1
|
Vöcking O, Leclère L, Hausen H. The rhodopsin-retinochrome system for retinal re-isomerization predates the origin of cephalopod eyes. BMC Ecol Evol 2021; 21:215. [PMID: 34844573 PMCID: PMC8628405 DOI: 10.1186/s12862-021-01939-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The process of photoreception in most animals depends on the light induced isomerization of the chromophore retinal, bound to rhodopsin. To re-use retinal, the all-trans-retinal form needs to be re-isomerized to 11-cis-retinal, which can be achieved in different ways. In vertebrates, this mostly includes a stepwise enzymatic process called the visual cycle. The best studied re-isomerization system in protostomes is the rhodopsin-retinochrome system of cephalopods, which consists of rhodopsin, the photoisomerase retinochrome and the protein RALBP functioning as shuttle for retinal. In this study we investigate the expression of the rhodopsin-retinochrome system and functional components of the vertebrate visual cycle in a polyplacophoran mollusk, Leptochiton asellus, and examine the phylogenetic distribution of the individual components in other protostome animals. Results Tree-based orthology assignments revealed that orthologs of the cephalopod retinochrome and RALBP are present in mollusks outside of cephalopods. By mining our dataset for vertebrate visual cycle components, we also found orthologs of the retinoid binding protein RLBP1, in polyplacophoran mollusks, cephalopods and a phoronid. In situ hybridization and antibody staining revealed that L. asellus retinochrome is co-expressed in the larval chiton photoreceptor cells (PRCs) with the visual rhodopsin, RALBP and RLBP1. In addition, multiple retinal dehydrogenases are expressed in the PRCs, which might also contribute to the rhodopsin-retinochrome system. Conclusions We conclude that the rhodopsin-retinochrome system is a common feature of mollusk PRCs and predates the origin of cephalopod eyes. Our results show that this system has to be extended by adding further components, which surprisingly, are shared with vertebrates. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01939-x.
Collapse
Affiliation(s)
- Oliver Vöcking
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway. .,Department of Biology, University of Kentucky, Thomas Hunt Morgan Building, 675 Rose Street, Lexington, KY, 40508, USA.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| |
Collapse
|
2
|
Lin KT, Wang A, Nguyen AB, Iyer J, Tran SD. Recent Advances in Hydrogels: Ophthalmic Applications in Cell Delivery, Vitreous Substitutes, and Ocular Adhesives. Biomedicines 2021; 9:1203. [PMID: 34572389 PMCID: PMC8471559 DOI: 10.3390/biomedicines9091203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
With the prevalence of eye diseases, such as cataracts, retinal degenerative diseases, and glaucoma, different treatments including lens replacement, vitrectomy, and stem cell transplantation have been developed; however, they are not without their respective shortcomings. For example, current methods to seal corneal incisions induced by cataract surgery, such as suturing and stromal hydration, are less than ideal due to the potential for surgically induced astigmatism or wound leakage. Vitrectomy performed on patients with diabetic retinopathy requires an artificial vitreous substitute, with current offerings having many shortcomings such as retinal toxicity. The use of stem cells has also been investigated in retinal degenerative diseases; however, an optimal delivery system is required for successful transplantation. The incorporation of hydrogels into ocular therapy has been a critical focus in overcoming the limitations of current treatments. Previous reviews have extensively documented the use of hydrogels in drug delivery; thus, the goal of this review is to discuss recent advances in hydrogel technology in surgical applications, including dendrimer and gelatin-based hydrogels for ocular adhesives and a variety of different polymers for vitreous substitutes, as well as recent advances in hydrogel-based retinal pigment epithelium (RPE) and retinal progenitor cell (RPC) delivery to the retina.
