1
|
Kashyap D, Roy R, Varshney N, Baral B, Bagde PH, Kandpal M, Kumar S, Kar P, Jha HC. Withania somnifera extract reduces gastric cancerous properties through inhibition of gankyrin in cellular milieu produced by Helicobacter pylori and Epstein Barr virus. J Biomol Struct Dyn 2024; 42:9399-9415. [PMID: 37655681 DOI: 10.1080/07391102.2023.2252096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Helicobacter pylori and Epstein Barr virus (EBV) are group1 carcinogens and their role in Gastric cancer (GC) is well established. Previously we have shown that H. pylori and EBV appears to support aggressive gastric oncogenesis through the upregulation of oncoprotein Gankyrin. Natural plant active molecules have the potential to interrupt oncogenesis. Herein, we investigated the potential of Withania somnifera root extract (WSE) as a possible chemotherapeutic agent against host oncoprotein Gankyrin whose expression was altered by H. pylori and EBV-associated modified cellular milieu. The results show that WSE does not have any inhibitory effect on H. pylori and EBV-associated gene transcripts except for the lmps (lmp1, lmp2a, and lmp2B). Moreover, the WSE exert their anticancer activity via host cellular response and decreased the expression of cell-migratory (mmp3 and mmp7); cell-cycle regulator (pcna); antiapoptotic gene (bcl2); increased the expression of the proapoptotic gene (apaf1 and bax); and tumor suppressor (p53, prb, and pten). Knockdown of Gankyrin followed by the treatment of WSE also decreases the expression of TNF-ɑ, Akt, and elevated the expression of NFkB, PARP, Casp3, and Casp9. WSE also reduces cell migration, and genomic instability and forced the cells to commit programmed cell death. Moreover, molecular simulation studies revealed that out of eight active compounds of WSE, only four compounds such as withaferin A (WFA), withanoside IV (WA4), withanolide B (WNB), and withanolide D (WND) showed direct stable interaction with Gankyrin. This article reports for the first time that treatment of WSE decreased the cancerous properties through host cellular response modulation in gastric epithelial cells coinfected with H. pylori and EBV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Pranit Hemant Bagde
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Meenakshi Kandpal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sachin Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
2
|
Kanabar D, Kane EI, Chavan T, Laflamme TM, Suarez E, Goyal M, Gupta V, Spratt DE, Muth A. Synthesis and evaluation of 2,5-substituted pyrimidines as small-molecule gankyrin binders. Future Med Chem 2024; 16:239-251. [PMID: 38205637 PMCID: PMC10853842 DOI: 10.4155/fmc-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Background: Gankyrin is an ankyrin-repeat protein that promotes cell proliferation, tumor development and cancer progression when overexpressed. Aim: To design and synthesize a novel series of gankyrin-binding small molecules predicated on a 2,5-pyrimidine scaffold. Materials & methods: The synthesized compounds were evaluated for their antiproliferative activity, ability to bind gankyrin and effects on cell cycle progression and the proteasomal degradation pathway. Results: Compounds 188 and 193 demonstrated the most potent antiproliferative activity against MCF7 and A549 cells, respectively. Both compounds also demonstrated the ability to effectively bind gankyrin, disrupt proteasomal degradation and inhibit cell cycle progression. Conclusion: The 2,5-pyrimidine scaffold exhibits a novel and promising strategy for binding gankyrin and inhibiting cancer cell proliferation.
