1
|
Dang NL, Baranger AM, Beveridge DL. High Energy Channeling and Malleable Transition States: Molecular Dynamics Simulations and Free Energy Landscapes for the Thermal Unfolding of Protein U1A and 13 Mutants. Biomolecules 2022; 12:940. [PMID: 35883496 PMCID: PMC9312810 DOI: 10.3390/biom12070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The spliceosome protein U1A is a prototype case of the RNA recognition motif (RRM) ubiquitous in biological systems. The in vitro kinetics of the chemical denaturation of U1A indicate that the unfolding of U1A is a two-state process but takes place via high energy channeling and a malleable transition state, an interesting variation of typical two-state behavior. Molecular dynamics (MD) simulations have been applied extensively to the study of two-state unfolding and folding of proteins and provide an opportunity to obtain a theoretical account of the experimental results and a molecular model for the transition state ensemble. We describe herein all-atom MD studies including explicit solvent of up to 100 ns on the thermal unfolding (UF) of U1A and 13 mutants. Multiple MD UF trajectories are carried out to ensure accuracy and reproducibility. A vector representation of the MD unfolding process in RMSD space is obtained and used to calculate a free energy landscape for U1A unfolding. A corresponding MD simulation and free energy landscape for the protein CI2, well known to follow a simple two state folding/unfolding model, is provided as a control. The results indicate that the unfolding pathway on the MD calculated free energy landscape of U1A shows a markedly extended transition state compared with that of CI2. The MD results support the interpretation of the observed chevron plots for U1A in terms of a high energy, channel-like transition state. Analysis of the MDUF structures shows that the transition state ensemble involves microstates with most of the RRM secondary structure intact but expanded by ~14% with respect to the radius of gyration. Comparison with results on a prototype system indicates that the transition state involves an ensemble of molten globule structures and extends over the region of ~1-35 ns in the trajectories. Additional MDUF simulations were carried out for 13 U1A mutants, and the calculated φ-values show close accord with observed results and serve to validate our methodology.
Collapse
Affiliation(s)
| | | | - David L. Beveridge
- Department of Chemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA; (N.L.D.); (A.M.B.)
| |
Collapse
|
2
|
Espinosa YR, Alvarez HA, Howard EI, Carlevaro CM. Molecular dynamics simulation of the heart type fatty acid binding protein in a crystal environment. J Biomol Struct Dyn 2020; 39:3459-3468. [PMID: 32448092 DOI: 10.1080/07391102.2020.1773315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Crystallographic data comes from a space-time average over all the unit cells within the crystal, so dynamic phenomena do not contribute significantly to the diffraction data. Many efforts have been made to reconstitute the movement of the macromolecules and explore the microstates that the confined proteins can adopt in the crystalline network. We explored different strategies to simulate a heart fatty acid binding protein (H-FABP) crystal by means of Molecular Dynamics (MD) simulations. We evaluate the effect of introducing restraints according to experimental isotropic B-factors and we analyzed the H-FABP motions in the crystal using Principal Component Analysis (PCA), isotropic and anisotropic B-factors. We compared the behavior of the protein simulated in the crystal confinement versus in solution, and we observed the effect of that confinement in the mobility of the protein residues. Restraining one-third of Cα atoms based on experimental B-factors produce lower B-factors than simulations without restraints, showing that the position restraint of the atoms with the lowest experimental B-factor is a good strategy to maintain the geometry of the crystal with an obvious decrease in the degrees of motion of the protein. PCA shows that, as position restraint reduces the conformational space explored by the system, the motion of the crystal is better recovered, for an essential subspace of the same size, in the simulations without restraints. Restraining only one Cα seems to be a good balance between giving flexibility to the system and preserving its structure. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yanis R Espinosa
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Grupo de Bioquímica Teórica, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - H Ariel Alvarez
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina.,Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
| | - Eduardo I Howard
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Universidad Tecnológica Nacional- Facultad Regional Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
| | - C Manuel Carlevaro
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), La Plata, Argentina.,Departamento de Ingeniería Mecánica, Universidad Tecnológica Nacional, Facultad Regional La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Patel S, Krishnan B, Hosur RV, Chary KVR. Mechanistic Insights from Replica Exchange Molecular Dynamics Simulations into Mutation Induced Disordered-to-Ordered Transition in Hahellin, a βγ-Crystallin. J Phys Chem B 2019; 123:5086-5098. [DOI: 10.1021/acs.jpcb.9b03845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sunita Patel
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai University Campus, Mumbai 400098, India
- Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Bal Krishnan
- Indian Institute of Science Education and Research, Berhampur, 760010, India
| | - Ramakrishna V. Hosur
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai University Campus, Mumbai 400098, India
- Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Kandala V. R. Chary
- Tata Institute of Fundamental Research, Hyderabad 500107, India
- Tata Institute of Fundamental Research, Mumbai 400005, India
- Indian Institute of Science Education and Research, Berhampur, 760010, India
| |
Collapse
|
4
|
Espinosa YR, Caffarena ER, Grigera JR. The role of hydrophobicity in the cold denaturation of proteins under high pressure: A study on apomyoglobin. J Chem Phys 2019; 150:075102. [PMID: 30795674 DOI: 10.1063/1.5080942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An exciting debate arises when microscopic mechanisms involved in the denaturation of proteins at high pressures are explained. In particular, the issue emerges when the hydrophobic effect is invoked, given that hydrophobicity cannot elucidate by itself the volume changes measured during protein unfolding. In this work, we study by the use of molecular dynamics simulations and essential dynamics analysis the relation between the solvation dynamics, volume, and water structure when apomyoglobin is subjected to a hydrostatic pressure regime. Accordingly, the mechanism of cold denaturation of proteins under high-pressure can be related to the disruption of the hydrogen-bond network of water favoring the coexistence of two states, low-density and high-density water, which directly implies in the formation of a molten globule once the threshold of 200 MPa has been overcome.