Collapse
Affiliation(s)
| | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (K.T.L.); (A.W.); (A.B.N.); (J.I.)
| |
Collapse
|
3
|
Cao D, Leong B, Messinger JD, Kar D, Ach T, Yannuzzi LA, Freund KB, Curcio CA. Hyperreflective Foci, Optical Coherence Tomography Progression Indicators in Age-Related Macular Degeneration, Include Transdifferentiated Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2021; 62:34. [PMID: 34448806 PMCID: PMC8399556 DOI: 10.1167/iovs.62.10.34] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose By optical coherence tomography (OCT) imaging, hyperreflective foci (HRF) indicate progression risk for advanced age-related macular degeneration (AMD) and are in part attributable to ectopic retinal pigment epithelium (RPE). We hypothesized that ectopic RPE are molecularly distinct from in-layer cells and that their cross-retinal course follows Müller glia. Methods In clinical OCT (61 eyes, 44 patients with AMD, 79.4 ± 7.7 years; 29 female; follow-up = 4.7 ± 0.9 years), one HRF type, RPE plume (n = 129 in 4 morphologies), was reviewed. Twenty eyes of 20 donors characterized by ex vivo OCT were analyzed by histology (normal, 4; early/intermediate AMD, 7; geographic atrophy, 6; neovascular AMD, 3). Cryosections were stained with antibodies to retinoid (RPE65, CRALPB) and immune (CD68, CD163) markers. In published RPE cellular phenotypes, red immunoreactivity was assessed semiquantitatively by one observer (none, some cells, all cells). Results Plume morphology evolved over time and many resolved (40%). Trajectories of RPE plume and cellular debris paralleled Müller glia, including near atrophy borders. RPE corresponding to HRF lost immunoreactivity for retinoid markers and gained immunoreactivity for immune markers. Aberrant immunoreactivity appeared in individual in-layer RPE cells and extended to all abnormal phenotypes. Müller glia remained CRALBP positive. Plume cells approached and contacted retinal capillaries. Conclusions HRF are indicators not predictors of overall disease activity. Gain and loss of function starts with individual in-layer RPE cells and extends to all abnormal phenotypes. Evidence for RPE transdifferentiation, possibly due to ischemia, supports a proposed process of epithelial–mesenchyme transition. Data can propel new biomarkers and therapeutic strategies for AMD.
Collapse
Affiliation(s)
- Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Belinda Leong
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,Retina Associates, Sydney, New South Wales, Australia
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Lawrence A Yannuzzi
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, New York University, Grossman School of Medicine, New York, New York, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
4
|
Kolesnikov AV, Kiser PD, Palczewski K, Kefalov VJ. Function of mammalian M-cones depends on the level of CRALBP in Müller cells. J Gen Physiol 2021; 153:211551. [PMID: 33216847 PMCID: PMC7685772 DOI: 10.1085/jgp.202012675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
Cone photoreceptors mediate daytime vision in vertebrates. The rapid and efficient regeneration of their visual pigments following photoactivation is critical for the cones to remain photoresponsive in bright and rapidly changing light conditions. Cone pigment regeneration depends on the recycling of visual chromophore, which takes place via the canonical visual cycle in the retinal pigment epithelium (RPE) and the Müller cell-driven intraretinal visual cycle. The molecular mechanisms that enable the neural retina to regenerate visual chromophore for cones have not been fully elucidated. However, one known component of the two visual cycles is the cellular retinaldehyde-binding protein (CRALBP), which is expressed both in the RPE and in Müller cells. To understand the significance of CRALBP in cone pigment regeneration, we examined the function of cones in mice heterozygous for Rlbp1, the gene encoding CRALBP. We found that CRALBP expression was reduced by ∼50% in both the RPE and retina of Rlbp1+/- mice. Electroretinography (ERG) showed that the dark adaptation of rods and cones is unaltered in Rlbp1+/- mice, indicating a normal RPE visual cycle. However, pharmacologic blockade of the RPE visual cycle revealed suppressed cone dark adaptation in Rlbp1+/- mice in comparison with controls. We conclude that the expression level of CRALPB specifically in the Müller cells modulates the efficiency of the retina visual cycle. Finally, blocking the RPE visual cycle also suppressed further cone dark adaptation in Rlbp1-/- mice, revealing a shunt in the classical RPE visual cycle that bypasses CRALBP and allows partial but unexpectedly rapid cone dark adaptation.
