1
|
A Novel Aminoacyl-tRNA Synthetase Appended Domain Can Supply the Core Synthetase with Its Amino Acid Substrate. Genes (Basel) 2020; 11:genes11111320. [PMID: 33171705 PMCID: PMC7694997 DOI: 10.3390/genes11111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
The structural organization and functionality of aminoacyl-tRNA synthetases have been expanded through polypeptide additions to their core aminoacylation domain. We have identified a novel domain appended to the methionyl-tRNA synthetase (MetRS) of the intracellular pathogen Mycoplasma penetrans. Sequence analysis of this N-terminal region suggests the appended domain is an aminotransferase, which we demonstrate here. The aminotransferase domain of MpMetRS is capable of generating methionine from its α-keto acid analog, 2-keto-4-methylthiobutyrate (KMTB). The methionine thus produced can be subsequently attached to cognate tRNAMet in the MpMetRS aminoacylation domain. Genomic erosion in the Mycoplasma species has impaired many canonical biosynthetic pathways, causing them to rely on their host for numerous metabolites. It is still unclear if this bifunctional MetRS is a key part of pathogen life cycle or is a neutral consequence of the reductive evolution experienced by Mycoplasma species.
Collapse
|
2
|
Liepman AH, Vijayalakshmi J, Peisach D, Hulsebus B, Olsen LJ, Saper MA. Crystal Structure Of Photorespiratory Alanine:Glyoxylate Aminotransferase 1 (AGT1) From Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1229. [PMID: 31681359 PMCID: PMC6797613 DOI: 10.3389/fpls.2019.01229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 05/14/2023]
Abstract
Photorespiration is an energetically costly metabolic pathway for the recycling of phosphoglycolate produced by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) to phosphoglycerate. Arabidopsis alanine:glyoxylate aminotransferase 1 (AGT1) is a peroxisomal aminotransferase with a central role in photorespiration. This enzyme catalyzes various aminotransferase reactions, including serine:glyoxylate, alanine:glyoxylate, and asparagine:glyoxylate transaminations. To better understand structural features that govern the specificity of this enzyme, its crystal structures in the native form (2.2-Å resolution) and in the presence of l-serine (2.1-Å resolution) were solved. The structures confirm that this enzyme is dimeric, in agreement with studies of the active enzyme in solution. In the crystal, another dimer related by noncrystallographic symmetry makes close interactions to form a tetramer mediated in part by an extra carboxyl-terminal helix conserved in plant homologs of AGT1. Pyridoxal 5'-phosphate (PLP) is bound at the active site but is not held in place by covalent interactions. Residues Tyr35' and Arg36', entering the active site from the other subunits in the dimer, mediate interactions between AGT and l-serine when used as a substrate. In comparison, AGT1 from humans and AGT1 from Anabaena lack these two residues and instead position a tyrosine ring into the binding site, which accounts for their preference for l-alanine instead of l-serine. The structure also rationalizes the phenotype of the sat mutant, Pro251 to Leu, which likely affects the dimer interface near the catalytic site. This structural model of AGT1 provides valuable new information about this protein that may enable improvements to the efficiency of photorespiration.
Collapse
Affiliation(s)
- Aaron H. Liepman
- Biology Department, Eastern Michigan University, Ypsilanti, MI, United States
| | - J. Vijayalakshmi
- Department of Biological Chemistry and LSA Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| | - Daniel Peisach
- Department of Biological Chemistry and LSA Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| | - Brian Hulsebus
- Department of Biological Chemistry and LSA Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| | - Laura J. Olsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Mark A. Saper
- Department of Biological Chemistry and LSA Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Rice K, Batul K, Whiteside J, Kelso J, Papinski M, Schmidt E, Pratasouskaya A, Wang D, Sullivan R, Bartlett C, Weadge JT, Van der Kamp MW, Moreno-Hagelsieb G, Suits MD, Horsman GP. The predominance of nucleotidyl activation in bacterial phosphonate biosynthesis. Nat Commun 2019; 10:3698. [PMID: 31420548 PMCID: PMC6697681 DOI: 10.1038/s41467-019-11627-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
Phosphonates are rare and unusually bioactive natural products. However, most bacterial phosphonate biosynthetic capacity is dedicated to tailoring cell surfaces with molecules like 2-aminoethylphosphonate (AEP). Although phosphoenolpyruvate mutase (Ppm)-catalyzed installation of C-P bonds is known, subsequent phosphonyl tailoring (Pnt) pathway steps remain enigmatic. Here we identify nucleotidyltransferases in over two-thirds of phosphonate biosynthetic gene clusters, including direct fusions to ~60% of Ppm enzymes. We characterize two putative phosphonyl tailoring cytidylyltransferases (PntCs) that prefer AEP over phosphocholine (P-Cho) – a similar substrate used by the related enzyme LicC, which is a virulence factor in Streptococcus pneumoniae. PntC structural analyses reveal steric discrimination against phosphocholine. These findings highlight nucleotidyl activation as a predominant chemical logic in phosphonate biosynthesis and set the stage for probing diverse phosphonyl tailoring pathways. Phosphonate modifications can be present on microbial cell surfaces. Here the authors perform bioinformatics analyses and observe a widespread occurrence of nucleotidyltransferase-encoding genes in bacterial phosphonate biosynthesis and functionally characterize two of the identified phosphonate specific cytidylyltransferases (PntCs) and determine the crystal structure of T. denticola PntC.
