1
|
Gokey T, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-l-rhamnose biosynthetic pathway enzyme: dTDP-α-d-glucose 4,6-dehydratase, RfbB. J Struct Biol 2018; 202:175-181. [PMID: 29331609 DOI: 10.1016/j.jsb.2018.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/27/2022]
Abstract
Many bacteria require l-rhamnose as a key cell wall component. This sugar is transferred to the cell wall using an activated donor dTDP-l-rhamnose, which is produced by the dTDP-l-rhamnose biosynthetic pathway. We determined the crystal structure of the second enzyme of this pathway dTDP-α-d-glucose 4,6-dehydratase (RfbB) from Bacillus anthracis. Interestingly, RfbB only crystallized in the presence of the third enzyme of the pathway RfbC; however, RfbC was not present in the crystal. Our work represents the first complete structural characterization of the four proteins of this pathway in a single Gram-positive bacterium.
Collapse
Affiliation(s)
- Trevor Gokey
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Andrei S Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, USA.
| |
Collapse
|
2
|
Use of evolutionary information in the fitting of atomic level protein models in low resolution cryo-EM map of a protein assembly improves the accuracy of the fitting. J Struct Biol 2016; 195:294-305. [PMID: 27444391 DOI: 10.1016/j.jsb.2016.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022]
Abstract
Protein-protein interface residues, especially those at the core of the interface, exhibit higher conservation than residues in solvent exposed regions. Here, we explore the ability of this differential conservation to evaluate fittings of atomic models in low-resolution cryo-EM maps and select models from the ensemble of solutions that are often proposed by different model fitting techniques. As a prelude, using a non-redundant and high-resolution structural dataset involving 125 permanent and 95 transient complexes, we confirm that core interface residues are conserved significantly better than nearby non-interface residues and this result is used in the cryo-EM map analysis. From the analysis of inter-component interfaces in a set of fitted models associated with low-resolution cryo-EM maps of ribosomes, chaperones and proteasomes we note that a few poorly conserved residues occur at interfaces. Interestingly a few conserved residues are not in the interface, though they are close to the interface. These observations raise the potential requirement of refitting the models in the cryo-EM maps. We show that sampling an ensemble of models and selection of models with high residue conservation at the interface and in good agreement with the density helps in improving the accuracy of the fit. This study indicates that evolutionary information can serve as an additional input to improve and validate fitting of atomic models in cryo-EM density maps.
Collapse
|
3
|
Sudha G, Srinivasan N. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications. Proteins 2016; 84:1190-202. [PMID: 27177429 DOI: 10.1002/prot.25065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 11/08/2022]
Abstract
A comprehensive analysis of the quaternary features of distantly related homo-oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo-oligomeric proteins have the same quaternary state. Considering these homologous homo-oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo-oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as "Russian doll effect." The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo-oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo-oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo-oligomers. Proteins 2016; 84:1190-1202. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Govindarajan Sudha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
4
|
Rakesh R, Srinivasan N. Improving the Accuracy of Fitted Atomic Models in Cryo-EM Density Maps of Protein Assemblies Using Evolutionary Information from Aligned Homologous Proteins. Methods Mol Biol 2016; 1415:193-209. [PMID: 27115634 DOI: 10.1007/978-1-4939-3572-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cryo-Electron Microscopy (cryo-EM) has become an important technique to obtain structural insights into large macromolecular assemblies. However the resolution of the density maps do not allow for its interpretation at atomic level. Hence they are combined with high resolution structures along with information from other experimental or bioinformatics techniques to obtain pseudo-atomic models. Here, we describe the use of evolutionary conservation of residues as obtained from protein structures and alignments of homologous proteins to detect errors in the fitting of atomic structures as well as improve accuracy of the protein-protein interfacial regions in the cryo-EM density maps.
Collapse
Affiliation(s)
- Ramachandran Rakesh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
5
|
Sudha G, Singh P, Swapna LS, Srinivasan N. Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes. Protein Sci 2015; 24:1856-73. [PMID: 26311309 DOI: 10.1002/pro.2792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Residue types at the interface of protein-protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.