Collapse
Affiliation(s)
- Yanis R Espinosa
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET-UNLP), Calle 59 Nro 789, B1900BTE La Plata, Argentina
| | - Ernesto R Caffarena
- Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Manguinhos, CEP 21040-360 Rio de Janeiro, Brazil
| | - J Raúl Grigera
- CEQUINOR, Universidad de La Plata and CONICET, 47 y 115, B1900 La Plata, Argentina
| |
Collapse
|
5
|
Gupta S, Sasidhar YU. Impact of Turn Propensity on the Folding Rates of Z34C Protein: Implications for the Folding of Helix-Turn-Helix Motif. J Phys Chem B 2017; 121:1268-1283. [PMID: 28094941 DOI: 10.1021/acs.jpcb.6b12219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate-limiting step for the folding of the helix-turn-helix (HTH) protein, Z34C, involves β-turn region 20DPNL23. This reverse turn has been observed to be part of the transition state in the folding process for Z34C, influencing its folding rates. Molecular dynamics simulations were performed on this turn peptide and its two mutants, D20A and P21A, to study turn formation using GROMOS54A7 force field. We find that this region has a turn propensity of its own, and the highest turn propensity is observed for the wild-type, which correlates well with available experimental results. We also find that a slight unfavorable change in ΔG turn folding causes a drastic change in the folding rates of HTH motif and a mechanistic interpretation is given. Implications of these observations for the folding of the HTH protein Z34C are discussed.
Collapse
Affiliation(s)
- Shubhangi Gupta
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400 076, India
| | - Yellamraju U Sasidhar
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400 076, India
| |
Collapse
|
6
|
Chandran A, Vishveshwara S. Exploration of the conformational landscape in pregnane X receptor reveals a new binding pocket. Protein Sci 2016; 25:1989-2005. [PMID: 27515410 DOI: 10.1002/pro.3012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/07/2016] [Indexed: 11/06/2022]
Abstract
Ligand-regulated pregnane X receptor (PXR), a member of the nuclear receptor superfamily, plays a central role in xenobiotic metabolism. Despite its critical role in drug metabolism, PXR activation can lead to adverse drug-drug interactions and early stage metabolism of drugs. Activated PXR can induce cancer drug resistance and enhance the onset of malignancy. Since promiscuity in ligand binding makes it difficult to develop competitive inhibitors targeting PXR ligand binding pocket (LBP), it is essential to identify allosteric sites for effective PXR antagonism. Here, molecular dynamics (MD) simulation studies unravelled the existence of two different conformational states, namely "expanded" and "contracted", in apo PXR ligand binding domain (LBD). Ligand binding events shifted this conformational equilibrium and locked the LBD in a single "ligand-adaptable" conformational state. Ensemble-based computational solvent mapping identified a transiently open potential small molecule binding pocket between α5 and α8 helices, named "α8 pocket", whose opening-closing mechanism directly correlated with the conformational shift in LBD. A virtual hit identified through structure-based virtual screening against α8 pocket locks the pocket in its open conformation. MD simulations further revealed that the presence of small molecule at allosteric site disrupts the LBD dynamics and locks the LBD in a "tightly-contracted" conformation. The molecular details provided here could guide new structural studies to understand PXR activation and antagonism.
Collapse
Affiliation(s)
- Aneesh Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.,Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
7
|
Srivastava A, Balaji PV. Molecular events during the early stages of aggregation of GNNQQNY: An all atom MD simulation study of randomly dispersed peptides. J Struct Biol 2015; 192:376-391. [DOI: 10.1016/j.jsb.2015.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/26/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
|
8
|
Ghosh S, Chandra N, Vishveshwara S. Mechanism of Iron-Dependent Repressor (IdeR) Activation and DNA Binding: A Molecular Dynamics and Protein Structure Network Study. PLoS Comput Biol 2015; 11:e1004500. [PMID: 26699663 PMCID: PMC4689551 DOI: 10.1371/journal.pcbi.1004500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Metalloproteins form a major class of enzymes in the living system that are involved in crucial biological functions such as catalysis, redox reactions and as 'switches' in signal transductions. Iron dependent repressor (IdeR) is a metal-sensing transcription factor that regulates free iron concentration in Mycobacterium tuberculosis. IdeR is also known to promote bacterial virulence, making it an important target in the field of therapeutics. Mechanistic details of how iron ions modulate IdeR such that it dimerizes and binds to DNA is not understood clearly. In this study, we have performed molecular dynamic simulations and integrated it with protein structure networks to study the influence of iron on IdeR structure and function. A significant structural variation between the metallated and the non-metallated system is observed. Our simulations clearly indicate the importance of iron in stabilizing its monomeric subunit, which in turn promotes dimerization. However, the most striking results are obtained from the simulations of IdeR-DNA complex in the absence of metals, where at the end of 100ns simulations, the protein subunits are seen to rapidly dissociate away from the DNA, thereby forming an excellent resource to investigate the mechanism of DNA binding. We have also investigated the role of iron as an allosteric regulator of IdeR that positively induces IdeR-DNA complex formation. Based on this study, a mechanistic model of IdeR activation and DNA binding has been proposed.
Collapse
Affiliation(s)
- Soma Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
- I.I.Sc. Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
| | - Nagasuma Chandra
- I.I.Sc. Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Saraswathi Vishveshwara
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
- I.I.Sc. Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
9
|
Shukla RT, Sasidhar YU. Conformational dynamics of a short antigenic peptide in its free and antibody bound forms gives insight into the role of β-turns in peptide immunogenicity. Proteins 2015; 83:1352-67. [DOI: 10.1002/prot.24831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 04/21/2015] [Accepted: 05/02/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Rashmi Tambe Shukla
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| | - Yellamraju U. Sasidhar
- Department of Chemistry; Indian Institute of Technology Bombay; Powai Mumbai 400076 India
| |
Collapse
|
10
|
Gill AC. β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides. PLoS One 2014; 9:e87354. [PMID: 24498083 PMCID: PMC3909104 DOI: 10.1371/journal.pone.0087354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/19/2013] [Indexed: 01/09/2023] Open
Abstract
Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109-122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109-122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109-122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106-126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies.