Collapse
Affiliation(s)
- Dipti Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Emma I Kane
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Tejashri Chavan
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Taylor M Laflamme
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Ethan Suarez
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
3
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
4
|
Muli CS, Tian W, Trader DJ. Small-Molecule Inhibitors of the Proteasome's Regulatory Particle. Chembiochem 2019; 20:1739-1753. [PMID: 30740849 PMCID: PMC6765334 DOI: 10.1002/cbic.201900017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Cells need to synthesize and degrade proteins consistently. Maintaining a balanced level of protein in the cell requires a carefully controlled system and significant energy. Degradation of unwanted or damaged proteins into smaller peptide units can be accomplished by the proteasome. The proteasome is composed of two main subunits. The first is the core particle (20S CP), and within this core particle are three types of threonine proteases. The second is the regulatory complex (19S RP), which has a myriad of activities including recognizing proteins marked for degradation and shuttling the protein into the 20S CP to be degraded. Small-molecule inhibitors of the 20S CP have been developed and are exceptional treatments for multiple myeloma (MM). 20S CP inhibitors disrupt the protein balance, leading to cellular stress and eventually to cell death. Unfortunately, the 20S CP inhibitors currently available have dose-limiting off-target effects and resistance can be acquired rapidly. Herein, we discuss small molecules that have been discovered to interact with the 19S RP subunit or with a protein closely associated with 19S RP activity. These molecules still elicit their toxicity by preventing the proteasome from degrading proteins, but do so through different mechanisms of action.
Collapse
Affiliation(s)
- Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Wenzhi Tian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Zhao X, Liu F, Zhang Y, Li P. Prognostic and clinicopathological significance of Gankyrin overexpression in cancers: evidence from a meta-analysis. Onco Targets Ther 2016; 9:1961-8. [PMID: 27110125 PMCID: PMC4831594 DOI: 10.2147/ott.s101687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Many studies have indicated that Gankyrin is a promising and novel prognostic tumor biomarker. However, the results of different studies remained controversial. Hence, a meta-analysis was undertaken to investigate the association between Gankyrin expression and cancer prognosis. Eligible studies were identified by searching the electronic databases PubMed, Embase, and Cochrane Library up to November 2015. Prognostic value of Gankyrin expression was evaluated by hazard ratio with 95% confidence interval (CI). Meanwhile, relative risk (RR) with 95% CI was used to assess the effects of Gankyrin expression on clinicopathological parameters. In total, ten studies with 1,326 patients were included for final analysis. A significant association was found between Gankyrin overexpression and poorer overall survival in patients with cancer (hazard ratio =1.73, 95% CI: 1.29–2.31, P=0.000). In the subgroup analysis, the association was also detected in Chinese patients and patients with cancers of the digestive system. The pooled RR indicated that Gankyrin overexpression was related to advanced tumor–node–metastasis stage (RR =0.72, 95% CI: 0.60–0.86, P=0.000), positive lymph node metastasis (RR =1.66, 95% CI: 1.41–1.94, P=0.000), and distant metastasis (RR =1.43, 95% CI: 1.20–1.70, P<0.000). The meta-analysis demonstrated that Gankyrin is a novel biomarker for predicting cancers, especially digestive system cancers, and is more suitable for predicting cancer prognoses in Asians.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Department of Otolaryngology, Affiliated Hospital of XuZhou Medical College, Xuzhou, People's Republic of China
| | - Fangzhou Liu
- Department of Otolaryngology, The Affiliated Cancer Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yuan Zhang
- Department of Otolaryngology, The Affiliated Cancer Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Peihua Li
- Department of Otolaryngology, Affiliated Hospital of XuZhou Medical College, Xuzhou, People's Republic of China
| |
Collapse
|
6
|
Yuan C, Guo Y, Zhu L, Guo W, Mahajan A, Weghorst CM, Li J. The study of pH-dependent stability shows that the TPLH-mediated hydrogen-bonding network is important for the conformation and stability of human gankyrin. Biochemistry 2013; 52:4848-57. [PMID: 23777370 PMCID: PMC3843994 DOI: 10.1021/bi4005717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ankyrin repeat (AR) proteins possess a distinctive modular and repetitive architecture, and their global folds are maintained by short-range interactions in terms of the primary sequence. In this work, we extended our previous study on the highly conserved TPLH tetrapeptide and investigated the impact of a solvent-exposed histidine residue on the pH-dependent stability of gankyrin, providing further insight into the contribution