Collapse
Affiliation(s)
- Govindarajan Sudha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Prashant Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Lakshmipuram S Swapna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
6
|
Sharma A, Gadkari RA, Ramakanth SV, Padmanabhan K, Madhumathi DS, Devi L, Appaji L, Aster JC, Rangarajan A, Dighe RR. A novel Monoclonal Antibody against Notch1 Targets Leukemia-associated Mutant Notch1 and Depletes Therapy Resistant Cancer Stem Cells in Solid Tumors. Sci Rep 2015; 5:11012. [PMID: 26046801 PMCID: PMC4457015 DOI: 10.1038/srep11012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Higher Notch signaling is known to be associated with hematological and solid cancers. We developed a potential immunotherapeutic monoclonal antibody (MAb) specific for the Negative Regulatory Region of Notch1 (NRR). The MAb604.107 exhibited higher affinity for the "Gain-of-function" mutants of Notch1 NRR associated with T Acute lymphoblastic Leukemia (T-ALL). Modeling of the mutant NRR with 12 amino-acid insertion demonstrated "opening" resulting in exposure of the S2-cleavage site leading to activated Notch1 signaling. The MAb, at low concentrations (1-2 μg/ml), inhibited elevated ligand-independent Notch1 signaling of NRR mutants, augmented effect of Thapsigargin, an inhibitor of mutant Notch1, but had no effect on the wild-type Notch1. The antibody decreased proliferation of the primary T-ALL cells and depleted leukemia initiating CD34/CD44 high population. At relatively high concentrations, (10-20 μg/ml), the MAb affected Notch1 signaling in the breast and colon cancer cell lines. The Notch-high cells sorted from solid-tumor cell lines exhibited characteristics of cancer stem cells, which were inhibited by the MAb. The antibody also increased the sensitivity to Doxorubucinirubicin. Further, the MAb impeded the growth of xenografts from breast and colon cancer cells potentiated regression of the tumors along with Doxorubucin. Thus, this antibody is potential immunotherapeutic tool for different cancers.
Collapse
Affiliation(s)
- Ankur Sharma
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science Bangalore, Karnataka, India
| | - Rupali A Gadkari
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Karnataka, India
| | - Satthenapalli V Ramakanth
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science Bangalore, Karnataka, India
| | - Krishnanand Padmanabhan
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science Bangalore, Karnataka, India
| | - Davanam S Madhumathi
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Lakshmi Devi
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Lingappa Appaji
- Department of Pediatric Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Jon C Aster
- Department of Pathology, Brigham &Women's Hospital, Harvard Medical School, Boston, USA
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science Bangalore, Karnataka, India
| | - Rajan R Dighe
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science Bangalore, Karnataka, India
| |
Collapse
|
7
|
Sudha G, Nussinov R, Srinivasan N. An overview of recent advances in structural bioinformatics of protein-protein interactions and a guide to their principles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:141-50. [PMID: 25077409 DOI: 10.1016/j.pbiomolbio.2014.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/13/2014] [Indexed: 12/20/2022]
Abstract
Rich data bearing on the structural and evolutionary principles of protein-protein interactions are paving the way to a better understanding of the regulation of function in the cell. This is particularly the case when these interactions are considered in the framework of key pathways. Knowledge of the interactions may provide insights into the mechanisms of crucial 'driver' mutations in oncogenesis. They also provide the foundation toward the design of protein-protein interfaces and inhibitors that can abrogate their formation or enhance them. The main features to learn from known 3-D structures of protein-protein complexes and the extensive literature which analyzes them computationally and experimentally include the interaction details which permit undertaking structure-based drug discovery, the evolution of complexes and their interactions, the consequences of alterations such as post-translational modifications, ligand binding, disease causing mutations, host pathogen interactions, oligomerization, aggregation and the roles of disorder, dynamics, allostery and more to the protein and the cell. This review highlights some of the recent advances in these areas, including design, inhibition and prediction of protein-protein complexes. The field is broad, and much work has been carried out in these areas, making it challenging to cover it in its entirety. Much of this is due to the fast increase in the number of molecules whose structures have been determined experimentally and the vast increase in computational power. Here we provide a concise overview.
