1
|
Jung-Kc K, Tristán-Noguero A, Altankhuyag A, Piñol Belenguer D, Prestegård KS, Fernandez-Carasa I, Colini Baldeschi A, Sigatulina Bondarenko M, García-Cazorla A, Consiglio A, Martinez A. Tetrahydrobiopterin (BH 4) treatment stabilizes tyrosine hydroxylase: Rescue of tyrosine hydroxylase deficiency phenotypes in human neurons and in a knock-in mouse model. J Inherit Metab Dis 2024; 47:494-508. [PMID: 38196161 DOI: 10.1002/jimd.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Proteostatic regulation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis, is crucial for maintaining proper brain neurotransmitter homeostasis. Variants of the TH gene are associated with tyrosine hydroxylase deficiency (THD), a rare disorder with a wide phenotypic spectrum and variable response to treatment, which affects protein stability and may lead to accelerated degradation, loss of TH function and catecholamine deficiency. In this study, we investigated the effects of the TH cofactor tetrahydrobiopterin (BH4) on the stability of TH in isolated protein and in DAn- differentiated from iPSCs from a human healthy subject, as well as from THD patients with the R233H variant in homozygosity (THDA) and R328W and T399M variants in heterozygosity (THDB). We report an increase in TH and dopamine levels, and an increase in the number of TH+ cells in control and THDA cells. To translate this in vitro effect, we treated with BH4 a knock-in THD mouse model with Th variant corresponding to R233H in patients. Importantly, treatment with BH4 significantly improved motor function in these mice, as demonstrated by increased latency on the rotarod test and improved horizontal activity (catalepsy). In conclusion, our study demonstrates the stabilizing effects of BH4 on TH protein levels and function in THD neurons and mice, rescuing disease phenotypes and improving motor outcomes. These findings highlight the therapeutic potential of BH4 as a treatment option for THDA patients with specific variants and provide insights into the modulation of TH stability and its implications for THD management.
Collapse
Affiliation(s)
- Kunwar Jung-Kc
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Alba Tristán-Noguero
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Molecular Physiology of the Synapse, Institut de Recerca Sant Pau (IR Sant Pau), Universitat Autònoma Barcelona, Barcelona, Spain
| | | | - David Piñol Belenguer
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | | | - Irene Fernandez-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Arianna Colini Baldeschi
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Maria Sigatulina Bondarenko
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Angeles García-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica En Red Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Jung-Klawitter S, Richter P, Yuan Y, Welzel K, Kube M, Bähr S, Leibner A, Flory E, Opladen T. Tyrosine hydroxylase variants influence protein expression, cellular localization, stability, enzymatic activity and the physical interaction between tyrosine hydroxylase and GTP cyclohydrolase 1. J Inherit Metab Dis 2024; 47:517-532. [PMID: 38084654 DOI: 10.1002/jimd.12690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 05/16/2024]
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis catalyzing the tetrahydrobiopterin (BH4)-dependent hydroxylation of tyrosine to L-DOPA. Here, we analyzed 25 TH variants associated with various degrees of dopa-responsive dystonia and evaluate the effect of each variant on protein stability, activity and cellular localization. Furthermore, we investigated the physical interaction between TH and human wildtype (wt) GTP cyclohydrolase 1 (GTPCH) and the effect of variants on this interaction. Our in vitro results classify variants according to their resistance to proteinase K digestion into three groups (stable, intermediate, unstable). Based on their cellular localization, two groups of variants can be identified, variant group one with cytoplasmic distribution and variant group two forming aggregates. These aggregates do not correlate with loss of enzymatic activity but nevertheless might be a good target for molecular chaperones. Unfortunately, no obvious correlation between the half-life of a variant and its enzymatic activity or between solubility, stability and enzymatic activity of a given variant could be found. Excitingly, some variants disrupt the physical interaction between TH and human wildtype GTPCH, thereby interfering with enzymatic activity and offering new druggable targets for therapy. Taken together, our results highlight the importance of an in-depth molecular analysis of each variant in order to be able to classify groups of disease variants and to find specific therapies for each subgroup. Stand-alone in silico analyses predict less precise the effect of specific variants and should be combined with other in vitro analyses in cellular model systems.
Collapse
Affiliation(s)
- Sabine Jung-Klawitter
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Petra Richter
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Yuheng Yuan
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Karin Welzel
- Division of Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institute, Langen, Germany
| | - Marie Kube
- Institute of Molecular Biology, Mainz, Germany
| | - Stella Bähr
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Alexander Leibner
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Egbert Flory
- Division of Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institute, Langen, Germany
| | - Thomas Opladen
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Gil-Martínez J, Bernardo-Seisdedos G, Mato JM, Millet O. The use of pharmacological chaperones in rare diseases caused by reduced protein stability. Proteomics 2022; 22:e2200222. [PMID: 36205620 DOI: 10.1002/pmic.202200222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.