of the TPLH motif to the tertiary fold of AR proteins. Consisting of seven ARs, gankyrin has five histidine residues in TPLH motifs or its variants, all of which adopt a H(ε2)-tautermeric form and are shielded from solvent. By truncating the C-terminal ankyrin repeat (AR7), we exposed H177 in the (174)TPLH(177) of AR6 (the second C-terminal AR) to an aqueous environment. We showed that this truncated gankyrin mutant, namely, Gank(1-201), was well-folded at a neutral pH with a slightly lower stability with respect to gankyrin wild type (WT). However, unlike gankyrin WT, the stability of Gank(1-201) was markedly decreased together with a loss of conformation at a pH slightly below 6.0. It was rationalized that the protonation of the H177 imidazole ring triggered the disruption of the TPLH-mediated hydrogen-bonding network, which in turn led to the loss of conformation and stability. These results together with the work on Q210H mutant nicely explain that the C-terminal AR7 has a (207)TPLQ(210) variant and are in support of the notion that a string of TPLH/variant, which may arguably act like a zip lock to the elongated AR proteins via intra-/inter-repeat hydrogen-bonding, is important in maintaining the tertiary fold. Additionally, we made rational mutagenesis to introduce extra surface charge on AR7 of gankyrin and demonstrated that G214E and I219D mutations increased the stability of gankyrin while the function remained intact. Taken together, our results indicate that the TPLH-mediated hydrogen-bonding network is important for the conformation and stability of human gankyrin, and the C-terminal AR contributes to the conformational stability of gankyrin (AR proteins in general) through shielding this TPLH network from solvent as well as making the surface area more accessible to solvent.
Collapse
Affiliation(s)
- Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Lu Zhu
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Wei Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Anjali Mahajan
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Christopher M. Weghorst
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Junan Li
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
7
|
Settanni G, Serquera D, Marszalek PE, Paci E, Itzhaki LS. Effects of ligand binding on the mechanical properties of ankyrin repeat protein gankyrin. PLoS Comput Biol 2013; 9:e1002864. [PMID: 23341763 PMCID: PMC3547791 DOI: 10.1371/journal.pcbi.1002864] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/11/2012] [Indexed: 11/30/2022] Open
Abstract
Ankyrin repeat proteins are elastic materials that unfold and refold sequentially, repeat by repeat, under force. Herein we use atomistic molecular dynamics to compare the mechanical properties of the 7-ankyrin-repeat oncoprotein Gankyrin in isolation and in complex with its binding partner S6-C. We show that the bound S6-C greatly increases the resistance of Gankyrin to mechanical stress. The effect is specific to those repeats of Gankyrin directly in contact with S6-C, and the mechanical ‘hot spots’ of the interaction map to the same repeats as the thermodynamic hot spots. A consequence of stepwise nature of unfolding and the localized nature of ligand binding is that it impacts on all aspects of the protein's mechanical behavior, including the order of repeat unfolding, the diversity of unfolding pathways accessed, the nature of partially unfolded intermediates, the forces required and the work transferred to the system to unfold the whole protein and its parts. Stepwise unfolding thus provides the means to buffer repeat proteins and their binding partners from mechanical stress in the cell. Our results illustrate how ligand binding can control the mechanical response of proteins. The data also point to a cellular mechano-switching mechanism whereby binding between two partner macromolecules is regulated by mechanical stress. Here we use molecular dynamics simulation to compare the mechanical properties of the 7-ankyrin-repeat oncoprotein Gankyrin in isolation and in complex with binding partner S6-C. Tandem repeat proteins like Gankyrin comprise tandem arrays of small structural motifs that pack linearly to produce elongated architectures. They are elastic, mechanically weak molecules and they unfold and refold repeat by repeat under force. We show that S6-C binding greatly increases the resistance of Gankyrin to mechanical stress. The enhanced mechanical stability is specific to those ankyrin repeats in contact with S6-C, and the localized nature of the effect results in fundamental changes in the way the protein responds to force. Thus, the forced unfolding of isolated Gankryin involves a diverse set of pathways with a preference for a C- to N-terminus unfolding mechanism whereas this diversity is reduced upon complex formation with the central repeats, which are those most tightly bound to the ligand, tending to unfold last. Our study shows how stepwise unfolding can buffer repeat proteins and their binding partners from mechanical stress in the cell. It also points to a mechano-switching mechanism whereby binding between two partner macromolecules is regulated by mechanical stress.