Collapse
Affiliation(s)
- Govindarajan Sudha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| | - Ruth Nussinov
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, MD 21702, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
8
|
Template-based structure modeling of protein-protein interactions. Curr Opin Struct Biol 2013; 24:10-23. [PMID: 24721449 DOI: 10.1016/j.sbi.2013.11.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 01/21/2023]
Abstract
The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the protein-protein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement.
Collapse
|
9
|
Sukhwal A, Sowdhamini R. Oligomerisation status and evolutionary conservation of interfaces of protein structural domain superfamilies. MOLECULAR BIOSYSTEMS 2013; 9:1652-61. [DOI: 10.1039/c3mb25484d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Swapna LS, Bhaskara RM, Sharma J, Srinivasan N. Roles of residues in the interface of transient protein-protein complexes before complexation. Sci Rep 2012; 2:334. [PMID: 22451863 PMCID: PMC3312204 DOI: 10.1038/srep00334] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/07/2012] [Indexed: 12/26/2022] Open
Abstract
Transient protein-protein interactions play crucial roles in all facets of cellular physiology. Here, using an analysis on known 3-D structures of transient protein-protein complexes, their corresponding uncomplexed forms and energy calculations we seek to understand the roles of protein-protein interfacial residues in the unbound forms. We show that there are conformationally near invariant and evolutionarily conserved interfacial residues which are rigid and they account for ∼65% of the core interface. Interestingly, some of these residues contribute significantly to the stabilization of the interface structure in the uncomplexed form. Such residues have strong energetic basis to perform dual roles of stabilizing the structure of the uncomplexed form as well as the complex once formed while they maintain their rigid nature throughout. This feature is evolutionarily well conserved at both the structural and sequence levels. We believe this analysis has general bearing in the prediction of interfaces and understanding molecular recognition.
Collapse
|
11
|
Protein-protein interactions in clathrin vesicular assembly: radial distribution of evolutionary constraints in interfaces. PLoS One 2012; 7:e31445. [PMID: 22384024 PMCID: PMC3285160 DOI: 10.1371/journal.pone.0031445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 01/10/2012] [Indexed: 11/19/2022] Open
Abstract
In eukaryotic organisms clathrin-coated vesicles are instrumental in the processes of endocytosis as well as intracellular protein trafficking. Hence, it is important to understand how these vesicles have evolved across eukaryotes, to carry cargo molecules of varied shapes and sizes. The intricate nature and functional diversity of the vesicles are maintained by numerous interacting protein partners of the vesicle system. However, to delineate functionally important residues participating in protein-protein interactions of the assembly is a daunting task as there are no high-resolution structures of the intact assembly available. The two cryoEM structures closely representing intact assembly were determined at very low resolution and provide positions of Cα atoms alone. In the present study, using the method developed by us earlier, we predict the protein-protein interface residues in clathrin assembly, taking guidance from the available low-resolution structures. The conservation status of these interfaces when investigated across eukaryotes, revealed a radial distribution of evolutionary constraints, i.e., if the members of the clathrin vesicular assembly can be imagined to be arranged in spherical manner, the cargo being at the center and clathrins being at the periphery, the detailed phylogenetic analysis of these members of the assembly indicated high-residue variation in the members of the assembly closer to the cargo while high conservation was noted in clathrins and in other proteins at the periphery of the vesicle. This points to the strategy adopted by the nature to package diverse proteins but transport them through a highly conserved mechanism.