Collapse
Affiliation(s)
- Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translation Vision Research, School of Medicine, University of California, Irvine, Irvine, CA.,Research Service, VA Long Beach Healthcare System, Long Beach, CA
| | - Krzysztof Palczewski
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translation Vision Research, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Chemistry, School of Medicine, University of California, Irvine, Irvine, CA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
|
6
|
Muthukumar T, Song JE, Khang G. Biological Role of Gellan Gum in Improving Scaffold Drug Delivery, Cell Adhesion Properties for Tissue Engineering Applications. Molecules 2019; 24:E4514. [PMID: 31835526 PMCID: PMC6943741 DOI: 10.3390/molecules24244514] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, gellan gum (GG) has attracted substantial research interest in several fields including biomedical and clinical applications. The GG has highly versatile properties like easy bio-fabrication, tunable mechanical, cell adhesion, biocompatibility, biodegradability, drug delivery, and is easy to functionalize. These properties have put forth GG as a promising material in tissue engineering and regenerative medicine fields. Nevertheless, GG alone has poor mechanical strength, stability, and a high gelling temperature in physiological conditions. However, GG physiochemical properties can be enhanced by blending them with other polymers like chitosan, agar, sodium alginate, starch, cellulose, pullulan, polyvinyl chloride, xanthan gum, and other nanomaterials, like gold, silver, or composites. In this review article, we discuss the comprehensive overview and different strategies for the preparation of GG based biomaterial, hydrogels, and scaffolds for drug delivery, wound healing, antimicrobial activity, and cell adhesion. In addition, we have given special attention to tissue engineering applications of GG, which can be combined with another natural, synthetic polymers and nanoparticles, and other composites materials. Overall, this review article clearly presents a summary of the recent advances in research studies on GG for different biomedical applications.
Collapse
Affiliation(s)
| | | | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Korea; (T.M.); (J.E.S.)
| |
Collapse
|
7
|
Engineering retinal pigment epithelial cells regeneration for transplantation in regenerative medicine using PEG/Gellan gum hydrogels. Int J Biol Macromol 2019; 130:220-228. [DOI: 10.1016/j.ijbiomac.2019.01.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
|
8
|
Sugiura T, Takahashi C, Chuma Y, Fukuda M, Yamada M, Yoshida U, Nakao H, Ikeda K, Khan D, Nile AH, Bankaitis VA, Nakano M. Biophysical Parameters of the Sec14 Phospholipid Exchange Cycle. Biophys J 2018; 116:92-103. [PMID: 30580923 DOI: 10.1016/j.bpj.2018.11.3131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022] Open
Abstract
Sec14, the major yeast phosphatidylcholine (PC)/phosphatidylinositol (PI) transfer protein (PITP), coordinates PC and PI metabolism to facilitate an appropriate and essential lipid signaling environment for membrane trafficking from trans-Golgi membranes. The Sec14 PI/PC exchange cycle is essential for its essential biological activity, but fundamental aspects of how this PITP executes its lipid transfer cycle remain unknown. To address some of these outstanding issues, we applied time-resolved small-angle neutron scattering for the determination of protein-mediated intervesicular movement of deuterated and hydrogenated phospholipids in vitro. Quantitative analysis by small-angle neutron scattering revealed that Sec14 PI- and PC-exchange activities were sensitive to both the lipid composition and curvature of membranes. Moreover, we report that these two parameters regulate lipid exchange activity via distinct mechanisms. Increased membrane curvature promoted both membrane binding and lipid exchange properties of Sec14, indicating that this PITP preferentially acts on the membrane site with a convexly curved face. This biophysical property likely constitutes part of a mechanism by which spatial specificity of Sec14 function is determined in cells. Finally, wild-type Sec14, but not a mixture of Sec14 proteins specifically deficient in either PC- or PI-binding activity, was able to effect a net transfer of PI or PC down opposing concentration gradients in vitro.