Collapse
Affiliation(s)
- Giovanni Settanni
- Physics Department, Johannes Gutenberg University, Mainz, Germany
- * E-mail: (GS); (EP); (LSI)
| | - David Serquera
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, United States of America
| | - Emanuele Paci
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail: (GS); (EP); (LSI)
| | - Laura S. Itzhaki
- University of Cambridge Department of Chemistry, Cambridge, United Kingdom
- * E-mail: (GS); (EP); (LSI)
| |
Collapse
|
8
|
Kim YH, Kim JH, Choi YW, Lim SK, Yim H, Kang SY, Chung YS, Lee GY, Park TJ. Gankyrin is frequently overexpressed in breast cancer and is associated with ErbB2 expression. Exp Mol Pathol 2012; 94:360-5. [PMID: 23276718 DOI: 10.1016/j.yexmp.2012.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/19/2012] [Indexed: 01/26/2023]
Abstract
Gankyrin is a subunit of the 26S proteasome, and has been known to degrade p53 and retinoblastoma protein and promote the tumorigenicity and metastasis in some malignancies. However, the role of gankyrin in breast cancer has not been explored. In this study, we investigated the expression of gankyrin in breast cancer and evaluated its effect on breast cancer. Representative cancer tissues including normal breasts from 60 patients with breast cancer were stained immunohistochemically for gankyrin, estrogen receptor, progesterone receptor, and ErbB2. We evaluated the relationship between gankyrin expression and clinicopathologic parameters or prognostic markers. We also attempted to clarify the mechanism of gankyrin involved in breast carcinogenesis by using MCF7 breast cancer cells. Gankyrin was weakly expressed in normal breast epithelial cells, however, tumor regions of 37/60 (61.7%) cases showed an overexpression of gankyrin. Gankyrin overexpression was associated with extensive intraductal carcinoma (p=0.014) and ErbB2 positivity (p=0.031) in invasive ductal carcinoma. In MCF7 breast cancer cells, downregulation of gankyrin was associated with a reduction of cell proliferation and tumorigenicity. In conclusion, gankyrin was identified in normal breasts and overexpressed in invasive breast cancers. The overexpression of gankyrin was associated with extensive intraductal carcinoma and ErbB2 expression in breast cancer.
Collapse
Affiliation(s)
- Yeong Hwa Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Division of Cell Transformation and Restoration, Ajou University, School of Medicine, Suwon 443-721, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Gandhi S, Puri V, Puri S. Gankyrin: A potential target for drug therapy against hepatocellular carcinoma. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbise.2012.58059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Meng Y, He L, Guo X, Tang S, Zhao X, Du R, Jin J, Bi Q, Li H, Nie Y, Liu J, Fan D. Gankyrin promotes the proliferation of human pancreatic cancer. Cancer Lett 2010; 297:9-17. [PMID: 20483533 DOI: 10.1016/j.canlet.2010.04.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/12/2010] [Accepted: 04/22/2010] [Indexed: 12/21/2022]
Abstract
Previous studies in our laboratory have suggested that gankyrin expression is correlated with a malignant phenotype in colorectal cancer. Here, we investigated the possible role of gankyrin in pancreatic carcinogenesis. Gankyrin expression was significantly increased in pancreatic cancer compared to non-cancerous tissues. This expression significantly enhanced cancer cell proliferation and growth in vitro and in vivo. Suppression of gankyrin downregulated cyclin A, cyclin D1, cyclin E, CDK2, CDK4, PCNA and p-Rb but upregulated p27, Rb and p53. However, gankyrin overexpression led to opposite results. Thus, gankyrin could enhance pancreatic cancer cell proliferation by promoting cell cycle progression and p53 degradation.
