi Wei
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
6
|
Kotelevets L, Chastre E. A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer. Cancers (Basel) 2021; 13:4264. [PMID: 34503076 PMCID: PMC8428372 DOI: 10.3390/cancers13174264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
7
|
Yu Q, Li X, Feng T. GLIDR promotes the progression of glioma by regulating the miR-4677-3p/MAGI2 axis. Exp Cell Res 2021; 406:112726. [PMID: 34237299 DOI: 10.1016/j.yexcr.2021.112726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/17/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Gliomas are the most common and fatal primary brain tumors. Growing evidence suggests that long non-coding RNAs (lncRNAs) constitute novel and potential therapeutic targets for glioma. However, the biological role of glioblastoma down-regulated RNA (GLIDR) in glioma remains largely elusive. In the current study, we used quantitative real-time polymerase chain reaction (qRT-PCR) to detect GLIDR expression in glioma cells. Cell counting kit 8 (CCK-8) assay, colony formation assay, JC-1 staining, and flow cytometry were used to evaluate the role of GLIDR in proliferation and apoptosis of glioma cells. Western blotting was performed to assess the effect of GLIDR on the level of apoptosis-related proteins. In addition, bioinformatics prediction, RNA immunoprecipitation (RIP), RNA pull-down, and luciferase reporter gene assays were used to study the regulatory mechanisms of GLIDR in glioma. GLIDR was found to be highly expressed in glioma cells and silencing of GLIDR inhibited cell proliferation and promoted apoptosis. Functionally, GLIDR bound to miR-4677-3p that directly targeted membrane-associated guanylate kinase, WW, and PDZ domain-containing protein 2 (MAGI2). Our data showed that GLIDR affects the proliferation and apoptosis of glioma cells by targeting miR-4677-3p to regulate the expression of MAGI2. In conclusion, our study determined the oncogenic role of GLIDR in glioma, which may provide a new perspective for the treatment of glioma.
Collapse
Affiliation(s)
- Qi Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinxing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianda Feng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Qu Y, Gao N, Wu T. Expression and clinical significance of SYNE1 and MAGI2 gene promoter methylation in gastric cancer. Medicine (Baltimore) 2021; 100:e23788. [PMID: 33530176 PMCID: PMC7850698 DOI: 10.1097/md.0000000000023788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related mortality globally. Abnormal DNA methylation is closely related to gastric cancer. The purpose of the study was to investigate the methylation of the SYNE1 and MAGI2 gene promoter and its relationship with the clinical-pathological factors, chemotherapy efficacy, and survival, thus providing a new biomarker for the prognosis and chemotherapy efficacy in gastric cancer.The methylation status of SYNE1 and MAGI2 in gastric cancer and adjacent tissues was detected by MSP method in 70 cases of advanced gastric cancer paraffin specimens.The methylation rate of the SYNE1 and MAGI2 gene promoter region was higher in gastric cancer tissues compared with adjacent tissues. The methylation status of SYNE1 was associated with the age at diagnosis and the size of the primary tumors, but no clinical or pathological factors have been found to be related with the methylation status of MAGI2 promoter. A high level of SYNE1 promoter methylation was associated with poorer chemotherapy efficacy in recurrent patients with gastric cancer. Thirty-three percent of the 70 patients exhibited highly methylated MAGI2; in this group, the median progression-free survival time was 4.1 months, shorter than those with negative methylated MAGI2 whose PFS was 5.1 months.MAGI2 is more methylated in gastric cancer than in adjacent tissues suggesting that hypermethylation changes in MAGI2 may be one of the mechanisms of tumorigenesis in gastric cancer. The methylation status of the SYNE1 and MAGI2 promoter regions may affect the chemotherapy efficacy of advanced gastric cancer. The prognosis of MAGI2-negative patients was better than that of positive ones, suggesting that MAGI2 may be an independent prognostic factor for PFS in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Yanjun Qu
- Department of Oncology, the Second Hospital of Dalian Medical University
| | - Na Gao
- Department of Obstetrics and Gynecology, the First Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Tao Wu
- Department of Oncology, the Second Hospital of Dalian Medical University
| |
Collapse
|
9
|
Yao X, Tu Y, Xu Y, Guo Y, Yao F, Zhang X. Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages. J Cell Mol Med 2020; 24:9560-9573. [PMID: 32672418 PMCID: PMC7520328 DOI: 10.1111/jcmm.15367] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Immune escape of breast cancer cells contributes to breast cancer pathogenesis. Tumour microenvironment stresses that disrupt protein homeostasis can produce endoplasmic reticulum (ER) stress. The miRNA‐mediated translational repression of mRNAs has been extensively studied in regulating immune escape and ER stress in human cancers. In this study, we identified a novel microRNA (miR)‐27a‐3p and investigated its mechanistic role in promoting immune evasion. The binding affinity between miR‐27a‐3p and MAGI2 was predicted using bioinformatic analysis and verified by dual‐luciferase reporter assay. Ectopic expression and inhibition of miR‐27a‐3p in breast cancer cells were achieved by transduction with mimics and inhibitors. Besides, artificial modulation of MAGI2 and PTEN was done to explore their function in ER stress and immune escape of cancer cells. Of note, exosomes were derived from cancer cells and co‐cultured with macrophages for mechanistic studies. The experimental data suggested that ER stress biomarkers including GRP78, PERK, ATF6, IRE1α and PD‐L1 were overexpressed in breast cancer tissues relative to paracancerous tissues. Endoplasmic reticulum stress promoted exosome secretion and elevated exosomal miR‐27a‐3p expression. Elevation of miR‐27a‐3p and PD‐L1 levels in macrophages was observed in response to exosomes‐overexpressing miR‐27a‐3p in vivo and in vitro. miR‐27a‐3p could target and negatively regulate MAGI2, while MAGI2 down‐regulated PD‐L1 by up‐regulating PTEN to inactivate PI3K/AKT signalling pathway. Less CD4+, CD8+ T cells and IL‐2, and T cells apoptosis were observed in response to co‐culture of macrophages and CD3+ T cells. Conjointly, exosomal miR‐27a‐3p promotes immune evasion by up‐regulating PD‐L1 via MAGI2/PTEN/PI3K axis in breast cancer.