Collapse
Affiliation(s)
- Andrew C. Gill
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus, University of Edinburgh, Roslin, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Shukla RT, Kumar N, Sasidhar YU. Molecular dynamics simulations of certain mutant peptide models from staphylococcal nuclease reveal that initial hydrophobic collapse associated with turn propensity drives β-hairpin folding. J Pept Sci 2013; 19:516-27. [PMID: 23794524 DOI: 10.1002/psc.2530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/10/2013] [Accepted: 05/24/2013] [Indexed: 11/09/2022]
Abstract
An important nucleation event during the folding of staphylococcal nuclease involves the formation of a β-hairpin by the sequence (21) DTVKLMYKGQPMTFR(35) . Earlier studies show that the turn sequence 'YKGQP' has an important role in the folding of this β-hairpin. To understand the active or passive nature of the turn sequence 'YKGQP' in the folding of the aforementioned β-hairpin sequence, we studied glycine mutant peptides Ac-(2) DTVKLMYGGQPMTFR(16) -NMe (K9G:15), Ac-(2) DTVKLMYKGGPMTFR(16) -NMe (Q11G:15), Ac-(2) DTVKLMYGGGPMTFR(16) -NMe (K9G/Q11G:15), and Ac-(2) DTVKLMGGGGGMTFR(16) -NMe (penta-G:15) by using molecular dynamics simulations, starting with two different unfolded states, polyproline II and extended conformational forms. Further, 5mer mutant turn peptides Ac-(2) YGGQP(6) -NMe (K3G:5), Ac-(2) YKGGP(6) -NMe (Q5G:5), Ac-(2) YGGGP(6) -NMe (K3G/Q5G:5), and Ac-(2) GGGGG(6) -NMe (penta-G:5) were also studied individually. Our results show that an initial hydrophobic collapse and loop closure occurs in all 15mer mutants, but only K9G:15 mutant forms a stable native-like β-hairpin. In the other 15mer mutants, the hydrophobic collapsed state would not proceed to β-hairpin formation. Of the different simulations performed for the penta-G:15 mutant, in only one simulation a nonnative β-hairpin conformation is sampled with highly flexible loop region ((8) GGGGG(12) ), which has no specific conformational preference as a 5mer. While the sequence 'YGGQP' in the K3G:5 simulation shows relatively higher β-turn propensity, the presence of this sequence in K9G:15 peptide seems to be driving the β-hairpin formation. Thus, these results seem to suggest that for the formation of a stable β-hairpin, the initial hydrophobic collapse is to be assisted by a turn propensity. Initial hydrophobic collapse alone is not sufficient to guide β-hairpin formation.
Collapse
Affiliation(s)
- Rashmi Tambe Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | | |
Collapse
|
12
|
Kaur H, Sasidhar YU. Molecular dynamics study of an insertion/duplication mutant of bacteriophage T4 lysozyme reveals the nature of α→β transition in full protein context. Phys Chem Chem Phys 2013; 15:7819-30. [PMID: 23598905 DOI: 10.1039/c3cp44327b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An α→β transition underlies the first step of disease causing amyloidogenesis in many proteins. In view of this, many studies have been carried out using peptide models to characterize these secondary structural transitions. In this paper we show that an insertion/duplication mutant 'L20' of bacteriophage T4 lysozyme (M. Sagermann, W. A. Baase and B. W. Matthews, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 6078) displays an α→β transition. We performed molecular dynamics (MD) simulation of L20, using the GROMACS package of programs and united atom GROMOS 53a6 force field for a time period of 600 ns at 300 K, in explicit water. Our MD simulation demonstrated that the transition occurs in a duplicated α-helical region inserted tandemly at the N-terminus of the 'parent' helix. We show that a C-terminal β-sheet anchors the parent helix while the loosely held N-terminal loop in the duplicate region is vulnerable to solvent attack and thus undergoes an α→β transition. Main chain-solvent interactions were seen to stabilize the observed β-structure. Thus L20 serves as a good protein model for characterization of α→β transition in a full length protein.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
13
|
Liu L, Cao Z. Turn-directed α-β conformational transition of α-syn12 peptide at different pH revealed by unbiased molecular dynamics simulations. Int J Mol Sci 2013; 14:10896-907. [PMID: 23708094 PMCID: PMC3709708 DOI: 10.3390/ijms140610896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 11/16/2022] Open
Abstract
The transition from α-helical to β-hairpin conformations of α-syn12 peptide is characterized here using long timescale, unbiased molecular dynamics (MD) simulations in explicit solvent models at physiological and acidic pH values. Four independent normal MD trajectories, each 2500 ns, are performed at 300 K using the GROMOS 43A1 force field and SPC water model. The most clustered structures at both pH values are β-hairpin but with different turns and hydrogen bonds. Turn9-6 and four hydrogen bonds (HB9-6, HB6-9, HB11-4 and HB4-11) are formed at physiological pH; turn8-5 and five hydrogen bonds (HB8-5, HB5-8, HB10-3, HB3-10 and HB12-1) are formed at acidic pH. A common folding mechanism is observed: the formation of the turn is always before the formation of the hydrogen bonds, which means the turn is always found to be the major determinant in initiating the transition process. Furthermore, two transition paths are observed at physiological pH. One of the transition paths tends to form the most-clustered turn and improper hydrogen bonds at the beginning, and then form the most-clustered hydrogen bonds. Another transition path tends to form the most-clustered turn, and turn5-2 firstly, followed by the formation of part hydrogen bonds, then turn5-2 is extended and more hydrogen bonds are formed. The transition path at acidic pH is as the same as the first path described at physiological pH.