Collapse
Affiliation(s)
- Taichi Sugiura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Chisato Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yusuke Chuma
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masakazu Fukuda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Makiko Yamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Ukyo Yoshida
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroyuki Nakao
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Keisuke Ikeda
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Danish Khan
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Aaron H Nile
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, Texas
| | - Vytas A Bankaitis
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas; Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, Texas
| | - Minoru Nakano
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
9
|
Owen TS, Salom D, Sun W, Palczewski K. Increasing the Stability of Recombinant Human Green Cone Pigment. Biochemistry 2018; 57:1022-1030. [PMID: 29320632 PMCID: PMC5853123 DOI: 10.1021/acs.biochem.7b01118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three types of cone cells exist in the human retina, each containing a different pigment responsible for the initial step of phototransduction. These pigments are distinguished by their specific absorbance maxima: 425 nm (blue), 530 nm (green), and 560 nm (red). Each pigment contains a common chromophore, 11-cis-retinal covalently bound to an opsin protein via a Schiff base. The 11-cis-retinal protonated Schiff base has an absorbance maxima at 440 nm in methanol. Unfortunately, the chemistry that allows the same chromophore to interact with different opsin proteins to tune the absorbance of the resulting pigments to distinct λmax values is poorly understood. Rhodopsin is the only pigment with a native structure determined at high resolution. Homology models for cone pigments have been generated, but experimentally determined structures are needed for a precise understanding of spectral tuning. The principal obstacle to solving the structures of cone pigments has been their innate instability in recombinant constructs. By inserting five different thermostabilizing proteins (BRIL, T4L, PGS, RUB, and FLAV) into the recombinant green opsin sequence, constructs were created that were up to 9-fold more stable than WT. Using cellular retinaldehyde-binding protein (CRALBP), we developed a quick means of assessing the stability of the green pigment. CRALBP testing also confirmed an additional 48-fold increase in pigment stability when varying the detergent used. These results suggest an efficient protocol for routine purification and stabilization of cone pigments that could be used for high-resolution determination of their structures, as well as for other studies.
Collapse
Affiliation(s)
- Timothy S. Owen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - David Salom
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Wenyu Sun
- Polgenix, Inc., Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
10
|
Ward R, Sundaramurthi H, Di Giacomo V, Kennedy BN. Enhancing Understanding of the Visual Cycle by Applying CRISPR/Cas9 Gene Editing in Zebrafish. Front Cell Dev Biol 2018; 6:37. [PMID: 29696141 PMCID: PMC5904205 DOI: 10.3389/fcell.2018.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/19/2018] [Indexed: 01/23/2023] Open
Abstract
During the vertebrate visual cycle, all-trans-retinal is exported from photoreceptors to the adjacent RPE or Müller glia wherein 11-cis-retinal is regenerated. The 11-cis chromophore is returned to photoreceptors, forming light-sensitive visual pigments with opsin GPCRs. Dysfunction of this process perturbs phototransduction because functional visual pigment cannot be generated. Mutations in visual cycle genes can result in monogenic inherited forms of blindness. Though key enzymatic processes are well characterized, questions remain as to the physiological role of visual cycle proteins in different retinal cell types, functional domains of these proteins in retinoid biochemistry and in vivo pathogenesis of disease mutations. Significant progress is needed to develop effective and accessible treatments for inherited blindness arising from mutations in visual cycle genes. Here, we review opportunities to apply gene editing technology to two crucial visual cycle components, RPE65 and CRALBP. Expressed exclusively in the human RPE, RPE65 enzymatically converts retinyl esters into 11-cis retinal. CRALBP is an 11-cis-retinal binding protein expressed in human RPE and Muller glia. Loss-of-function mutations in either protein results in autosomal recessive forms of blindness. Modeling these human conditions using RPE65 or CRALBP murine knockout models have enhanced our understanding of their biochemical function, associated disease pathogenesis and development of therapeutics. However, rod-dominated murine retinae provide a challenge to assess cone function. The cone-rich zebrafish model is amenable to cost-effective maintenance of a variety of strains. Interestingly, gene duplication in zebrafish resulted in three Rpe65 and two Cralbp isoforms with differential temporal and spatial expression patterns. Functional investigations of zebrafish Rpe65 and Cralbp were restricted to gene knockdown with morpholino oligonucleotides. However, transient silencing, off-target effects and discrepancies between knockdown and knockout models, highlight a need for more comprehensive alternatives for functional genomics. CRISPR/Cas9 in zebrafish has emerged as a formidable technology enabling targeted gene knockout, knock-in, activation, or silencing to single base-pair resolution. Effective, targeted gene editing by CRISPR/Cas9 in zebrafish enables unprecedented opportunities to create genetic research models. This review will discuss existing knowledge gaps regarding RPE65 and CRALBP. We explore the benefits of CRISPR/Cas9 to establish innovative zebrafish models to enhance knowledge of the visual cycle.