Collapse
|
12
|
Swapna LS, Rekha N, Srinivasan N. Accommodation of profound sequence differences at the interfaces of eubacterial RNA polymerase multi-protein assembly. Bioinformation 2012; 8:6-12. [PMID: 22359428 PMCID: PMC3282269 DOI: 10.6026/97320630008006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 12/17/2011] [Indexed: 11/23/2022] Open
Abstract
Evolutionarily divergent proteins have been shown to change their interacting partners. RNA polymerase assembly is one of the rare cases which retain its component proteins in the course of evolution. This ubiquitous molecular assembly, involved in transcription, consists of four core subunits (alpha, beta, betaprime, and omega), which assemble to form the core enzyme. Remarkably, the orientation of the four subunits in the complex is conserved from prokaryotes to eukaryotes although their sequence similarity is low. We have studied how the sequence divergence of the core subunits of RNA polymerase is accommodated in the formation of the multi-molecular assembly, with special reference to eubacterial species. Analysis of domain composition and order of the core subunits in >85 eubacterial species indicates complete conservation. However, sequence analysis indicates that interface residues of alpha and omega subunits are more divergent than those of beta, betaprime, and sigma70 subunits. Although beta and betaprime are generally well-conserved, residues involved in interaction with divergent subunits are not conserved. Insertions/deletions are also observed near interacting regions even in case of the most conserved subunits, beta and betaprime. Homology modelling of three divergent RNA polymerase complexes, from Helicobacter pylori, Mycoplasma pulmonis and Onion yellows phytoplasma, indicates that insertions/deletions can be accommodated near the interface as they generally occur at the periphery. Evaluation of the modeled interfaces indicates that they are physico-chemically similar to that of the template interfaces in Thermus thermophilus, indicating that nature has evolved to retain the obligate complex in spite of substantial substitutions and insertions/deletions.
Collapse
Affiliation(s)
| | - Nambudiry Rekha
- Biobase Databases India Pvt Ltd, Langford Town, Bangalore 560025, India
| | | |
Collapse
|
13
|
Martin J. Beauty is in the eye of the beholder: proteins can recognize binding sites of homologous proteins in more than one way. PLoS Comput Biol 2010; 6:e1000821. [PMID: 20585553 PMCID: PMC2887470 DOI: 10.1371/journal.pcbi.1000821] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/18/2010] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms of protein-protein interaction is a fundamental problem with many practical applications. The fact that different proteins can bind similar partners suggests that convergently evolved binding interfaces are reused in different complexes. A set of protein complexes composed of non-homologous domains interacting with homologous partners at equivalent binding sites was collected in 2006, offering an opportunity to investigate this point. We considered 433 pairs of protein-protein complexes from the ABAC database (AB and AC binary protein complexes sharing a homologous partner A) and analyzed the extent of physico-chemical similarity at the atomic and residue level at the protein-protein interface. Homologous partners of the complexes were superimposed using Multiprot, and similar atoms at the interface were quantified using a five class grouping scheme and a distance cut-off. We found that the number of interfacial atoms with similar properties is systematically lower in the non-homologous proteins than in the homologous ones. We assessed the significance of the similarity by bootstrapping the atomic properties at the interfaces. We found that the similarity of binding sites is very significant between homologous proteins, as expected, but generally insignificant between the non-homologous proteins that bind to homologous partners. Furthermore, evolutionarily conserved residues are not colocalized within the binding sites of non-homologous proteins. We could only identify a limited number of cases of structural mimicry at the interface, suggesting that this property is less generic than previously thought. Our results support the hypothesis that different proteins can interact with similar partners using alternate strategies, but do not support convergent evolution.
Collapse
Affiliation(s)
- Juliette Martin
- Université de Lyon, Lyon, France; Université Lyon 1, IFR 128, CNRS, UMR 5086 Institut de Biologie et Chimie des Protéines (IBCP), Lyon, France.
| |
Collapse
|
14
|
Gadkari RA, Srinivasan N. Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures. BMC STRUCTURAL BIOLOGY 2010; 10:17. [PMID: 20550721 PMCID: PMC2906493 DOI: 10.1186/1472-6807-10-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 06/16/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. RESULTS In the present analysis, starting from Calpha positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. CONCLUSIONS Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.