Collapse
Affiliation(s)
- Lei Liu
- Department of Computer Science and Technology, Dezhou University, Dezhou 253023, China; E-Mail:
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou 253023, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-534-8985879; Fax: +86-534-8985884
| |
Collapse
|
14
|
Shukla RT, Sasidhar YU. Energetics of β-turn formation in a mutant peptide YPGDV from influenza hemagglutinin: an MD simulation study. Phys Chem Chem Phys 2013; 15:18571-83. [DOI: 10.1039/c3cp52166d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Kaur H, Sasidhar YU. For the Sequence YKGQ, the Turn and Extended Conformational Forms Are Separated by Small Barriers and the Turn Propensity Persists Even at High Temperatures: Implications for Protein Folding. J Phys Chem B 2012; 116:3850-60. [DOI: 10.1021/jp210227s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Harpreet Kaur
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Yellamraju U. Sasidhar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
16
|
Daidone I, Amadei A. Essential dynamics: foundation and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2012. [DOI: 10.1002/wcms.1099] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Engin O, Sayar M. Adsorption, Folding, and Packing of an Amphiphilic Peptide at the Air/Water Interface. J Phys Chem B 2012; 116:2198-207. [DOI: 10.1021/jp206327y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ozge Engin
- College of Engineering, Koç University, 34450, Istanbul,
Turkey
| | - Mehmet Sayar
- College of Engineering, Koç University, 34450, Istanbul,
Turkey
| |
Collapse
|
18
|
Daidone I, Di Nola A, Smith JC. Molecular origin of Gerstmann-Sträussler-Scheinker syndrome: insight from computer simulation of an amyloidogenic prion peptide. Biophys J 2011; 100:3000-7. [PMID: 21689534 DOI: 10.1016/j.bpj.2011.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/11/2011] [Accepted: 04/25/2011] [Indexed: 01/02/2023] Open
Abstract
Prion proteins become pathogenic through misfolding. Here, we characterize the folding of a peptide consisting of residues 109-122 of the Syrian hamster prion protein (the H1 peptide) and of a more amyloidogenic A117V point mutant that leads in humans to an inheritable form of the Gerstmann-Sträussler-Scheinker syndrome. Atomistic molecular dynamics simulations are performed for 2.5 μs. Both peptides lose their α-helical starting conformations and assume a β-hairpin that is structurally similar in both systems. In each simulation several unfolding/refolding events occur, leading to convergence of the thermodynamics of the conformational states to within 1 kJ/mol. The similar stability of the β-hairpin relative to the unfolded state is observed in the two peptides. However, substantial differences are found between the two unfolded states. A local minimum is found within the free energy unfolded basin of the A117V mutant populated by misfolded collapsed conformations of comparable stability to the β-hairpin state, consistent with increased amyloidogenicity. This population, in which V117 stabilizes a hydrophobic core, is absent in the wild-type peptide. These results are supported by simulations of oligomers showing a slightly higher stability of the associated structures and a lower barrier to association for the mutated peptide. Hence, a single point mutation carrying only two additional methyl groups is here shown to be responsible for rather dramatic differences of structuring within the unfolded (misfolded) state.
Collapse
Affiliation(s)
- Isabella Daidone
- Department of Chemistry, Chemical Engineering and Materials, University of L'Aquila, L'Aquila, Italy.
| | | | | |
Collapse
|
19
|
Cao Z, Liu L, Wang J. Why the OPLS-AA Force Field Cannot Produce the β-Hairpin Structure of H1 Peptide in Solution When Comparing with the GROMOS 43A1 Force Field? J Biomol Struct Dyn 2011; 29:527-39. [DOI: 10.1080/07391102.2011.10507403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Effects of different force fields and temperatures on the structural character of Abeta (12-28) peptide in aqueous solution. Int J Mol Sci 2011; 12:8259-74. [PMID: 22174662 PMCID: PMC3233468 DOI: 10.3390/ijms12118259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/12/2011] [Accepted: 11/07/2011] [Indexed: 01/13/2023] Open
Abstract
The aim of this work is to investigate the effects of different force fields and temperatures on the structural character of Aβ (12-28) peptide in aqueous solution. Moreover, the structural character of Aβ (12-28) peptide is compared with other amyloid peptides (such as H1 and α-syn12 peptide). The two independent temperature replica exchange molecular dynamics (T-REMD) simulations were completed by using two different models (OPLS-AA/TIP4P and GROMOS 43A1/SPC). We compared the models by analyzing the distributions of backbone dihedral angles, the secondary structure propensity, the free energy surface and the formation of β-hairpin. The results show that the mostly populated conformation state is random coil for both models. The population of β-hairpin is below 8 percent for both models. However, the peptide modeled by GROMOS 43A1 form β-hairpin with turn located at residues F19-E22, while the peptide modeled by OPLS-AA form β-hairpin with turn located at residues L17-F20.
Collapse
|
21
|
Zanetti Polzi L, Amadei A, Aschi M, Daidone I. New Insight into the IR-Spectra/Structure Relationship in Amyloid Fibrils: A Theoretical Study on a Prion Peptide. J Am Chem Soc 2011; 133:11414-7. [DOI: 10.1021/ja2028662] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Laura Zanetti Polzi
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Amadei
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Massimiliano Aschi
- Department of Chemistry, Chemical Engineering and Materials, University of L’Aquila, Via Vetoio (Coppito 1), 67010 L’Aquila, Italy
| | - Isabella Daidone
- Department of Chemistry, Chemical Engineering and Materials, University of L’Aquila, Via Vetoio (Coppito 1), 67010 L’Aquila, Italy
| |
Collapse
|
22
|
Cao Z, Liu L, Wu P, Wang J. Structural and thermodynamics characters of isolated α-syn12 peptide: long-time temperature replica-exchange molecular dynamics in aqueous solution. Acta Biochim Biophys Sin (Shanghai) 2011; 43:172-80. [PMID: 21289072 DOI: 10.1093/abbs/gmr002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structural and thermodynamics characters of α-syn12 (residues 1-12 of the human α-synuclein protein) peptide in aqueous solution were investigated through temperature replica-exchange molecular dynamics (T-REMD) simulations with the GROMOS 43A1 force field. The two independent T-REMD simulations were completed starting from an initial conformational α-helix and an irregular structure, respectively. Each replica was run for 300 ns. The structural and thermodynamics characters were studied based on parameters such as distributions of backbone dihedral angles, free energy surface, stability of folded β-hairpin structure, and favorite conformations. The results showed that the isolated α-syn12 peptide in water adopted four different conformational states: the first state was a β-hairpin ensemble with Turn(9-6) and four hydrogen bonds, the second state was a β-hairpin ensemble with two turns (Turn(9-6) and Turn(5-2)) and three hydrogen bonds, the third state was a disordered structure with both Turn(8-5) and Turn(5-2), and the last state was a π-helix ensemble. Meanwhile, we studied the free energy change of α-syn12 peptide from the unfolded state to the β-hairpin state, which was in good agreement with the experiments and molecular dynamics simulations for some other peptides. We also analyzed the driving force of the peptide transition. The results indicated that the driving forces were high solvent exposure of hydrophobic Leu8 and hydrophobic residues in secondary structure. To our knowledge, this was the first report to study the isolated α-syn12 peptide in water by T-REMD.