Collapse
Affiliation(s)
- Yun Meng
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Guo Y, Yuan C, Tian F, Huang K, Weghorst CM, Tsai MD, Li J. Contributions of conserved TPLH tetrapeptides to the conformational stability of ankyrin repeat proteins. J Mol Biol 2010; 399:168-81. [PMID: 20398677 DOI: 10.1016/j.jmb.2010.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/27/2010] [Accepted: 04/06/2010] [Indexed: 01/11/2023]
Abstract
Ankyrin repeat (AR) proteins are one of the most abundant classes of repeat proteins and are involved in numerous physiological processes. These proteins are composed of various numbers of AR motifs stacked in a nearly linear fashion to adopt an elongated and nonglobular architecture. One salient feature prevalent in such a structural unit is the TPLH tetrapeptide or a close variant, T/SxxH, which initiates the helix-turn-helix conformation and presumably contributes to conformational stability through a hydrogen-bonding network. In the present study, we investigated the roles of T/SxxH motif in the stability, structure, and function of AR proteins by a systematic and rationalized mutagenic study on, followed by biochemical and biophysical characterization of, gankyrin, an oncogenic protein composed of seven ARs and six T/SxxH tetrapeptides, and P16, a tumor suppressor with four ARs but no TPLH tetrapeptide. Our results showed that this tetrapeptide is ineffectual on global structure and function, but contributes significantly to conformational stability when its stabilizing potentials are fully realized in the local conformation, including (1) the intra-AR hydrogen bonding involving the hydroxyl group; (2) the intra-AR and inter-AR hydrogen bonds involving the imidazole ring; and (3) the hydrophobic interaction associated with the Thr-methyl group. Considering that the capping and close-to-capping units tend to have more sequence diversity and more conformational variation, it could be also generally true that a T/SxxH motif close to the terminal repeats contributes little or even negatively to stability with respect to Ala substitution, but substantially stabilizes the global conformation when located in the middle of a long stretch of ARs.
Collapse
Affiliation(s)
- Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Gankyrin, a newly defined oncoprotein also known as PSMD10 and P28, functions as a dual-negative regulator of the two most prominent tumor suppressor pathways, the CDK/pRb and HDM2/P53 pathways. Its aberrant expression has been prevalently found in human hepatocellular carcinomas (HCC) and esophagus squamous cell carcinomas (ESCC), indicative of the potential of gankyrin as a rational diagnostic and therapeutic target in cancers. Here, we review the unique structural features and functional diversity of gankyrin, and discuss its implication in cancer diagnostics and therapeutics from the perspective of chemical biology.
Collapse
Affiliation(s)
- Junan Li
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
An approach to quality management in structural biology: Biophysical selection of proteins for successful crystallization. J Struct Biol 2008; 162:451-9. [DOI: 10.1016/j.jsb.2008.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/23/2022]
|
15
|
Ortiz CM, Ito T, Tanaka E, Tsunoda S, Nagayama S, Sakai Y, Higashitsuji H, Fujita J, Shimada Y. Gankyrin oncoprotein overexpression as a critical factor for tumor growth in human esophageal squamous cell carcinoma and its clinical significance. Int J Cancer 2008; 122:325-32. [PMID: 17935131 DOI: 10.1002/ijc.23106] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To elucidate the possible involvement of gankyrin in ESCC progression and the effect of its down-regulation in ESCC, we investigated the expression of gankyrin in ESCC tissues comparing it with the corresponding normal esophageal epithelia and tested a short-hairpin RNA (shRNA) expression vector for gankyrin in ESCC cell lines. Gankyrin protein expression in 11 ESCC cell lines (KYSE series) was examined by RT-PCR and western blot. The expression of gankyrin mRNA in 30 ESCC tissues was compared with the corresponding normal epithelia by Real-time PCR. Expression of gankyrin protein was immunohistochemically analyzed in the ESCC of 103 patients. A gankyrin-shRNA vector was stably transfected into KYSE 170 cells to assess the role of gankyrin in cell motility, invasion and proliferation in vitro and tumor formation in vivo. Gankyrin expression increased in all 11 ESCC cell lines. Real-time PCR revealed that gankyrin expression was higher in the cancerous tissue for all 30 patients. In immunohistochemistry, gankyrin overexpression was correlated with lower survival rate (p = 0.0001), extent of the primary tumor, lymph node metastasis, distant lymph node metastasis and stage (p = 0.0072, p = 0.0004, p = 0.0172 and p = 0.0002, respectively). A shRNA vector against gankyrin repressed growth, cell motility, invasiveness in vitro and tumor formation in vivo. Gankyrin overexpression is associated with poor prognosis. It may play an important role in ESCC tumor progression and could be a potentially important therapeutic gene target in ESCC.