Collapse
Affiliation(s)
- Jon Gil-Martínez
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,ATLAS Molecular Pharma, Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Kleppe R, Waheed Q, Ruoff P. DOPA Homeostasis by Dopamine: A Control-Theoretic View. Int J Mol Sci 2021; 22:12862. [PMID: 34884667 PMCID: PMC8657751 DOI: 10.3390/ijms222312862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Dopamine (DA) is an important signal mediator in the brain as well as in the periphery. The term "dopamine homeostasis" occasionally found in the literature refers to the fact that abnormal DA levels can be associated with a variety of neuropsychiatric disorders. An analysis of the negative feedback inhibition of tyrosine hydroxylase (TH) by DA indicates, with support from the experimental data, that the TH-DA negative feedback loop has developed to exhibit 3,4-dihydroxyphenylalanine (DOPA) homeostasis by using DA as a derepression regulator. DA levels generally decline when DOPA is removed, for example, by increased oxidative stress. Robust DOPA regulation by DA further implies that maximum vesicular DA levels are established, which appear necessary for a reliable translation of neural activity into a corresponding chemical transmitter signal. An uncontrolled continuous rise (windup) in DA occurs when Levodopa treatment exceeds a critical dose. Increased oxidative stress leads to the successive breakdown of DOPA homeostasis and to a corresponding reduction in DA levels. To keep DOPA regulation robust, the vesicular DA loading requires close to zero-order kinetics combined with a sufficiently high compensatory flux provided by TH. The protection of DOPA and DA due to a channeling complex is discussed.
Collapse
Affiliation(s)
- Rune Kleppe
- Norwegian Center for Maritime and Diving Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Qaiser Waheed
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway;
| | - Peter Ruoff
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway;
| |
Collapse
|
5
|
Personalized Medicine to Improve Treatment of Dopa-Responsive Dystonia-A Focus on Tyrosine Hydroxylase Deficiency. J Pers Med 2021; 11:jpm11111186. [PMID: 34834538 PMCID: PMC8625014 DOI: 10.3390/jpm11111186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Dopa-responsive dystonia (DRD) is a rare movement disorder associated with defective dopamine synthesis. This impairment may be due to the fact of a deficiency in GTP cyclohydrolase I (GTPCHI, GCH1 gene), sepiapterin reductase (SR), tyrosine hydroxylase (TH), or 6-pyruvoyl tetrahydrobiopterin synthase (PTPS) enzyme functions. Mutations in GCH1 are most frequent, whereas fewer cases have been reported for individual SR-, PTP synthase-, and TH deficiencies. Although termed DRD, a subset of patients responds poorly to L-DOPA. As this is regularly observed in severe cases of TH deficiency (THD), there is an urgent demand for more adequate or personalized treatment options. TH is a key enzyme that catalyzes the rate-limiting step in catecholamine biosynthesis, and THD patients often present with complex and variable phenotypes, which results in frequent misdiagnosis and lack of appropriate treatment. In this expert opinion review, we focus on THD pathophysiology and ongoing efforts to develop novel therapeutics for this rare disorder. We also describe how different modeling approaches can be used to improve genotype to phenotype predictions and to develop in silico testing of treatment strategies. We further discuss the current status of mathematical modeling of catecholamine synthesis and how such models can be used together with biochemical data to improve treatment of DRD patients.
Collapse
|
6
|
Li XY, Yang YM, Li LB, Zhang MY, Huang YY, Wang J, Wang L, Wan XH. Identification of TH Variants in Chinese Dopa-Responsive Dystonia Patients and Long-Term Outcomes. Front Neurol 2021; 12:644910. [PMID: 34054692 PMCID: PMC8149779 DOI: 10.3389/fneur.2021.644910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Dopa-responsive dystonia (DRD) is a movement disorder that is highly clinically and genetically heterogeneous. Our study summarizes clinical characteristics and long-term outcomes in patients with dopa-responsive dystonia with the aim of obtaining further knowledge on this disorder. Methods: Patients who met DRD genetic diagnostic criteria through whole-exome sequencing and took levodopa for over 3 years were included in our study. Detailed information was collected on these patients, including family history, age at onset, age and dosage at starting levodopa, current medication and dosage, levodopa duration, diurnal fluctuation, and other clinical features. The Burke–Fahn–Marsden Dystonia Rating Scale-Motor (BFMDRS-M) score was used to evaluate patients' dystonia and variation after levodopa. According to the long-term outcomes, patients were further graded as good (dystonia improved by more than 50% after levodopa, and no further motor symptoms appeared) and poor (dystonia improved by <50% after levodopa, or new motor symptoms appeared). Results: A total of 20 DRD patients were included (11 with GCH1 variants, 9 with TH variants). During long-term levodopa treatment, three patients with TH variants (3/20, 15%) developed motor symptoms, including body jerks and paroxysmal symptoms, and responded well to increasing levodopa doses. The patient with homozygous mutation c.1481C>T/p. Thr494Met harbored more serious symptoms and poor response to levodopa and showed decreased cardiac uptake in MIBG. Conclusions: Most DRD patients showed satisfactory treatment outcomes after long-term levodopa, whereas few patients with TH variants presented motor symptoms, which is considered to be related to dopamine insufficiency. For patients with motor symptoms after long-term levodopa, increasing the dose slowly might be helpful to relieve symptoms.