Collapse
Affiliation(s)
- Zanxia Cao
- Key Lab of Biophysics in Universities of Shandong, Dezhou, China
| | | | | | | |
Collapse
|
23
|
Knecht V. Model Amyloid Peptide B18 Monomer and Dimer Studied by Replica Exchange Molecular Dynamics Simulations. J Phys Chem B 2010; 114:12701-7. [DOI: 10.1021/jp1048698] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Volker Knecht
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
24
|
Bhattacharyya M, Vishveshwara S. Elucidation of the conformational free energy landscape in H.pylori LuxS and its implications to catalysis. BMC STRUCTURAL BIOLOGY 2010; 10:27. [PMID: 20704697 PMCID: PMC2929236 DOI: 10.1186/1472-6807-10-27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/12/2010] [Indexed: 11/11/2022]
Abstract
Background One of the major challenges in understanding enzyme catalysis is to identify the different conformations and their populations at detailed molecular level in response to ligand binding/environment. A detail description of the ligand induced conformational changes provides meaningful insights into the mechanism of action of enzymes and thus its function. Results In this study, we have explored the ligand induced conformational changes in H.pylori LuxS and the associated mechanistic features. LuxS, a dimeric protein, produces the precursor (4,5-dihydroxy-2,3-pentanedione) for autoinducer-2 production which is a signalling molecule for bacterial quorum sensing. We have performed molecular dynamics simulations on H.pylori LuxS in its various ligand bound forms and analyzed the simulation trajectories using various techniques including the structure network analysis, free energy evaluation and water dynamics at the active site. The results bring out the mechanistic details such as co-operativity and asymmetry between the two subunits, subtle changes in the conformation as a response to the binding of active and inactive forms of ligands and the population distribution of different conformations in equilibrium. These investigations have enabled us to probe the free energy landscape and identify the corresponding conformations in terms of network parameters. In addition, we have also elucidated the variations in the dynamics of water co-ordination to the Zn2+ ion in LuxS and its relation to the rigidity at the active sites. Conclusions In this article, we provide details of a novel method for the identification of conformational changes in the different ligand bound states of the protein, evaluation of ligand-induced free energy changes and the biological relevance of our results in the context of LuxS structure-function. The methodology outlined here is highly generalized to illuminate the linkage between structure and function in any protein of known structure.
Collapse
|
25
|
Vijayan R, Biggin PC. Conformational preferences of a 14-residue fibrillogenic peptide from acetylcholinesterase. Biochemistry 2010; 49:3678-84. [PMID: 20356043 PMCID: PMC2860372 DOI: 10.1021/bi1001807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
A 14-residue fragment from near the C-terminus of the enzyme acetylcholinesterase (AChE) is believed to have a neurotoxic/neurotrophic effect acting via an unknown pathway. While the peptide is α-helical in the full-length enzyme, the structure and association mechanism of the fragment are unknown. Using multiple molecular dynamics simulations, starting from a tetrameric complex of the association domain of AChE and systematically disassembled subsets that include the peptide fragment, we show that the fragment is incapable of retaining its helicity in solution. Extensive replica exchange Monte Carlo folding and unfolding simulations in implicit solvent with capped and uncapped termini failed to converge to any consistent cluster of structures, suggesting that the fragment remains largely unstructured in solution under the conditions considered. Furthermore, extended molecular dynamics simulations of two steric zipper models show that the peptide is likely to form a zipper with antiparallel sheets and that peptides with mutations known to prevent fibril formation likely do so by interfering with this packing. The results demonstrate how the local environment of a peptide can stabilize a particular conformation.
Collapse
Affiliation(s)
- Ranjit Vijayan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
26
|
CAO ZX, WANG JH. A Comparative Study of Different Temperatures on Computed Structural Character of H1 Peptide via Temperature Replica Exchange Molecular Dynamics Simulations*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Cao Z, Wang J. A Comparative Study of Two Different Force Fields on Structural and Thermodynamics Character of H1 Peptide via Molecular Dynamics Simulations. J Biomol Struct Dyn 2010; 27:651-61. [DOI: 10.1080/07391102.2010.10508579] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Bhattacharyya M, Ghosh A, Hansia P, Vishveshwara S. Allostery and conformational free energy changes in human tryptophanyl-tRNA synthetase from essential dynamics and structure networks. Proteins 2010; 78:506-17. [PMID: 19768679 DOI: 10.1002/prot.22573] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of allostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side-chains and then to compute the ligand-induced population shift. Finally, we obtain the free-energy landscape of the protein in equilibrium, characterizing the free-energy minima accessed by the protein complexes. We have chosen human tryptophanyl-tRNA synthetase (hTrpRS), a protein responsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure.
Collapse
|
29
|
Pushie MJ, Vogel HJ. A potential mechanism for Cu2+ reduction, beta-cleavage, and beta-sheet initiation within the N-terminal domain of the prion protein: insights from density functional theory and molecular dynamics calculations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1040-1059. [PMID: 19697239 DOI: 10.1080/15287390903084389] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The N-terminal region of the native human prion protein encompasses four highly conserved octarepeats that each contain a single His, Pro, Gln, and Trp residue as well as several Gly residues. At neutral pH these repeats are capable of individually binding copper (Cu(2+)) ions, involving the His side chain and the backbone amide of the Gly residues. In addition, the two His residues at positions 96 and 111 are also capable of binding Cu(2+). At low concentrations of the metal ion or at low pH, one Cu(2+) may be bound by multiple His residues of the four octarepeats. This complex is known to be redox active, while none of the other Cu(2+)-bound complexes are. Using density functional theory and molecular dynamics calculations data demonstrated how this form of the protein could reduce Cu(2+), through a process involving electron transfer from the Trp side chain. The reduced Cu gives rise to reactive oxygen species (ROS), which can lead to beta-cleavage of the prion protein chain at any of the Gly residues around position 90. Protein fragments of lengths similar to those arising from beta-cleavage are predominantly found in both healthy and Creutzfeldt-Jakob disease (CJD)-affected brains. Models of Cu binding to the His96 and His111 residues also indicate that different modes of Cu(2+) binding result in formation of stable beta-hairpin structures in this region of the protein. It is postulated that through interactions with the C-terminal part of the protein these hairpins may initiate misfolding and yield more stable beta-sheet structures that might associate in the same fashion with additional prion proteins.