Collapse
Affiliation(s)
- Cristian M Ortiz
- Department of Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mahajan A, Guo Y, Yuan C, Weghorst CM, Tsai MD, Li J. Dissection of protein-protein interaction and CDK4 inhibition in the oncogenic versus tumor suppressing functions of gankyrin and P16. J Mol Biol 2007; 373:990-1005. [PMID: 17881001 PMCID: PMC2693045 DOI: 10.1016/j.jmb.2007.08.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/22/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
Protein-protein interactions usually involve a large number of residues; thus it is difficult to elucidate functional and structural roles of specific residues located in the interface. This problem is particularly challenging for ankyrin repeat proteins (ARs), which consist of linear arrays of small repeating units and play critical roles in almost every life process via protein-protein interactions, because the residues involved are discontinuously dispersed in both the ARs and their partners. Our previous studies showed that while both specific CDK4 inhibitor p16INK4A (P16) and gankyrin bind to cyclin-dependent kinase 4 (CDK4) in similar fashion, only P16 inhibits the kinase activity of CDK4. While this could explain why P16 is a tumor suppressor and gankyrin is oncogenic, the structural basis of these contrasting properties was unknown. Here we show that a double mutant of gankyrin, L62H/I79D, inhibits the kinase activity of CDK4, similar to P16, and such CDK4-inhibtory activity is associated with the I79D but not L62H mutation. In addition, mutations at I79 and L62 bring about a moderate decrease in the stability of gankyrin. Further structural and biophysical analyses suggest that the substitution of Ile79 with Asp leads to local conformational changes in loops I-III of gankyrin. Taken together, our results allow the dissection of the "protein-protein binding" and "CDK4 inhibition" functions of P16, show that the difference between tumor suppressing and oncogenic functions of P16 and gankyrin, respectively, mainly resides in a single residue, and provide structural insight to the contrasting biological functions of the two AR proteins.
Collapse
Affiliation(s)
- Anjali Mahajan
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Christopher M. Weghorst
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ming-Daw Tsai
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, USA
- Genomics Research Center and Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Junan Li
- Departments of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, USA
- Correspondence should be addressed to: Dr. Junan Li, Department of Chemistry, 100 West 18 Avenue, The Ohio State University, Columbus, OH 43210. Phone: 1-614-292-6974. Fax: 1-614-292-1532. Email address:
| |
Collapse
|
17
|
Nakamura Y, Umehara T, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S. Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem Biophys Res Commun 2007; 359:503-9. [PMID: 17555716 DOI: 10.1016/j.bbrc.2007.05.138] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 05/18/2007] [Indexed: 11/15/2022]
Abstract
The 26S proteasome-dependent protein degradation is an evolutionarily conserved process. The mammalian oncoprotein gankyrin, which associates with S6 of the proteasome, facilitates the degradation of pRb, and thus possibly acts as a bridging factor between the proteasome and its substrates. However, the mechanism of the proteasome-dependent protein degradation in yeast is poorly understood. Here, we report the tertiary structure of the complex between Nas6 and a C-terminal domain of Rpt3, which are the yeast orthologues of gankyrin and S6, respectively. The concave region of Nas6 bound to the alpha-helical domain of Rpt3. The stable interaction between Nas6 and Rpt3 was mediated by intermolecular interactions composed of complementary charged patches. The recognition of Rpt3 by Nas6 in the crystal suggests that Nas6 is indeed a subunit of the 26S proteasome. These results provide a structural basis for the association between Nas6 and the heterohexameric ATPase ring of the proteasome through Rpt3.