Collapse
Affiliation(s)
- Xin-Yao Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying-Mai Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-Bo Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng-Yu Zhang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang-Yu Huang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin-Hua Wan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Szigetvari PD, Muruganandam G, Kallio JP, Hallin EI, Fossbakk A, Loris R, Kursula I, Møller LB, Knappskog PM, Kursula P, Haavik J. The quaternary structure of human tyrosine hydroxylase: effects of dystonia-associated missense variants on oligomeric state and enzyme activity. J Neurochem 2018; 148:291-306. [PMID: 30411798 PMCID: PMC6587854 DOI: 10.1111/jnc.14624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 01/27/2023]
Abstract
Abstract Tyrosine hydroxylase (TH) is a multi‐domain, homo‐oligomeric enzyme that catalyses the rate‐limiting step of catecholamine neurotransmitter biosynthesis. Missense variants of human TH are associated with a recessive neurometabolic disease with low levels of brain dopamine and noradrenaline, resulting in a variable clinical picture, from progressive brain encephalopathy to adolescent onset DOPA‐responsive dystonia (DRD). We expressed isoform 1 of human TH (hTH1) and its dystonia‐associated missense variants in E. coli, analysed their quaternary structure and thermal stability using size‐exclusion chromatography, circular dichroism, multi‐angle light scattering, transmission electron microscopy, small‐angle X‐ray scattering and assayed hydroxylase activity. Wild‐type (WT) hTH1 was a mixture of enzymatically stable tetramers (85.6%) and octamers (14.4%), with little interconversion between these species. We also observed small amounts of higher order assemblies of long chains of enzyme by transmission electron microscopy. To investigate the role of molecular assemblies in the pathogenesis of DRD, we compared the structure of WT hTH1 with the DRD‐associated variants R410P and D467G that are found in vicinity of the predicted subunit interfaces. In contrast to WT hTH1, R410P and D467G were mixtures of tetrameric and dimeric species. Inspection of the available structures revealed that Arg‐410 and Asp‐467 are important for maintaining the stability and oligomeric structure of TH. Disruption of the normal quaternary enzyme structure by missense variants is a new molecular mechanism that may explain the loss of TH enzymatic activity in DRD. Unstable missense variants could be targets for pharmacological intervention in DRD, aimed to re‐establish the normal oligomeric state of TH. ![]()
Collapse
Affiliation(s)
- Peter D Szigetvari
- Department of Biomedicine, University of Bergen, Bergen, Norway.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Erik I Hallin
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Agnete Fossbakk
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lisbeth B Møller
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Per M Knappskog
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
8
|
Katus LE, Frucht SJ. An unusual presentation of tyrosine hydroxylase deficiency. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2017; 4:18. [PMID: 29225908 PMCID: PMC5716367 DOI: 10.1186/s40734-017-0065-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/26/2017] [Indexed: 11/10/2022]
Abstract
Background Dopa-responsive dystonia (DRD) has largely been associated with autosomal dominant mutations in the GCH1 gene leading to GTP cyclohydrolase 1 deficiency. More recently, a deficiency in tyrosine hydroxylase (TH) has been recognized to cause DRD. This is a rare disorder resulting from genetic mutations in the TH gene on chromosome 11. The phenotype ranges from DRD with complete resolution on levodopa to infantile parkinsonism and encephalopathy only partially responsive to levodopa. Here we discuss an adult with TH deficiency with a history of possible parkinsonism and dystonia responsive to levodopa, notable for a residual dynamic segmental dystonia. Case presentation Our patient grew up in rural Myanmar with limited medical care. Childhood was normal except for episodic illness with difficulty moving and speaking. At 18 years he developed difficulty writing. At 21 years he could not speak, walk, or write and was taken to a city hospital. Multiple medications were tried without benefit until he received carbidopa/levodopa, to which he had a miraculous response. Since then he has attempted to come off medication, however after several weeks his symptoms returned. On presentation to us at 31 years he was taking 450 mg levodopa/day and 4 mg trihexyphenidyl/day. He had a dynamic dystonia in his neck and trunk, subtle at rest and prominent with walking. He exhibited a sensory trick when touching his hand to his chin; improvement occurred to a lesser degree when he imagined touching his chin, and to an even lesser degree when the examiner touched his chin. He had no parkinsonism. He underwent genetic testing which revealed a homozygous variant mutation in the TH gene (p.Thr494Met) leading to a diagnosis of autosomal recessive tyrosine hydroxylase deficiency. Conclusions TH deficiency can cause a broad range of clinical symptoms and severity. As more cases are discovered, the phenotype expands. Here we describe a unique case of DRD and possible parkinsonism due to TH deficiency with residual symptoms of dystonia that was task dependent and responded to a sensory trick. In addition, while the history is limited, it is possible he may have had episodes similar to "lethargy-irritability crises" seen in more severe cases. In large part he fits within the milder form of TH hydroxylase deficiency.