Collapse
Affiliation(s)
- Rebecca Ward
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Husvinee Sundaramurthi
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Breandán N. Kennedy
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- *Correspondence: Breandán N. Kennedy
| |
Collapse
|
11
|
Arne JM, Widjaja-Adhi MAK, Hughes T, Huynh KW, Silvaroli JA, Chelstowska S, Moiseenkova-Bell VY, Golczak M. Allosteric modulation of the substrate specificity of acyl-CoA wax alcohol acyltransferase 2. J Lipid Res 2017; 58:719-730. [PMID: 28096191 DOI: 10.1194/jlr.m073692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Indexed: 01/30/2023] Open
Abstract
The esterification of alcohols with fatty acids is a universal mechanism to form inert storage forms of sterols, di- and triacylglycerols, and retinoids. In ocular tissues, formation of retinyl esters is an essential step in the enzymatic regeneration of the visual chromophore (11-cis-retinal). Acyl-CoA wax alcohol acyltransferase 2 (AWAT2), also known as multifunctional O-acyltransferase (MFAT), is an integral membrane enzyme with a broad substrate specificity that has been shown to preferentially esterify 11-cis-retinol and thus contribute to formation of a readily available pool of cis retinoids in the eye. However, the mechanism by which this promiscuous enzyme can gain substrate specificity is unknown. Here, we provide evidence for an allosteric modulation of the enzymatic activity by 11-cis retinoids. This regulation is independent from cellular retinaldehyde-binding protein (CRALBP), the major cis-retinoid binding protein. This positive-feedback regulation leads to decreased esterification rates for 9-cis, 13-cis, or all-trans retinols and thus enables preferential synthesis of 11-cis-retinyl esters. Finally, electron microscopy analyses of the purified enzyme indicate that this allosteric effect does not result from formation of functional oligomers. Altogether, these data provide the experimental basis for understanding regulation of AWAT2 substrate specificity.
Collapse
Affiliation(s)
- Jason M Arne
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Taylor Hughes
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Kevin W Huynh
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Josie A Silvaroli
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Sylwia Chelstowska
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH; and
| | - Marcin Golczak
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH; and.
| |
Collapse
|
12
|
Xue Y, Shen SQ, Jui J, Rupp AC, Byrne LC, Hattar S, Flannery JG, Corbo JC, Kefalov VJ. CRALBP supports the mammalian retinal visual cycle and cone vision. J Clin Invest 2015; 125:727-38. [PMID: 25607845 DOI: 10.1172/jci79651] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022] Open
Abstract
Mutations in the cellular retinaldehyde-binding protein (CRALBP, encoded by RLBP1) can lead to severe cone photoreceptor-mediated vision loss in patients. It is not known how CRALBP supports cone function or how altered CRALBP leads to cone dysfunction. Here, we determined that deletion of Rlbp1 in mice impairs the retinal visual cycle. Mice lacking CRALBP exhibited M-opsin mislocalization, M-cone loss, and impaired cone-driven visual behavior and light responses. Additionally, M-cone dark adaptation was largely suppressed in CRALBP-deficient animals. While rearing CRALBP-deficient mice in the dark prevented the deterioration of cone function, it did not rescue cone dark adaptation. Adeno-associated virus-mediated restoration of CRALBP expression specifically in Müller cells, but not retinal pigment epithelial (RPE) cells, rescued the retinal visual cycle and M-cone sensitivity in knockout mice. Our results identify Müller cell CRALBP as a key component of the retinal visual cycle and demonstrate that this pathway is important for maintaining normal cone-driven vision and accelerating cone dark adaptation.