Collapse
Affiliation(s)
- Kyle Rice
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Kissa Batul
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Jacqueline Whiteside
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Jayne Kelso
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Monica Papinski
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.,Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Edward Schmidt
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Alena Pratasouskaya
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Dacheng Wang
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Rebecca Sullivan
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Christopher Bartlett
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | | | | | - Michael D Suits
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Geoff P Horsman
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
4
|
Sayer C, Bommer M, Isupov M, Ward J, Littlechild J. Crystal structure and substrate specificity of the thermophilic serine:pyruvate aminotransferase fromSulfolobus solfataricus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:763-72. [DOI: 10.1107/s0907444912011274] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/14/2012] [Indexed: 11/10/2022]
|
5
|
French JB, Ealick SE. Biochemical and structural characterization of a ureidoglycine aminotransferase in the Klebsiella pneumoniae uric acid catabolic pathway. Biochemistry 2010; 49:5975-7. [PMID: 20565126 DOI: 10.1021/bi1006755] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many plants, fungi, and bacteria catabolize allantoin as a mechanism for nitrogen assimilation. Recent reports have shown that in plants and some bacteria the product of hydrolysis of allantoin by allantoinase is the unstable intermediate ureidoglycine. While this molecule can spontaneously decay, genetic analysis of some bacterial genomes indicates that an aminotransferase may be present in the pathway. Here we present evidence that Klebsiella pneumoniae HpxJ is an aminotransferase that preferentially converts ureidoglycine and an alpha-keto acid into oxalurate and the corresponding amino acid. We determined the crystal structure of HpxJ, allowing us to present an explanation for substrate specificity.
Collapse
Affiliation(s)
- Jarrod B French
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | |
Collapse
|
6
|
Panjikar S, Parthasarathy V, Lamzin VS, Weiss MS, Tucker PA. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:1089-97. [PMID: 19770506 PMCID: PMC2756167 DOI: 10.1107/s0907444909029643] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 07/24/2009] [Indexed: 11/11/2022]
Abstract
A combination of molecular replacement and single-wavelength anomalous diffraction phasing has been incorporated into the automated structure-determination platform Auto-Rickshaw. The complete MRSAD procedure includes molecular replacement, model refinement, experimental phasing, phase improvement and automated model building. The improvement over the standard SAD or MR approaches is illustrated by ten test cases taken from the JCSG diffraction data-set database. Poor MR or SAD phases with phase errors larger than 70 degrees can be improved using the described procedure and a large fraction of the model can be determined in a purely automatic manner from X-ray data extending to better than 2.6 A resolution.
Collapse
|
7
|
Han GW, Rife C, Sawaya MR. Applications of bioinformatics to protein structures: how protein structure and bioinformatics overlap. Methods Mol Biol 2009; 569:157-172. [PMID: 19623490 DOI: 10.1007/978-1-59745-524-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this chapter, we will focus on the role of bioinformatics to analyze a protein after its protein structure has been determined. First, we present how to validate protein structures for quality assurance. Then, we discuss how to analyze protein-protein interfaces and how to predict the biomolecule which is the biological oligomeric state of the protein. Finally, we discuss how to search for homologs based on the 3-D structure which is an essential step for understanding protein function.