Collapse
Affiliation(s)
- Linn E Katus
- Movement Disorders Division, Department of Neurology, Mount Sinai Hospital, 5 E 98th Street, 1st floor, New York, NY 10029 USA
| | - Steven J Frucht
- Movement Disorders Division, Department of Neurology, Mount Sinai Hospital, 5 E 98th Street, 1st floor, New York, NY 10029 USA
| |
Collapse
|
9
|
Tidemand KD, Christensen HEM, Hoeck N, Harris P, Boesen J, Peters GH. Stabilization of tryptophan hydroxylase 2 by l-phenylalanine-induced dimerization. FEBS Open Bio 2016; 6:987-999. [PMID: 27761358 PMCID: PMC5055035 DOI: 10.1002/2211-5463.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022] Open
Abstract
Tryptophan hydroxylase 2 (TPH2) catalyses the initial and rate‐limiting step in the biosynthesis of serotonin, which is associated with a variety of disorders such as depression, obsessive compulsive disorder, and schizophrenia. Full‐length TPH2 is poorly characterized due to low purification quantities caused by its inherent instability. Three truncated variants of human TPH2 (rchTPH2; regulatory and catalytic domain, NΔ47‐rchTPH2; truncation of 47 residues in the N terminus of rchTPH2, and chTPH2; catalytic domain) were expressed, purified, and examined for changes in transition temperature, inactivation rate, and oligomeric state. chTPH2 displayed 14‐ and 11‐fold higher half‐lives compared to rchTPH2 and NΔ47‐rchTPH2, respectively. Differential scanning calorimetry experiments demonstrated that this is caused by premature unfolding of the less stable regulatory domain. By differential scanning fluorimetry, the unfolding transitions of rchTPH2 and NΔ47‐rchTPH2 are found to shift from polyphasic to apparent two‐state by the addition of l‐Trp or l‐Phe. Analytical gel filtration revealed that rchTPH2 and NΔ47‐rchTPH2 reside in a monomer–dimer equilibrium which is significantly shifted toward dimer in the presence of l‐Phe. The dimerizing effect induced by l‐Phe is accompanied by a stabilizing effect, which resulted in a threefold increase in half‐lives of rchTPH2 and NΔ47‐rchTPH2. Addition of l‐Phe to the purification buffer significantly increases the purification yields, which will facilitate characterization of hTPH2.
Collapse
Affiliation(s)
- Kasper D Tidemand
- Department of Chemistry Technical University of Denmark Kongens Lyngby Denmark
| | | | - Niclas Hoeck
- Department of Chemistry Technical University of Denmark Kongens Lyngby Denmark
| | - Pernille Harris
- Department of Chemistry Technical University of Denmark Kongens Lyngby Denmark
| | - Jane Boesen
- Department of Chemistry Technical University of Denmark Kongens Lyngby Denmark
| | - Günther H Peters
- Department of Chemistry Technical University of Denmark Kongens Lyngby Denmark
| |
Collapse
|
10
|
Discovery of compounds that protect tyrosine hydroxylase activity through different mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1078-89. [DOI: 10.1016/j.bbapap.2015.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
|
11
|
Abstract
Aromatic amino acid hydroxylases are members of a larger group of enzymes that use a mononuclear nonheme Fe center to catalyze a variety of thermodynamically challenging reactions in which O2 is used in the oxidative transformation of substrates. The hydroxylase enzymes are catalytically active in the ferrous oxidation state and are high-spin. To render the catalytic site EPR-active, we have used nitric oxide (NO) as a surrogate for substrate O2 to form an S=3/2 paramagnetic center. While the continuous-wave (cw)-EPR spectra of NO-enzyme adducts are rather generic, they provide electron spin echo envelope modulation (ESEEM) data that are rich with structural information derived from ligand hyperfine couplings. This chapter will focus on (2)H-ESEEM spectroscopy, an approach that we have taken for assigning these spectra and harvesting the unique information on Fe(II) coordination chemistry that they provide. While these spectroscopic measurements are routine, an emphasis will be placed on the analysis of cw-EPR and (2)H-ESEEM data using an unconstrained nonlinear optimization approach. These analysis methods are based on simple custom "scripts" that run in the MATLAB environment and that use EasySpin, a public-domain EPR simulation package, as their calculation engine. The examples provided here use a strategy that can be adapted for the treatment of most EPR measurements.