Collapse
Affiliation(s)
- Rupali A Gadkari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
15
|
Panjkovich A, Aloy P. Predicting protein–protein interaction specificity through the integration of three-dimensional structural information and the evolutionary record of protein domains. MOLECULAR BIOSYSTEMS 2010; 6:741. [DOI: 10.1039/b918395g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
16
|
Gadkari RA, Varughese D, Srinivasan N. Recognition of interaction interface residues in low-resolution structures of protein assemblies solely from the positions of C(alpha) atoms. PLoS One 2009; 4:e4476. [PMID: 19214247 PMCID: PMC2641018 DOI: 10.1371/journal.pone.0004476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 12/22/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The number of available structures of large multi-protein assemblies is quite small. Such structures provide phenomenal insights on the organization, mechanism of formation and functional properties of the assembly. Hence detailed analysis of such structures is highly rewarding. However, the common problem in such analyses is the low resolution of these structures. In the recent times a number of attempts that combine low resolution cryo-EM data with higher resolution structures determined using X-ray analysis or NMR or generated using comparative modeling have been reported. Even in such attempts the best result one arrives at is the very course idea about the assembly structure in terms of trace of the C(alpha) atoms which are modeled with modest accuracy. METHODOLOGY/PRINCIPAL FINDINGS In this paper first we present an objective approach to identify potentially solvent exposed and buried residues solely from the position of C(alpha) atoms and amino acid sequence using residue type-dependent thresholds for accessible surface areas of C(alpha). We extend the method further to recognize potential protein-protein interface residues. CONCLUSION/ SIGNIFICANCE: Our approach to identify buried and exposed residues solely from the positions of C(alpha) atoms resulted in an accuracy of 84%, sensitivity of 83-89% and specificity of 67-94% while recognition of interfacial residues corresponded to an accuracy of 94%, sensitivity of 70-96% and specificity of 58-94%. Interestingly, detailed analysis of cases of mismatch between recognition of interface residues from C(alpha) positions and all-atom models suggested that, recognition of interfacial residues using C(alpha) atoms only correspond better with intuitive notion of what is an interfacial residue. Our method should be useful in the objective analysis of structures of protein assemblies when positions of only (alpha) positions are available as, for example, in the cases of integration of cryo-EM data and high resolution structures of the components of the assembly.
Collapse
Affiliation(s)
- Rupali A. Gadkari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- * E-mail: (RAG); (NS)
| | - Deepthi Varughese
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - N. Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- * E-mail: (RAG); (NS)
| |
Collapse
|
17
|
Levy ED, Pereira-Leal JB. Evolution and dynamics of protein interactions and networks. Curr Opin Struct Biol 2008; 18:349-57. [DOI: 10.1016/j.sbi.2008.03.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/04/2008] [Accepted: 03/04/2008] [Indexed: 12/29/2022]
|
18
|
Toshchakov VY, Vogel SN. Cell-penetrating TIR BB loop decoy peptides a novel class of TLR signaling inhibitors and a tool to study topology of TIR-TIR interactions. Expert Opin Biol Ther 2007; 7:1035-50. [PMID: 17665992 DOI: 10.1517/14712598.7.7.1035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Toll-like receptors (TLR), a family of closely related type I, transmembrane, signal transducing proteins, sense invading pathogens early in the immune response to infection and deliver intracellular signals to the cell. Both TLRs and their adapter proteins possess a conserved region, the Toll/IL-1 resistance (TIR) domain. A subregion of approximately 14 amino acids within the TIR domain, the BB loop, enables interactions between certain TLRs or between certain TLRs and their adapter molecules. Use of cell-penetrating decoy peptides composed of the sequence of the Drosophila antennapedia peptide (16 amino acids) juxtaposed to a specific TIR BB loop 14 amino acid sequences enables an evaluation of the relative efficacy of such BB loop peptides to inhibit TIR-TIR interactions and signaling. Moreover, failure of specific BB loop peptides to inhibit signaling suggests that this region of a particular TIR domain is likely to not be involved in signaling. This review discusses cell-penetrating decoy peptides as a new tool to further understanding of the molecular interactions required for TLR signaling and evaluates the potential of this approach for the creation of therapeutic agents.