Collapse
|
13
|
Helbling RE, Bolze CS, Golczak M, Palczewski K, Stocker A, Cascella M. Cellular retinaldehyde binding protein-different binding modes and micro-solvation patterns for high-affinity 9-cis- and 11-cis-retinal substrates. J Phys Chem B 2013; 117:10719-29. [PMID: 23964907 DOI: 10.1021/jp405410t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We use molecular dynamics (MD) simulations to determine the binding properties of different retinoid species to cellular retinaldehyde binding protein (CRALBP). The complexes formed by 9-cis-retinal or 11-cis-retinal bound to both the native protein and the R234W mutant, associated to Bothnia-retina dystrophy, are investigated. The presented studies are also complemented by analysis of the binding structures of the CRALBP/9-cis-retinol and CRALBP/9,13-dicis-retinal complexes. We find that the poor X-ray scattering properties of the polyene tail of the ligand in all wild-type complexes can be attributed to a high mobility of this region, which does not localize in a single binding conformation even at very low temperatures. Our simulations report a clear difference in the residual solvation pattern in CRALBP complexes with either 9-cis- or 9,13-dicis-retinal. The reported structures indicate that the microsolvation properties of the ligand are the key structural element triggering the very recently discovered isomerase activity of this protein. The binding geometries obtained by MD simulations are validated by calculation of the respective optical spectra by the ZINDO/S semiempirical method, which can reproduce with good qualitative agreement the different red-shifts of the first absorption band of the different complexes.
Collapse
Affiliation(s)
- Rachel E Helbling
- Department of Chemistry and Biochemistry, University of Bern , Freiestrasse 3, 3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Bromley D, Anderson PC, Daggett V. Structural consequences of mutations to the α-tocopherol transfer protein associated with the neurodegenerative disease ataxia with vitamin E deficiency. Biochemistry 2013; 52:4264-73. [PMID: 23713716 DOI: 10.1021/bi4001084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The α-tocopherol transfer protein (α-TTP) is a liver protein that transfers α-tocopherol (vitamin E) to very-low-density lipoproteins (VLDLs). These VLDLs are then circulated throughout the body to maintain blood α-tocopherol levels. Mutations to the α-TTP gene are associated with ataxia with vitamin E deficiency, a disease characterized by peripheral nerve degeneration. In this study, molecular dynamics simulations of the E141K and R59W disease-associated mutants were performed. The mutants displayed disruptions in and around the ligand-binding pocket. Structural analysis and ligand docking to the mutant structures predicted a decreased affinity for α-tocopherol. To determine the detailed mechanism of the mutation-related changes, we developed a new tool called ContactWalker that analyzes contact differences between mutant and wild-type proteins and highlights pathways of altered contacts within the mutant proteins. Taken together, our findings are in agreement with experiment and suggest structural explanations for the weakened ability of the mutants to bind and carry α-tocopherol.
Collapse
Affiliation(s)
- Dennis Bromley
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
15
|
Mousley CJ, Davison JM, Bankaitis VA. Sec14 like PITPs couple lipid metabolism with phosphoinositide synthesis to regulate Golgi functionality. Subcell Biochem 2012; 59:271-87. [PMID: 22374094 DOI: 10.1007/978-94-007-3015-1_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An interface coordinating lipid metabolism with proteins that regulate membrane trafficking is necessary to regulate Golgi morphology and dynamics. Such an interface facilitates the membrane deformations required for vesicularization, forms platforms for protein recruitment and assembly on appropriate sites on a membrane surface and provides lipid co-factors for optimal protein activity in the proper spatio-temporally regulated manner. Importantly, Sec14 and Sec14-like proteins are a unique superfamily of proteins that sense specific aspects of lipid metabolism, employing this information to potentiate phosphoinositide production. Therefore, Sec14 and Sec14 like proteins form central conduits to integrate multiple aspects of lipid metabolism with productive phosphoinositide signaling.