Collapse
Affiliation(s)
- M Jake Pushie
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
30
|
Meli M, Colombo G. Molecular simulations of peptides: a useful tool for the development of new drugs and for the study of molecular recognition. Methods Mol Biol 2009; 570:77-153. [PMID: 19649590 DOI: 10.1007/978-1-60327-394-7_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of the molecular recognition and self-organization properties of peptides has emerged in recent years as a very active and diverse field of research, ranging from biomedicine to biotechnology and even to material sciences. In the case of biomedicine, peptides can be used as ligands of biological receptors to gain insights into the structural, dynamical, and chemical determinants underlying the formation of complexes and identify new effectors of biological processes of interest. In the case of biotechnology and material science, short sequences have been used to understand the sequence determinants of the formation of ordered supra-molecular structures of nanoscale dimensions. In this work, we will describe our research activities in these two areas of modern chemical biology. In the first part, we will describe the development of a new, specific, potent, and selective anticancer peptide and its use to obtain the information needed to identify a non-peptidic small molecular lead to be used as an inhibitor of cancer growth. In the second part, we will describe the introduction of a new method for the description of the self-organization process at the basis of the growth of ordered supra-molecular structures held together by weak, non-covalent, yet specific interactions.
Collapse
Affiliation(s)
- Massimiliano Meli
- Istituto di Chimica del Riconoscimento Molecolare (ICRM)-C.N.R, Milano, Italy
| | | |
Collapse
|
31
|
Kim E, Yang C, Jang S, Pak Y. Free energy landscapes of a highly structured β-hairpin peptide and its single mutant. J Chem Phys 2008; 129:165104. [DOI: 10.1063/1.3000009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Narzi D, Daidone I, Amadei A, Di Nola A. Protein Folding Pathways Revealed by Essential Dynamics Sampling. J Chem Theory Comput 2008; 4:1940-8. [DOI: 10.1021/ct800157v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniele Narzi
- Department of Chemistry, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, 00185 Rome, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Isabella Daidone
- Department of Chemistry, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, 00185 Rome, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Andrea Amadei
- Department of Chemistry, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, 00185 Rome, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Alfredo Di Nola
- Department of Chemistry, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, 00185 Rome, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, I-00133 Rome, Italy
| |
Collapse
|
33
|
Hung A, Griffin MDW, Howlett GJ, Yarovsky I. Effects of oxidation, pH and lipids on amyloidogenic peptide structure: implications for fibril formation? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:99-110. [PMID: 18769912 DOI: 10.1007/s00249-008-0363-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
We have performed experimental and computational studies to investigate the influences of phospholipids, methionine oxidation and acidic pH on amyloid fibril formation by a peptide derived from human apolipoprotein C-II (apoC-II), a known component of proteinaceous atherosclerotic plaques. Fibril growth monitored by thioflavin T fluorescence revealed inhibition under lipid-rich and oxidising conditions. We subsequently performed fully-solvated atomistic molecular dynamics (MD) simulations of the peptide monomer to study its conformations under both fibril favouring (neutral and low pH) and inhibiting (lipid-rich and oxidising) conditions. Examination of the chain topology, backbone hydrogen-bonding patterns and aromatic sidechain orientations of the peptide under different conditions reveals that, while the peptide adopts similar structures under the fibril-favouring conditions, significantly different structures are obtained under fibril-disruptive conditions. Based on our results, we advance hypotheses for the roles of peptide conformation on aggregation and fibrillisation propensities.
Collapse
Affiliation(s)
- Andrew Hung
- School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, VIC 3001, Australia
| | | | | | | |
Collapse
|
34
|
Knecht V. β-Hairpin Folding by a Model Amyloid Peptide in Solution and at an Interface. J Phys Chem B 2008; 112:9476-83. [DOI: 10.1021/jp8026513] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Volker Knecht
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
35
|
Patel S, Sasidhar YU. A shorter peptide model from staphylococcal nuclease for the folding-unfolding equilibrium of a beta-hairpin shows that unfolded state has significant contribution from compact conformational states. J Struct Biol 2008; 164:60-74. [PMID: 18602478 DOI: 10.1016/j.jsb.2008.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/26/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
Abstract
It is important to understand the conformational features of the unfolded state in equilibrium with folded state under physiological conditions. In this paper, we consider a short peptide model LMYKGQPM from staphylococcal nuclease to model the conformational equilibrium between a hairpin conformation and its unfolded state using molecular dynamics simulation under NVT conditions at 300K using GROMOS96 force field. The free energy landscape has overall funnel-like shape with hairpin conformations sampling the minima. The "unfolded" state has a higher free energy of approximately 12kJ/mol with respect to native hairpin minimum and occupies a plateau region. We find that the unfolded state has significant contributions from compact conformations. Many of these conformations have hairpin-like topology. Further, these compact conformational forms are stabilized by hydrophobic interactions. Conversion between native and non-native hairpins occurs via unfolded states. Frequent conversions between folded and unfolded hairpins are observed with single exponential kinetics. We compare our results with the emerging picture of unfolded state from both experimental and theoretical studies.