Collapse
Affiliation(s)
- Vladimir Y Toshchakov
- University of Maryland, Department of Microbiology and Immunology, School of Medicine, MD 21201-1559, Baltimore, USA.
| | | |
Collapse
|
19
|
Abstract
Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic–aromatic interactions, aromatic–sulphur interactions and cation–π interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar–apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside.
Collapse
Affiliation(s)
| | | | - N. Srinivasan
- *To whom correspondence should be addressed. +91 80 2293 2837+91 80 2360 0535
| |
Collapse
|
20
|
Abstract
Considering the limited success of the most sophisticated docking methods available and the amount of computation required for systematic docking, cataloging all the known interfaces may be an alternative basis for the prediction of protein tertiary and quaternary structures. We classify domain interfaces according to the geometry of domain-domain association. By applying a simple and efficient method called "interface tag clustering," more than 4,000 distinct types of domain interfaces are collected from Protein Quaternary Structure Server and Protein Data Bank. Given a pair of interacting domains, we define "face" as the set of interacting residues in each single domain and the pair of interacting faces as an "interface." We investigate how the geometry of interfaces relates to a network of interacting protein families, such as how many different binding orientations are possible between two families or whether a family uses distinct surfaces or the same surface when the family has diverse interaction partners from various families. We show there are, on average, 1.2-1.9 different types of interfaces between interacting domains and a significant number of family pairs associate in multiple orientations. In general, a family tends to use distinct faces for each partner when the family has diverse interaction partners. Each face is highly specific to its interaction partner and the binding orientation. The relative positions of interface residues are generally well conserved within the same type of interface even between remote homologs. The classification result is available at http://www.biotec.tu-dresden.de/~wkim/supplement.
Collapse
Affiliation(s)
- Wan Kyu Kim
- Biotechnological Centre, TU Dresden, Germany
| | | |
Collapse
|
21
|
Affiliation(s)
- N Srinivasan
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore 560 012; India
| |
Collapse
|
22
|
Henschel A, Kim WK, Schroeder M. Equivalent binding sites reveal convergently evolved interaction motifs. Bioinformatics 2005; 22:550-5. [PMID: 16287935 DOI: 10.1093/bioinformatics/bti782] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Much research has been devoted to the characterization of interaction interfaces found in complexes with known structure. In this context, the interactions of non-homologous domains at equivalent binding sites are of particular interest, as they can reveal convergently evolved interface motifs. Such motifs are an important source of information to formulate rules for interaction specificity and to design ligands based on the common features shared among diverse partners. RESULTS We develop a novel method to identify non-homologous structural domains which bind at equivalent sites when interacting with a common partner. We systematically apply this method to all pairs of interactions with known structure and derive a comprehensive database for these interactions. Of all non-homologous domains, which bind with a common interaction partner, 4.2% use the same interface of the common interaction partner (excluding immunoglobulins and proteases). This rises to 16% if immunoglobulin and proteases are included. We demonstrate two applications of our database: first, the systematic screening for viral protein interfaces, which can mimic native interfaces and thus interfere; and second, structural motifs in enzymes and its inhibitors. We highlight several cases of virus protein mimicry: viral M3 protein interferes with a chemokine dimer interface. The virus has evolved the motif SVSPLP, which mimics the native SSDTTP motif. A second example is the regulatory factor Nef in HIV which can mimic a kinase when interacting with SH3. Among others the virus has evolved the kinase's PxxP motif. Further, we elucidate motif resemblances in Baculovirus p35 and HIV capsid proteins. Finally, chymotrypsin is subject to scrutiny wrt. its structural similarity to subtilisin and wrt. its inhibitor's similar recognition sites. SUPPLEMENTARY INFORMATION A database is online at scoppi.biotec.tu-dresden.de/abac/.