Collapse
|
12
|
McCracken J, Eser BE, Mannikko D, Krzyaniak MD, Fitzpatrick PF. HYSCORE Analysis of the Effects of Substrates on Coordination of Water to the Active Site Iron in Tyrosine Hydroxylase. Biochemistry 2015; 54:3759-71. [DOI: 10.1021/acs.biochem.5b00363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John McCracken
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bekir E. Eser
- Department
of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Donald Mannikko
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Matthew D. Krzyaniak
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Paul F. Fitzpatrick
- Department
of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| |
Collapse
|
13
|
Nijhout HF, Best J, Reed MC. Escape from homeostasis. Math Biosci 2014; 257:104-10. [PMID: 25242608 DOI: 10.1016/j.mbs.2014.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/14/2022]
Abstract
Many physiological systems, from gene networks to biochemistry to whole organism physiology, exhibit homeostatic mechanisms that keep certain variables within a fairly narrow range. Because homeostatic mechanisms buffer traits against environmental and genetic variation they allow the accumulation of cryptic genetic variation. Homeostatic mechanisms are never perfect and can be destabilized by mutations in genes that alter the kinetics of the underlying mechanism. We use mathematical models to study five diverse mechanisms of homeostasis: thermoregulation; maintenance of homocysteine concentration; neural control by a feed forward circuit; the myogenic response in the kidney; and regulation of extracellular dopamine levels in the brain. In all these cases there are homeostatic regions where the trait is relatively insensitive to genetic or environmental variation, flanked by regions where it is sensitive. Moreover, mutations or environmental changes can place an individual closer to the edge of the homeostatic region, thus predisposing that individual to deleterious effects caused by additional mutations or environmental changes. Mutations and environmental variables can also reduce the size of the homeostatic region, thus releasing potentially deleterious cryptic genetic variation. These considerations of mutations, environment, homeostasis, and escape from homeostasis help to explain why the etiology of so many diseases is complex.
Collapse
Affiliation(s)
| | - Janet Best
- Department of Mathematics, Duke University, Durham, NC 27705, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC 27705, USA
| |
Collapse
|
14
|
Fossbakk A, Kleppe R, Knappskog PM, Martinez A, Haavik J. Functional studies of tyrosine hydroxylase missense variants reveal distinct patterns of molecular defects in Dopa-responsive dystonia. Hum Mutat 2014; 35:880-90. [PMID: 24753243 PMCID: PMC4312968 DOI: 10.1002/humu.22565] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/10/2014] [Indexed: 11/23/2022]
Abstract
Congenital tyrosine hydroxylase deficiency (THD) is found in autosomal-recessive Dopa-responsive dystonia and related neurological syndromes. The clinical manifestations of THD are variable, ranging from early-onset lethal disease to mild Parkinson disease-like symptoms appearing in adolescence. Until 2014, approximately 70 THD patients with a total of 40 different disease-related missense mutations, five nonsense mutations, and three mutations in the promoter region of the tyrosine hydroxylase (TH) gene have been reported. We collected clinical and biochemical data in the literature for all variants, and also generated mutant forms of TH variants previously not studied (N = 23). We compared the in vitro solubility, thermal stability, and kinetic properties of the TH variants to determine the cause(s) of their impaired enzyme activity, and found great heterogeneity in all these properties among the mutated forms. Some TH variants had specific kinetic anomalies and phenylalanine hydroxylase, and Dopa oxidase activities were measured for variants that showed signs of altered substrate binding. p.Arg233His, p.Gly247Ser, and p.Phe375Leu had shifted substrate specificity from tyrosine to phenylalanine and Dopa, whereas p.Cys359Phe had an impaired activity toward these substrates. The new data about pathogenic mechanisms presented are expected to contribute to develop individualized therapy for THD patients.
Collapse
Affiliation(s)
- Agnete Fossbakk
- Department of Biomedicine, University of Bergen, Bergen, Norway; K. G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|
15
|
Reed MC, Nijhout HF, Best JA. Mathematical insights into the effects of levodopa. Front Integr Neurosci 2012; 6:21. [PMID: 22783173 PMCID: PMC3389445 DOI: 10.3389/fnint.2012.00021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/28/2012] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease has been traditionally thought of as a dopaminergic disease in which cells of the substantia nigra pars compacta (SNc) die. However, accumulating evidence implies an important role for the serotonergic system in Parkinson’s disease in general and in physiological responses to levodopa therapy, the first line of treatment. We use a mathematical model to investigate the consequences of levodopa therapy on the serotonergic system and on the pulsatile release of dopamine (DA) from dopaminergic and serotonergic terminals in the striatum. Levodopa competes with tyrosine and tryptophan at the blood-brain barrier and is taken up by serotonin neurons in which it competes for aromatic amino acid decarboxylase. The DA produced competes with serotonin (5HT) for packaging into vesicles. We predict the time courses of LD, cytosolic DA, and vesicular DA in 5HT neurons during an LD dose. We predict the time courses of DA and 5HT release from 5HT cell bodies and 5HT terminals as well as the changes in 5HT firing rate due to lower 5HT release. We compute the time course of DA release in the striatum from both 5HT and DA neurons and show how the time course changes as more and more SNc cells die. This enables us to explain the shortening of the therapeutic time window for the efficacy of levodopa as Parkinson’s disease progresses. Finally, we study the effects 5HT1a and 5HT1b autoreceptor agonists and explain why they have a synergistic effect and why they lengthen the therapeutic time window for LD therapy. Our results are consistent with and help explain results in the experimental literature and provide new predictions that can be tested experimentally.