Collapse
Affiliation(s)
- Carl J Mousley
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 27599-7090, Chapel Hill, NC, USA,
| | | | | |
Collapse
|
16
|
Albalat R. Evolution of the genetic machinery of the visual cycle: a novelty of the vertebrate eye? Mol Biol Evol 2011; 29:1461-9. [PMID: 22319134 DOI: 10.1093/molbev/msr313] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The discovery in invertebrates of ciliary photoreceptor cells and ciliary (c)-opsins established that at least two of the three elements that characterize the vertebrate photoreceptor system were already present before vertebrate evolution. However, the origin of the third element, a series of biochemical reactions known as the "retinoid cycle," remained uncertain. To understand the evolution of the retinoid cycle, I have searched for the genetic machinery of the cycle in invertebrate genomes, with special emphasis on the cephalochordate amphioxus. Amphioxus is closely related to vertebrates, has a fairly prototypical genome, and possesses ciliary photoreceptor cells and c-opsins. Phylogenetic and structural analyses of the amphioxus sequences related with the vertebrate machinery do not support a function of amphioxus proteins in chromophore regeneration but suggest that the genetic machinery of the retinoid cycle arose in vertebrates due to duplications of ancestral nonvisual genes. These results favor the hypothesis that the retinoid cycle machinery was a functional innovation of the primitive vertebrate eye.
Collapse
Affiliation(s)
- Ricard Albalat
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
17
|
Bankaitis VA, Mousley CJ, Schaaf G. The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem Sci 2009; 35:150-60. [PMID: 19926291 DOI: 10.1016/j.tibs.2009.10.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 01/03/2023]
Abstract
Lipid signaling pathways define central mechanisms for cellular regulation. Productive lipid signaling requires an orchestrated coupling between lipid metabolism, lipid organization and the action of protein machines that execute appropriate downstream reactions. Using membrane trafficking control as primary context, we explore the idea that the Sec14-protein superfamily defines a set of modules engineered for the sensing of specific aspects of lipid metabolism and subsequent transduction of 'sensing' information to a phosphoinositide-driven 'execution phase'. In this manner, the Sec14 superfamily connects diverse territories of the lipid metabolome with phosphoinositide signaling in a productive 'crosstalk' between these two systems. Mechanisms of crosstalk, by which non-enzymatic proteins integrate metabolic cues with the action of interfacial enzymes, represent unappreciated regulatory themes in lipid signaling.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill. Chapel Hill, North Carolina 27599-7090, USA
| | | | | |
Collapse
|
18
|
Ryan MM, Temple BR, Phillips SE, Bankaitis VA. Conformational dynamics of the major yeast phosphatidylinositol transfer protein sec14p: insight into the mechanisms of phospholipid exchange and diseases of sec14p-like protein deficiencies. Mol Biol Cell 2007; 18:1928-42. [PMID: 17344474 PMCID: PMC1855008 DOI: 10.1091/mbc.e06-11-1024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/30/2007] [Accepted: 02/27/2007] [Indexed: 11/11/2022] Open
Abstract
Molecular dynamics simulations coupled with functional analyses of the major yeast phosphatidylinositol/phosphatidylcholine transfer protein Sec14p identify structural elements involved in regulating the ability of Sec14p to execute phospholipid exchange. The molecular dynamics simulations suggest large rigid body motions within the Sec14p molecule accompany closing and opening of an A(10)/T(4)/A(11) helical gate, and that "state-of-closure" of this helical gate determines access to the Sec14p phospholipid binding cavity. The data also project that conformational dynamics of the helical gate are controlled by a hinge unit (residues F(212), Y(213), K(239), I(240), and I(242)) that links to the N- and C-terminal ends of the helical gate, and by a novel gating module (composed of the B(1)LB(2) and A(12)LT(5) substructures) through which conformational information is transduced to the hinge. The (114)TDKDGR(119) motif of B(1)LB(2) plays an important role in that transduction process. These simulations offer new mechanistic possibilities for an important half-reaction of the Sec14p phospholipid exchange cycle that occurs on membrane surfaces after Sec14p has ejected bound ligand, and is reloading with another phospholipid molecule. These conformational transitions further suggest structural rationales for known disease missense mutations that functionally compromise mammalian members of the Sec14-protein superfamily.
Collapse
Affiliation(s)
- Margaret M. Ryan
- *Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Research Center; and
| | - Brenda R.S. Temple
- R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090
| | - Scott E. Phillips
- *Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Research Center; and
| | - Vytas A. Bankaitis
- *Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Research Center; and
| |
Collapse
|