Collapse
Affiliation(s)
- Andreas Henschel
- Bioinformatics Group, Biotechnological Centre TU Dresden, Germany.
| | | | | |
Collapse
|
23
|
Pils B, Copley RR, Schultz J. Variation in structural location and amino acid conservation of functional sites in protein domain families. BMC Bioinformatics 2005; 6:210. [PMID: 16122386 PMCID: PMC1215474 DOI: 10.1186/1471-2105-6-210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 08/25/2005] [Indexed: 11/26/2022] Open
Abstract
Background The functional sites of a protein present important information for determining its cellular function and are fundamental in drug design. Accordingly, accurate methods for the prediction of functional sites are of immense value. Most available methods are based on a set of homologous sequences and structural or evolutionary information, and assume that functional sites are more conserved than the average. In the analysis presented here, we have investigated the conservation of location and type of amino acids at functional sites, and compared the behaviour of functional sites between different protein domains. Results Functional sites were extracted from experimentally determined structural complexes from the Protein Data Bank harbouring a conserved protein domain from the SMART database. In general, functional (i.e. interacting) sites whose location is more highly conserved are also more conserved in their type of amino acid. However, even highly conserved functional sites can present a wide spectrum of amino acids. The degree of conservation strongly depends on the function of the protein domain and ranges from highly conserved in location and amino acid to very variable. Differentiation by binding partner shows that ion binding sites tend to be more conserved than functional sites binding peptides or nucleotides. Conclusion The results gained by this analysis will help improve the accuracy of functional site prediction and facilitate the characterization of unknown protein sequences.
Collapse
Affiliation(s)
- Birgit Pils
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Richard R Copley
- Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, OX3 7BN Oxford, UK
| | - Jörg Schultz
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
24
|
Krishnadev O, Rekha N, Pandit SB, Abhiman S, Mohanty S, Swapna LS, Gore S, Srinivasan N. PRODOC: a resource for the comparison of tethered protein domain architectures with in-built information on remotely related domain families. Nucleic Acids Res 2005; 33:W126-9. [PMID: 15980440 PMCID: PMC1160235 DOI: 10.1093/nar/gki474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PROtein Domain Organization and Comparison (PRODOC) comprises several programs that enable convenient comparison of proteins as a sequence of domains. The in-built dataset currently consists of ∼698 000 proteins from 192 organisms with complete genomic data, and all the SWISSPROT proteins obtained from the Pfam database. All the entries in PRODOC are represented as a sequence of functional domains, assigned using hidden Markov models, instead of as a sequence of amino acids. On average 69% of the proteins in the proteomes and 49% of the residues are covered by functional domain assignments. Software tools allow the user to query the dataset with a sequence of domains and identify proteins with the same or a jumbled or circularly permuted arrangement of domains. As it is proposed that proteins with jumbled or the same domain sequences have similar functions, this search tool is useful in assigning the overall function of a multi-domain protein. Unique features of PRODOC include the generation of alignments between multi-domain proteins on the basis of the sequence of domains and in-built information on distantly related domain families forming superfamilies. It is also possible using PRODOC to identify domain sharing and gene fusion events across organisms. An exhaustive genome–genome comparison tool in PRODOC also enables the detection of successive domain sharing and domain fusion events across two organisms. The tool permits the identification of gene clusters involved in similar biological processes in two closely related organisms. The URL for PRODOC is .
Collapse
Affiliation(s)
| | | | | | | | | | | | - S. Gore
- Super Computer Education and Research Center, Indian Institute of ScienceBangalore 560 012, India
| | - N. Srinivasan
- To whom correspondence should be addressed. Tel: +91 80 2293 2837; Fax: +91 80 2360 0535;
| |
Collapse
|