Collapse
Affiliation(s)
- Gye Won Han
- Burnham Institute for Medical Research, La Jolla, CA, USA
| | | | | |
Collapse
|
8
|
Yoshikane Y, Yokochi N, Yamasaki M, Mizutani K, Ohnishi K, Mikami B, Hayashi H, Yagi T. Crystal Structure of Pyridoxamine-Pyruvate Aminotransferase from Mesorhizobium loti MAFF303099. J Biol Chem 2008; 283:1120-7. [DOI: 10.1074/jbc.m708061200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Cellini B, Bertoldi M, Montioli R, Paiardini A, Borri Voltattorni C. Human wild-type alanine:glyoxylate aminotransferase and its naturally occurring G82E variant: functional properties and physiological implications. Biochem J 2007; 408:39-50. [PMID: 17696873 PMCID: PMC2049084 DOI: 10.1042/bj20070637] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human hepatic peroxisomal AGT (alanine:glyoxylate aminotransferase) is a PLP (pyridoxal 5'-phosphate)-dependent enzyme whose deficiency causes primary hyperoxaluria Type I, a rare autosomal recessive disorder. To acquire experimental evidence for the physiological function of AGT, the K(eq),(overall) of the reaction, the steady-state kinetic parameters of the forward and reverse reactions, and the pre-steady-state kinetics of the half-reactions of the PLP form of AGT with L-alanine or glycine and the PMP (pyridoxamine 5'-phosphate) form with pyruvate or glyoxylate have been measured. The results indicate that the enzyme is highly specific for catalysing glyoxylate to glycine processing, thereby playing a key role in glyoxylate detoxification. Analysis of the reaction course also reveals that PMP remains bound to the enzyme during the catalytic cycle and that the AGT-PMP complex displays a reactivity towards oxo acids higher than that of apoAGT in the presence of PMP. These findings are tentatively related to possible subtle rearrangements at the active site also indicated by the putative binding mode of catalytic intermediates. Additionally, the catalytic and spectroscopic features of the naturally occurring G82E variant have been analysed. Although, like the wild-type, the G82E variant is able to bind 2 mol PLP/dimer, it exhibits a significant reduced affinity for PLP and even more for PMP compared with wild-type, and an altered conformational state of the bound PLP. The striking molecular defect of the mutant, consisting in the dramatic decrease of the overall catalytic activity (approximately 0.1% of that of normal AGT), appears to be related to the inability to undergo an efficient transaldimination of the PLP form of the enzyme with amino acids as well as an efficient conversion of AGT-PMP into AGT-PLP. Overall, careful biochemical analyses have allowed elucidation of the mechanism of action of AGT and the way in which the disease causing G82E mutation affects it.
Collapse
Affiliation(s)
- Barbara Cellini
- *Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Mariarita Bertoldi
- *Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Riccardo Montioli
- *Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Alessandro Paiardini
- †Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and Centro di Biologia Molecolare del Consiglio Nazionale delle Ricerche, Università ‘La Sapienza’, 00185 Roma, Italy
| | - Carla Borri Voltattorni
- *Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
10
|
Lima S, Khristoforov R, Momany C, Phillips RS. Crystal structure of Homo sapiens kynureninase. Biochemistry 2007; 46:2735-44. [PMID: 17300176 PMCID: PMC2531291 DOI: 10.1021/bi0616697] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Collapse
Affiliation(s)
- Santiago Lima
- Departments of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
11
|
Han Q, Robinson H, Gao YG, Vogelaar N, Wilson SR, Rizzi M, Li J. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase. J Biol Chem 2006; 281:37175-82. [PMID: 16990263 DOI: 10.1074/jbc.m607032200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.
Collapse
Affiliation(s)
- Qian Han
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
In the mosquito, transamination of 3-HK (3-hydroxykynurenine) to XA (xanthurenic acid) is catalysed by an AGT (alanine glyoxylate aminotransferase) and is the major branch pathway of tryptophan metabolism. Interestingly, malaria parasites hijack this pathway to use XA as a chemical signal for development in the mosquito. Here, we report that the mosquito has two AGT isoenzymes. One is the previously cloned AeHKT [Aedes aegypti HKT (3-HK transaminase)] [Han, Fang and Li (2002) J. Biol. Chem. 277, 15781-15787], similar to hAGT (human AGT), which primarily catalyses 3-HK to XA in mosquitoes, and the other is a typical dipteran insect AGT. We cloned the second AGT from Ae. aegypti mosquitoes [AeAGT (Ae. aegypti AGT)], overexpressed the enzyme in baculovirus/insect cells and determined its biochemical characteristics. We also expressed hAGT for a comparative study. The new cloned AeAGT is highly substrate-specific when compared with hAGT and the previously reported AeHKT and Drosophila AGT, and is translated mainly in pupae and adults, which contrasts with AeHKT that is expressed primarily in larvae. Our results suggest that the physiological requirements of mosquitoes and the interaction between the mosquito and its host appear to be the driving force in mosquito AGT evolution.
Collapse
Affiliation(s)
- Qian Han
- *Department of Pathobiology, University of Illinois, Urbana, IL 61802, U.S.A
- †Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Seong Ryul Kim
- *Department of Pathobiology, University of Illinois, Urbana, IL 61802, U.S.A
| | - Haizhen Ding
- *Department of Pathobiology, University of Illinois, Urbana, IL 61802, U.S.A
- †Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Jianyong Li
- *Department of Pathobiology, University of Illinois, Urbana, IL 61802, U.S.A
- †Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|