Collapse
Affiliation(s)
- Michael C Reed
- Department of Mathematics, Duke University Durham, NC, USA
| | | | | |
Collapse
|
16
|
Calvo AC, Scherer T, Pey AL, Ying M, Winge I, McKinney J, Haavik J, Thöny B, Martinez A. Effect of pharmacological chaperones on brain tyrosine hydroxylase and tryptophan hydroxylase 2. J Neurochem 2010; 114:853-63. [DOI: 10.1111/j.1471-4159.2010.06821.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Lou H, Montoya SE, Alerte TNM, Wang J, Wu J, Peng X, Hong CS, Friedrich EE, Mader SA, Pedersen CJ, Marcus BS, McCormack AL, Di Monte DA, Daubner SC, Perez RG. Serine 129 phosphorylation reduces the ability of alpha-synuclein to regulate tyrosine hydroxylase and protein phosphatase 2A in vitro and in vivo. J Biol Chem 2010; 285:17648-61. [PMID: 20356833 PMCID: PMC2878529 DOI: 10.1074/jbc.m110.100867] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/06/2010] [Indexed: 11/22/2022] Open
Abstract
Alpha-synuclein (a-Syn), a protein implicated in Parkinson disease, contributes significantly to dopamine metabolism. a-Syn binding inhibits the activity of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis. Phosphorylation of TH stimulates its activity, an effect that is reversed by protein phosphatase 2A (PP2A). In cells, a-Syn overexpression activates PP2A. Here we demonstrate that a-Syn significantly inhibited TH activity in vitro and in vivo and that phosphorylation of a-Syn serine 129 (Ser-129) modulated this effect. In MN9D cells, a-Syn overexpression reduced TH serine 19 phosphorylation (Ser(P)-19). In dopaminergic tissues from mice overexpressing human a-Syn in catecholamine neurons only, TH-Ser-19 and TH-Ser-40 phosphorylation and activity were also reduced, whereas PP2A was more active. Cerebellum, which lacks excess a-Syn, had PP2A activity identical to controls. Conversely, a-Syn knock-out mice had elevated TH-Ser-19 phosphorylation and activity and less active PP2A in dopaminergic tissues. Using an a-Syn Ser-129 dephosphorylation mimic, with serine mutated to alanine, TH was more inhibited, whereas PP2A was more active in vitro and in vivo. Phosphorylation of a-Syn Ser-129 by Polo-like-kinase 2 in vitro reduced the ability of a-Syn to inhibit TH or activate PP2A, identifying a novel regulatory role for Ser-129 on a-Syn. These findings extend our understanding of normal a-Syn biology and have implications for the dopamine dysfunction of Parkinson disease.
Collapse
Affiliation(s)
- Haiyan Lou
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- the Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Susana E. Montoya
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Tshianda N. M. Alerte
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jian Wang
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jianjun Wu
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Xiangmin Peng
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Chang-Sook Hong
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Emily E. Friedrich
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Samantha A. Mader
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Courtney J. Pedersen
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Brian S. Marcus
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | | | - S. Colette Daubner
- the Department of Biological Sciences, St. Mary's University, San Antonio, Texas 78229, and
| | - Ruth G. Perez
- From the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- the Departments of Neurology and
- Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
18
|
Willemsen MA, Verbeek MM, Kamsteeg EJ, de Rijk-van Andel JF, Aeby A, Blau N, Burlina A, Donati MA, Geurtz B, Grattan-Smith PJ, Haeussler M, Hoffmann GF, Jung H, de Klerk JB, van der Knaap MS, Kok F, Leuzzi V, de Lonlay P, Megarbane A, Monaghan H, Renier WO, Rondot P, Ryan MM, Seeger J, Smeitink JA, Steenbergen-Spanjers GC, Wassmer E, Weschke B, Wijburg FA, Wilcken B, Zafeiriou DI, Wevers RA. Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 2010; 133:1810-22. [DOI: 10.1093/brain/awq087] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Eser BE, Fitzpatrick PF. Measurement of intrinsic rate constants in the tyrosine hydroxylase reaction. Biochemistry 2010; 49:645-52. [PMID: 20025246 DOI: 10.1021/bi901874e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine hydroxylase (TyrH) is a pterin-dependent mononuclear non-heme aromatic amino acid hydroxylase that catalyzes the conversion of tyrosine to dihydroxyphenylalanine (DOPA). Chemical quench analyses of the enzymatic reaction show a burst of DOPA formation, followed by a linear rate equal to the k(cat) value at both 5 and 30 degrees C. The effects of increasing solvent viscosity confirm that k(cat) is approximately 84% limited by diffusion, most probably due to slow product release, and that tyrosine has a commitment to catalysis of 0.45. The effect of viscosity on the k(cat)/K(m) for 6-methyltetrahydropterin is greater than the theoretical limit, consistent with the coupling of pterin binding to the movement of a surface loop. The absorbance changes in the spectrum of the tetrahydropterin during the first turnover, the kinetics of DOPA formation during the first turnover, and the previously described kinetics for formation and decay of the Fe(IV)O intermediate [Eser, B. E., Barr, E. W., Frantom, P. A., Saleh, L., Bollinger, J. M., Jr., Krebs, C., and Fitzpatrick, P. F. (2007) J. Am. Chem. Soc. 129, 11334-11335] were analyzed globally, yielding a single set of rate constants for the TyrH reaction. Reversible binding of oxygen is followed by formation of Fe(IV)O and 4a-hydroxypterin with a rate constant of 13 s(-1) at 5 degrees C. Transfer of oxygen from Fe(IV)O to tyrosine to form DOPA follows with a rate constant of 22 s(-1). Release of DOPA and/or the 4a-hydroxypterin with a rate constant of 0.86 s(-1) completes the turnover.