Collapse
Affiliation(s)
- Xiaoli Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yulin Xu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yueyue Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinghua Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Mei P, Freitag CE, Wei L, Zhang Y, Parwani AV, Li Z. High tumor mutation burden is associated with DNA damage repair gene mutation in breast carcinomas. Diagn Pathol 2020; 15:50. [PMID: 32393302 PMCID: PMC7212599 DOI: 10.1186/s13000-020-00971-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Immunotherapy has demonstrated encouraging clinical benefits in patients with advanced breast carcinomas and Programmed death ligand 1 (PD-L1) expression has been proposed as an immunotherapy biomarker. Challenges with current PD-L1 testing exist and tumor mutation burden (TMB) is emerging as a biomarker to predict clinical response to immunotherapy in melanoma and non-small cell lung cancer patients. However, TMB has not been well characterized in breast carcinomas. METHODS The study cohort included 62 advanced breast cancer patients (13 primary and 49 metastatic). Genetic alterations and TMB were determined by FoundationOne CDx next generation sequencing (NGS) and the association with clinicopathologic features was analyzed. RESULTS High TMB was observed in a relatively low frequency (3/62, 4.8%). TMB levels were positively associated tumor infiltrating lymphocytes and significantly higher TMB was observed in breast carcinomas with DNA damage repair gene mutation(s). There was no significant association between TMB levels and other analyzed clinicopathologic characteristics. CONCLUSIONS Our data indicate the importance of DNA damage repair proteins in maintaining DNA integrity and immune reaction and breast carcinoma patients with DDR mutation may benefit from immunotherapy.
Collapse
Affiliation(s)
- Ping Mei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - C Eric Freitag
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lai Wei
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | | | - Anil V Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, 410 W. 10th Ave, Columbus, 43210, OH, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, 410 W. 10th Ave, Columbus, 43210, OH, USA.
| |
Collapse
|
11
|
Cao Z, Ji J, Wang FB, Kong C, Xu H, Xu YL, Chen X, Yu YW, Sun YH. MAGI-2 downregulation: a potential predictor of tumor progression and early recurrence in Han Chinese patients with prostate cancer. Asian J Androl 2020; 22:616-622. [PMID: 32167077 PMCID: PMC7705969 DOI: 10.4103/aja.aja_142_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Membrane-associated guanylate kinase (MAGUK) family protein MAGUK invert 2 (MAGI-2) has been demonstrated to be involved in the tumorigenic mechanism of prostate cancer. The objective of this study was to investigate the expression of MAGI-2 at mRNA and protein levels. The prognostic value of MAGI-2 in Han Chinese patients with prostate cancer was also investigated. The expression data of MAGI-2 were assessed through database retrieval, analysis of sequencing data from our group, and tissue immunohistochemistry using digital scoring system (H-score). The clinical, pathological, and follow-up data were collected. The expression of MAGI-2 in prostate tumor tissues and prostate normal tissues was evaluated and compared. MAGI-2 expression was associated with clinical parameters including tumor stage, lymph node status, Gleason score, PSA level, and biochemical recurrence of prostate cancer. The relative expression of MAGI-2 mRNA was lower in the tumor tissue in The Cancer Genome Atlas (TCGA) database and sequencing data (P < 0.001). There was no difference in MAGI-2 protein expression between tumor and normal tissues in tissue microarray (TMA) results. MAGI-2 expression was associated with pathological tumor stage (P = 0.02), Gleason score (P = 0.05), and preoperation prostate-specific antigen (PSA; P = 0.04). A positive correlation was identified between MAGI-2 and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expressions through the analysis of TCGA and TMA data (P < 0.0001). Patients with higher MAGI-2 expression had longer biochemical recurrence-free survival in the univariate analysis (P = 0.005), which indicates an optimal prognostic value of MAGI-2 in Han Chinese patients with prostate cancer. In conclusion, MAGI-2 expression gradually decreases with tumor progression, and can be used as a predictor of tumor recurrence in Chinese patients.
Collapse
Affiliation(s)
- Zhi Cao
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Jin Ji
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Fu-Bo Wang
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Chen Kong
- Department of Traditional Chinese Medicine, New Jiangwan City Community Health Service Centre, Shanghai 200433, China
| | - Huan Xu
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Ya-Long Xu
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Xi Chen
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yong-Wei Yu
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Ying-Hao Sun
- Department of Urology, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|