Collapse
Affiliation(s)
- Sunita Patel
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | | |
Collapse
|
36
|
Daidone I, Ulmschneider MB, Di Nola A, Amadei A, Smith JC. Dehydration-driven solvent exposure of hydrophobic surfaces as a driving force in peptide folding. Proc Natl Acad Sci U S A 2007; 104:15230-5. [PMID: 17881585 PMCID: PMC2000556 DOI: 10.1073/pnas.0701401104] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent work has shown that the nature of hydration of pure hydrophobic surfaces changes with the length scale considered: water hydrogen-bonding networks adapt to small exposed hydrophobic species, hydrating or "wetting" them at relatively high densities, whereas larger hydrophobic areas are "dewetted" [Chandler D (2005), Nature 29:640-647]. Here we determine whether this effect is also present in peptides by examining the folding of a beta-hairpin (the 14-residue amyloidogenic prion protein H1 peptide), using microsecond time-scale molecular dynamics simulations. Two simulation models are compared, one explicitly including the water molecules, which may thus adapt locally to peptide configurations, and the other using a popular continuum approximation, the generalized Born/surface area implicit solvent model. The results obtained show that, in explicit solvent, peptide conformers with high solvent-accessible hydrophobic surface area indeed also have low hydration density around hydrophobic residues, whereas a concomitant higher hydration density around hydrophilic residues is observed. This dewetting effect stabilizes the fully folded beta-hairpin state found experimentally. In contrast, the implicit solvent model destabilizes the fully folded hairpin, tending to cluster hydrophobic residues regardless of the size of the exposed hydrophobic surface. Furthermore, the rate of the conformational transitions in the implicit solvent simulation is almost doubled with respect to that of the explicit solvent. The results suggest that dehydration-driven solvent exposure of hydrophobic surfaces may be a significant factor determining peptide conformational equilibria.
Collapse
Affiliation(s)
- Isabella Daidone
- *Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
- Department of Chemistry, University of Rome “La Sapienza,” Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Martin B. Ulmschneider
- Department of Chemistry, University of Rome “La Sapienza,” Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alfredo Di Nola
- Department of Chemistry, University of Rome “La Sapienza,” Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Amadei
- Department of Chemical Sciences and Technology, University of Rome “Tor Vergata,” Via della Ricerca Scientifica 1, 00133 Rome, Italy; and
| | - Jeremy C. Smith
- *Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
- Center for Molecular Biophysics, University of Tennessee/Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Patel S, Sasidhar YU. Loop propensity of the sequence YKGQP from staphylococcal nuclease: implications for the folding of nuclease. J Pept Sci 2007; 13:679-92. [PMID: 17787022 DOI: 10.1002/psc.907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently we performed molecular dynamics (MD) simulations on the folding of the hairpin peptide DTVKLMYKGQPMTFR from staphylococcal nuclease in explicit water. We found that the peptide folds into a hairpin conformation with native and nonnative hydrogen-bonding patterns. In all the folding events observed in the folding of the hairpin peptide, loop formation involving the region YKGQP was an important event. In order to trace the origins of the loop propensity of the sequence YKGQP, we performed MD simulations on the sequence starting from extended, polyproline II and native type I' turn conformations for a total simulation length of 300 ns, using the GROMOS96 force field under constant volume and temperature (NVT) conditions. The free-energy landscape of the peptide YKGQP shows minima corresponding to loop conformation with Tyr and Pro side-chain association, turn and extended conformational forms, with modest free-energy barriers separating the minima. To elucidate the role of Gly in facilitating loop formation, we also performed MD simulations of the mutated peptide YKAQP (Gly --> Ala mutation) under similar conditions starting from polyproline II conformation for 100 ns. Two minima corresponding to bend/turn and extended conformations were observed in the free-energy landscape for the peptide YKAQP. The free-energy barrier between the minima in the free-energy landscape of the peptide YKAQP was also modest. Loop conformation is largely sampled by the YKGQP peptide, while extended conformation is largely sampled by the YKAQP peptide. We also explain why the YKGQP sequence samples type II turn conformation in these simulations, whereas the sequence as part of the hairpin peptide DTVKLMYKGQPMTFR samples type I' turn conformation both in the X-ray crystal structure and in our earlier simulations on the folding of the hairpin peptide. We discuss the implications of our results to the folding of the staphylococcal nuclease.
Collapse
Affiliation(s)
- Sunita Patel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
38
|
Ulmschneider JP, Ulmschneider MB, Di Nola A. Monte Carlo vs molecular dynamics for all-atom polypeptide folding simulations. J Phys Chem B 2007; 110:16733-42. [PMID: 16913813 DOI: 10.1021/jp061619b] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient Monte Carlo (MC) algorithm including concerted rotations is directly compared to molecular dynamics (MD) in all-atom statistical mechanics folding simulations of small polypeptides. The previously reported algorithm "concerted rotations with flexible bond angles" (CRA) has been shown to successfully locate the native state of small polypeptides. In this study, the folding of three small polypeptides (trpzip2/H1/Trp-cage) is investigated using MC and MD, for a combined sampling time of approximately 10(11) MC configurations and 8 micros, respectively. Both methods successfully locate the experimentally determined native states of the three systems, but they do so at different speed, with 2-2.5 times faster folding of the MC runs. The comparison reveals that thermodynamic and dynamic properties can reliably be obtained by both and that results from folding simulations do not depend on the algorithm used. Similar to previous comparisons of MC and MD, it is found that one MD integration step of 2 fs corresponds to one MC scan, revealing the good sampling of MC. The simplicity and efficiency of the MC method will enable its future use in folding studies involving larger systems and the combination with replica exchange algorithms.
Collapse
|
39
|
Moritsugu K, Smith JC. Temperature-dependent protein dynamics: a simulation-based probabilistic diffusion-vibration Langevin description. J Phys Chem B 2007; 110:5807-16. [PMID: 16539528 DOI: 10.1021/jp055314t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An enduring challenge in the understanding of internal protein motions is the effective separation and characterization of diffusive and vibrational dynamical components. To address this problem, here nanosecond molecular dynamics trajectories of myoglobin in aqueous solution, performed over a range of temperatures between 120 and 300 K, are subjected to principal component analysis, and the coordinate autocorrelation functions of the resulting principal modes are interpreted using a model combining damped Langevin vibration within potential wells and barrier-crossing diffusion between them. Both the vibrational frequency and the fraction of the mean-square fluctuation arising from vibrational motion undergo transitions with temperature at about 180 K. In contrast, the vibrational friction remains linear with temperature. The diffusional component of the mean-square fluctuation increases dramatically at the dynamical transition. The heights of the energy barriers between the potential wells are estimated, and the associated diffusion constants are calculated using Kramers' rate theory. Model functions of the frequency dependence of the frictional and diffusional quantities are obtained. The dynamic structure factor from the full molecular dynamics trajectory is well reproduced by the model. Overall, the results indicate that a global description of nanosecond temperature-dependent diffusion and vibrational internal protein dynamics can be obtained by applying the results of the present diffusion-vibration model to the vibrational motions obtained from a normal-mode analysis.