Collapse
Affiliation(s)
- Bekir E Eser
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
20
|
Best JA, Nijhout HF, Reed MC. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model. Theor Biol Med Model 2009; 6:21. [PMID: 19740446 PMCID: PMC2755466 DOI: 10.1186/1742-4682-6-21] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 09/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine 1. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. METHODS We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. RESULTS We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed half-lives of extracellular dopamine under various treatment protocols. CONCLUSION Dopaminergic systems must respond robustly to important biological signals such as bursts, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of tyrosine hydroxylase, the dopamine transporters, and the dopamine autoreceptors.
Collapse
Affiliation(s)
- Janet A Best
- Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC 27708, USA
| |
Collapse
|
21
|
Chow MS, Eser BE, Wilson SA, Hodgson KO, Hedman B, Fitzpatrick PF, Solomon EI. Spectroscopy and kinetics of wild-type and mutant tyrosine hydroxylase: mechanistic insight into O2 activation. J Am Chem Soc 2009; 131:7685-98. [PMID: 19489646 DOI: 10.1021/ja810080c] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tyrosine hydroxylase (TH) is a pterin-dependent nonheme iron enzyme that catalyzes the hydroxylation of L-tyr to L-DOPA in the rate-limiting step of catecholamine neurotransmitter biosynthesis. We have previously shown that the Fe(II) site in phenylalanine hydroxylase (PAH) converts from six-coordinate (6C) to five-coordinate (5C) only when both substrate + cofactor are bound. However, steady-state kinetics indicate that TH has a different co-substrate binding sequence (pterin + O(2) + L-tyr) than PAH (L-phe + pterin + O(2)). Using X-ray absorption spectroscopy (XAS), and variable-temperature-variable-field magnetic circular dichroism (VTVH MCD) spectroscopy, we have investigated the geometric and electronic structure of the wild-type (WT) TH and two mutants, S395A and E332A, and their interactions with substrates. All three forms of TH undergo 6C --> 5C conversion with tyr + pterin, consistent with the general mechanistic strategy established for O(2)-activating nonheme iron enzymes. We have also applied single-turnover kinetic experiments with spectroscopic data to evaluate the mechanism of the O(2) and pterin reactions in TH. When the Fe(II) site is 6C, the two-electron reduction of O(2) to peroxide by Fe(II) and pterin is favored over individual one-electron reactions, demonstrating that both a 5C Fe(II) and a redox-active pterin are required for coupled O(2) reaction. When the Fe(II) is 5C, the O(2) reaction is accelerated by at least 2 orders of magnitude. Comparison of the kinetics of WT TH, which produces Fe(IV)=O + 4a-OH-pterin, and E332A TH, which does not, shows that the E332 residue plays an important role in directing the protonation of the bridged Fe(II)-OO-pterin intermediate in WT to productively form Fe(IV)=O, which is responsible for hydroxylating L-tyr to L-DOPA.
Collapse
Affiliation(s)
- Marina S Chow
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Haavik J, Blau N, Thöny B. Mutations in human monoamine-related neurotransmitter pathway genes. Hum Mutat 2008; 29:891-902. [PMID: 18444257 DOI: 10.1002/humu.20700] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biosynthesis and metabolism of serotonin and catecholamines involve at least eight individual enzymes that are mainly expressed in tissues derived from the neuroectoderm, e.g., the central nervous system (CNS), pineal gland, adrenal medulla, enterochromaffin tissue, sympathetic nerves, and ganglia. Some of the enzymes appear to have additional biological functions and are also expressed in the heart and various other internal organs. The biosynthetic enzymes are tyrosine hydroxylase (TH), tryptophan hydroxylases type 1 and 2 (TPH1, TPH2), aromatic amino acid decarboxylase (AADC), dopamine beta-hydroxylase (DbetaH), and phenylethanolamine N-methyltransferase (PNMT), and the specific catabolic enzymes are monoamine oxidase A (MAO-A) and catechol O-methyltransferase (COMT). For the TH, DDC, DBH, and MAOA genes, many single nucleotide polymorphisms (SNPs) with unknown function, and small but increasing numbers of cases with autosomal recessive mutations have been recognized. For the remaining genes (TPH1, TPH2, PNMT, and COMT) several different genetic markers have been suggested to be associated with regulation of mood, pain perception, and aggression, as well as psychiatric disturbances such as schizophrenia, depression, suicidality, and attention deficit/hyperactivity disorder. The genetic markers may either have a functional role of their own, or be closely linked to other unknown functional variants. In the future, molecular testing may become important for the diagnosis of such conditions. Here we present an overview on mutations and polymorphisms in the group of genes encoding monoamine neurotransmitter metabolizing enzymes. At the same time we propose a unified nomenclature for the nucleic acid aberrations in these genes. New variations or details on mutations will be updated in the Pediatric Neurotransmitter Disorder Data Base (PNDDB) database (www.bioPKU.org).