Collapse
|
18
|
Nakamura Y, Umehara T, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S. Purification, crystallization and preliminary X-ray diffraction analysis of the non-ATPase subunit Nas6 in complex with the ATPase subunit Rpt3 of the 26S proteasome from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:190-2. [PMID: 17329811 PMCID: PMC2330193 DOI: 10.1107/s1744309107004848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 01/30/2007] [Indexed: 05/14/2023]
Abstract
The non-ATPase subunit Nas6, which is the human orthologue of gankyrin, was co-expressed with the C-terminal domain of the ATPase subunit Rpt3 of the yeast 26S proteasome in Escherichia coli, purified to near-homogeneity and crystallized using the hanging-drop vapour-diffusion method. The protein crystallized in space group P2(1), with unit-cell parameters a = 60.38, b = 100.22, c = 72.20 A, beta = 94.70 degrees and with three Nas6-Rpt3C molecules per asymmetric unit. The crystal diffracted to beyond 2.2 A resolution using synchrotron radiation.
Collapse
Affiliation(s)
- Yoshihiro Nakamura
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Umehara
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Akiko Tanaka
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Masami Horikoshi
- Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | - Shigeyuki Yokoyama
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Nakamura Y, Nakano K, Umehara T, Kimura M, Hayashizaki Y, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S. Structure of the Oncoprotein Gankyrin in Complex with S6 ATPase of the 26S Proteasome. Structure 2007; 15:179-89. [PMID: 17292836 DOI: 10.1016/j.str.2006.11.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 11/28/2006] [Accepted: 11/29/2006] [Indexed: 01/10/2023]
Abstract
Gankyrin is an oncoprotein commonly overexpressed in most hepatocellular carcinomas. Gankyrin interacts with S6 ATPase of the 19S regulatory particle of the 26S proteasome and enhances the degradation of the tumor suppressors pRb and p53. Here, we report the structure of gankyrin in complex with the C-terminal domain of S6 ATPase. Almost all of the seven ankyrin repeats of gankyrin interact, through its concave region, with the C-terminal domain of S6 ATPase. The intermolecular interactions occur through the complementary charged residues between gankyrin and S6 ATPase. Biochemical studies based on the structure of the complex revealed that gankyrin interacts with pRb in both the presence and absence of S6 ATPase; however, the E182 residue in gankyrin is essential for the pRb interaction. These results provide a structural basis for the involvement of gankyrin in the pRb degradation pathway, through its association with S6 ATPase of the 26S proteasome.
Collapse
Affiliation(s)
- Yoshihiro Nakamura
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Büssow K, Scheich C, Sievert V, Harttig U, Schultz J, Simon B, Bork P, Lehrach H, Heinemann U. Structural genomics of human proteins--target selection and generation of a public catalogue of expression clones. Microb Cell Fact 2005; 4:21. [PMID: 15998469 PMCID: PMC1250228 DOI: 10.1186/1475-2859-4-21] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/05/2005] [Indexed: 11/12/2022] Open
Abstract
Background The availability of suitable recombinant protein is still a major bottleneck in protein structure analysis. The Protein Structure Factory, part of the international structural genomics initiative, targets human proteins for structure determination. It has implemented high throughput procedures for all steps from cloning to structure calculation. This article describes the selection of human target proteins for structure analysis, our high throughput cloning strategy, and the expression of human proteins in Escherichia coli host cells. Results and Conclusion Protein expression and sequence data of 1414 E. coli expression clones representing 537 different proteins are presented. 139 human proteins (18%) could be expressed and purified in soluble form and with the expected size. All E. coli expression clones are publicly available to facilitate further functional characterisation of this set of human proteins.
Collapse
Affiliation(s)
- Konrad Büssow
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, 14195 Berlin, Germany
| | - Christoph Scheich
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, 14195 Berlin, Germany
| | - Volker Sievert
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, 14195 Berlin, Germany
| | - Ulrich Harttig
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- RZPD German Resource Center for Genome Research GmbH, Heubnerweg 6, 14059 Berlin, Germany
- DIFE, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany
| | - Jörg Schultz
- EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Simon
- EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Peer Bork
- EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Hans Lehrach
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, 14195 Berlin, Germany
| | - Udo Heinemann
- Protein Structure Factory, Heubnerweg 6, 14059 Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13092 Berlin, Germany
- Institut für Chemie/Kristallographie, Freie Universität, Takustr. 6, 14195 Berlin, Germany
| |
Collapse
|