Collapse
Affiliation(s)
- Kei Moritsugu
- Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
40
|
Knecht V, Möhwald H, Lipowsky R. Conformational Diversity of the Fibrillogenic Fusion Peptide B18 in Different Environments from Molecular Dynamics Simulations. J Phys Chem B 2007; 111:4161-70. [PMID: 17397213 DOI: 10.1021/jp0659204] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of specific agents against amyloidoses requires an understanding of the conformational behavior of fibrillogenic peptides in different environments on the microscopic level. We present extensive molecular dynamics simulations of the fibrillogenic Bindin (103-120) B18 fusion peptide for several different environments: a water-trifluorethanol (TFE) mixture, pure water, aqueous buffer containing 100 mM NaCl, and a buffer-vapor interface. The peptide was studied as an isolated molecule in solution or at an interface. In the simulations, the conformational behavior of the peptide was found to strongly depend on the environment in agreement with experimental data. Overall, large portions of the peptide were unstructured. Preformed alpha-helical conformations were least stable in pure water and most stable in the water-TFE mixture and the buffer-vapor interface. In all environments, the alpha-helical conformation was most stable in the region around residues 113-116, which are mainly hydrophilic. Extended configurations in water or buffer folded into structures containing beta-sheets in agreement with data from circular dichroism spectroscopy. In buffer, the beta-sheet content was larger than in water and alpha-beta transitions were observed at elevated temperature. Beta-sheets were formed by hydrophobic residues; turns were formed by hydrophilic residues. A few typical beta-sheets that contain different residues are suggested. A B18 molecule in a strand-loop-strand conformation placed in buffer in contact with vapor was spontaneously adsorbed to the buffer-vapor interface with its hydrophobic side pointing toward the vapor phase. The adsorption induced the formation of turns at positions 108-119 and alpha-helical conformations in the region around residues 114-117. Alpha-helices were parallel to the interface plane in agreement with data from IR reflection absorption spectroscopy.
Collapse
Affiliation(s)
- Volker Knecht
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| | | | | |
Collapse
|
41
|
Hughes RM, Waters ML. Model systems for β-hairpins and β-sheets. Curr Opin Struct Biol 2006; 16:514-24. [PMID: 16837192 DOI: 10.1016/j.sbi.2006.06.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 05/16/2006] [Accepted: 06/27/2006] [Indexed: 11/18/2022]
Abstract
beta-Sheets and alpha-helices are the two principal secondary structures in proteins. However, our understanding of beta-sheet structure lags behind that of alpha-helices, largely because, until recently, there was no model system to study the beta-sheet secondary structure in isolation. With the development of well-folded beta-hairpins, this is changing rapidly. Recent advances include: increased understanding of the relative contributions of turn, strand and sidechain interactions to beta-hairpin and beta-sheet stability, with the role of aromatic residues as a common subtheme; experimental and theoretical kinetic and thermodynamic studies of beta-hairpin and beta-sheet folding; de novo protein design, including all-beta structures, mixed alpha/beta motifs and switchable systems; and the creation of functional beta-hairpins.
Collapse
Affiliation(s)
- Robert M Hughes
- Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
42
|
Inouye H, Kirschner DA. X-Ray fiber and powder diffraction of PrP prion peptides. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:181-215. [PMID: 17190614 DOI: 10.1016/s0065-3233(06)73006-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A conformational change from the alpha-helical, cellular form of prion to the beta-sheet, scrapie (infectious) form is the central event for prion replication. The folding mechanism underlying this conformational change has not yet been deciphered. Here, we review prion pathology and summarize X-ray fiber and powder diffraction studies on the N-terminal fragments of prion protein and on short sequences that initiate the beta-assembly for various fibrils, including poly(L-alanine) and poly(L-glutamine). We discuss how the quarter-staggered beta-sheet assembly (like in polyalanine) and polar-zipper beta-sheet formation (like in polyglutamine) may be involved in the formation of the scrapie form of prion.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|
43
|
Daidone I, D'Abramo M, Di Nola A, Amadei A. Theoretical Characterization of α-Helix and β-Hairpin Folding Kinetics. J Am Chem Soc 2005; 127:14825-32. [PMID: 16231936 DOI: 10.1021/ja053383f] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By means of the conformational free energy surface and corresponding diffusion coefficients, as obtained by long time scale atomistic molecular dynamics simulations (mus time scale), we model the folding kinetics of alpha-helix and beta-hairpin peptides as a diffusive process over the free energy surface. The two model systems studied in this paper (the alpha-helical temporin L and the beta-hairpin prion protein H1 peptide) exhibit a funnel-like almost barrierless free energy profile, leading to nonexponential folding kinetics matching rather well the available experimental data. Moreover, using the free energy profile provided by Muñoz et al. [Muñoz et al. Nature 1997, 390: 196-199], this model was also applied to reproduce the two-state folding kinetics of the C-terminal beta-hairpin of protein GB1, yielding an exponential folding kinetics with a time constant (approximately 5 micros) in excellent agreement with the experimentally observed one (approximately 6 micros). Finally, the folding kinetics obtained by solving the diffusion equation, considering either a one-dimensional or a two-dimensional free energy surface, are also compared in order to understand the relevance of the possible kinetic coupling between conformational degrees of freedom in the folding process.
Collapse
Affiliation(s)
- Isabella Daidone
- Department of Chemistry, University of Rome La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | |
Collapse
|