Collapse
Affiliation(s)
- Jan Haavik
- Department of Biomedicine, University of Bergen, Norway
| | | | | |
Collapse
|
23
|
Breakefield XO, Blood AJ, Li Y, Hallett M, Hanson PI, Standaert DG. The pathophysiological basis of dystonias. Nat Rev Neurosci 2008; 9:222-34. [PMID: 18285800 DOI: 10.1038/nrn2337] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dystonias comprise a group of movement disorders that are characterized by involuntary movements and postures. Insight into the nature of neuronal dysfunction has been provided by the identification of genes responsible for primary dystonias, the characterization of animal models and functional evaluations and in vivo brain imaging of patients with dystonia. The data suggest that alterations in neuronal development and communication within the brain create a susceptible substratum for dystonia. Although there is no overt neurodegeneration in most forms of dystonia, there are functional and microstructural brain alterations. Dystonia offers a window into the mechanisms whereby subtle changes in neuronal function, particularly in sensorimotor circuits that are associated with motor learning and memory, can corrupt normal coordination and lead to a disabling motor disorder.
Collapse
Affiliation(s)
- Xandra O Breakefield
- Department of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Winge I, McKinney JA, Knappskog PM, Haavik J. Characterization of wild-type and mutant forms of human tryptophan hydroxylase 2. J Neurochem 2006; 100:1648-57. [PMID: 17181551 DOI: 10.1111/j.1471-4159.2006.04290.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tryptophan hydroxylase (TPH) catalyses the rate-limiting step in the biosynthesis of serotonin. In vertebrates, the homologous genes tph1 and tph2 encode two different enzymes with distinct patterns of expression, enzyme kinetics and regulation. Variants of TPH2 have recently reported to be associated with reduced serotonin production and behavioural alterations in man and mice. We have produced the human forms of these enzymes in Esherichia coli and in human embryonic kidney cell lines (HEK293) and examined the effects of mutations on their heterologous expression levels, solubility, thermal stability, secondary structure, and catalytic properties. Pure human TPH2 P449R (corresponds to mouse P447R) had comparable catalytic activity (V(max)) and solubility relative to the wild type, but had decreased thermal stability; whereas human TPH2 R441H had decreased activity, solubility and stability. Thus, we consider the variations in kinetic values between wild-type and TPH2 mutants to be of secondary importance to their effects on protein stability and solubility. These findings provide potential molecular explanations for disorders related to the central serotonergic system, such as depression or suicidal behaviour.
Collapse
Affiliation(s)
- Ingeborg Winge
- Department of Biomedicine, Section of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | | | | | |
Collapse
|
25
|
Daubner SC, McGinnis JT, Gardner M, Kroboth SL, Morris AR, Fitzpatrick PF. A flexible loop in tyrosine hydroxylase controls coupling of amino acid hydroxylation to tetrahydropterin oxidation. J Mol Biol 2006; 359:299-307. [PMID: 16618490 PMCID: PMC1945210 DOI: 10.1016/j.jmb.2006.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 03/08/2006] [Accepted: 03/08/2006] [Indexed: 10/24/2022]
Abstract
The role of a polypeptide loop in tyrosine hydroxylase (TyrH) whose homolog in phenylalanine hydroxylase (PheH) takes on a different conformation when substrates are bound has been studied using site-directed mutagenesis. The loop spans positions 177 to 191; alanine was introduced into those positions, introducing one alanine substitution per TyrH variant. Mutagenesis of residues in the center of the loop resulted in alterations in the KM values for substrates, the Vmax value for dihydroxyphenylalanine (DOPA) synthesis, and the coupling of tetrahydropterin oxidation to tyrosine hydroxylation. The variant with the most altered KM value for 6-methyltetrahydropterin was TyrH F184A. The variants with the most affected K(tyr) values were those with substitutions in the center of the loop, TyrH K183A, F184A, D185A, P186A and D187A. These five variants also had the most reduced Vmax values for DOPA synthesis. Alanine substitution in positions 182-186 resulted in lowered ratios of tyrosine hydroxylation to tetrahydropterin oxidation. TyrH F184Y and PheH Y138F, variants with the residue at the center of the loop substituted with the residue present at the homologous position in the other hydroxylase, were also studied. The V/K(tyr) to V/K(phe) ratios for these variants were altered significantly, but the results did not suggest that F184 of TyrH or Y138 of PheH plays a dominant role in determining amino acid substrate specificity.
Collapse
Affiliation(s)
- S Colette Daubner
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | | | | | |
Collapse
|