1
|
Badawi WA, Okda TM, Abd El Wahab SM, Ezz-ElDien ES, AboulWafa OM. Developing new anticancer agents: Design, synthesis, biological evaluation and in silico study of several functionalized pyrimidine-5-carbonitriles as small molecules modulators targeting breast cancer. Bioorg Chem 2024; 153:107953. [PMID: 39556931 DOI: 10.1016/j.bioorg.2024.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
Committed to our growing effort addressed toward the development of potent anti-breast cancer candidates, new 4-hydrazinylpyrimidine-5-carbonitriles featuring a morpholinyl or piperidinyl moiety at the position-2 and derivatized with various functionalities at the hydrazinyl group were designed through structure optimization, and their antiproliferative potency against two human breast cancer (BC) cell lines, relative to the reference drug 5-FU, was evaluated. Compounds showing remarkable cytotoxic activity versus the hormone dependent MCF-7 cell line (IC50 = 1.62 ± 0.06 µM- 9.88 ± 0.38 µM) and the non-hormone dependent MDA-MB-231 cell line (IC50 = 3.26 ± 0.14 µM-12.93 ± 0.55 µM) were further tested by multiple assays for clarification of their potential activity. Promising derivatives revealing low damage to healthy cells were subject to enzymatic inhibitory assessment against ARO and EGFR and their activities compared to letrozole and erlotinib respectively. Compounds 3c, 6a as well as compounds 4c, 4d proved to be good inhibitors of the ARO and EGFR enzymes respectively. Active compounds were also evaluated for their underlying mode of action by further investigation for CDK, Hsp90, PI3K inhibition and compared to normal MCF-10A cells and assessed for their enhancement of the caspase 9 levels. Additionally, cell cycle analysis and apoptotic induction were performed. They demonstrated remarkable activities in the previous assays and emanated as leads as anti-breast cancer candidates. Eventually, molecular docking analysis revealed that hit compounds 3c, 4c, 4d, and 6a could bind favorably to the proposed in silico models of various protein-ligand interactions. Therefore, our promising top candidates, by demonstrating appreciable anti-breast cancer activities, present valuable prospects for optimization, potency enhancement and future application.
Collapse
Affiliation(s)
- Waleed A Badawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt.
| | - Tarek M Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Shrouk M Abd El Wahab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt
| | - Eman S Ezz-ElDien
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| |
Collapse
|
2
|
Kotb MA, Abdelmawgood IA, Ibrahim IM. Pharmacophore-based virtual screening, molecular docking, and molecular dynamics investigation for the identification of novel, marine aromatase inhibitors. BMC Chem 2024; 18:235. [PMID: 39593184 PMCID: PMC11590544 DOI: 10.1186/s13065-024-01350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Breast cancer remains a leading cause of mortality among women worldwide. Our current research focuses on identifying effective therapeutic agents by targeting the human aromatase enzyme. Aromatase inhibitors (AIs) have been effective in treating postmenopausal breast cancer but face challenges such as drug resistance and long-term side effects like cognitive decline and osteoporosis. Natural products, especially from marine organisms, are emerging as potential sources for new drug candidates due to their structural diversity and pharmacological properties. This study aims to discover marine natural products capable of inhibiting human aromatase by combining ligand-based and structure-based pharmacophore models for virtual screening against the Comprehensive Marine Natural Products Database. From the initial virtual screening of more than 31,000 compounds, 1,385 marine natural products were identified as possible candidates. Following initial molecular docking analysis, only four compounds managed to pass the criteria this research has introduced to confirm strong binding affinity to aromatase. All four compounds yielded acceptable binding affinities, with CMPND 27987 having the highest -10.1 kcal/mol. All four hits were subjected to molecular dynamics, and CMPND 27987 was further confirmed to be the most stable at the protein's active site, with an MM-GBSA free binding energy of -27.75 kcal/mol. Our in silico studies indicate that CMPND 27987 interacts effectively within the binding site of the human aromatase, maintaining high affinity and stability. Based on these findings, we propose that CMPND 27987 could hold significant potential for further lead optimization and drug development.
Collapse
Affiliation(s)
- Mohamed A Kotb
- 1Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | | | - Ibrahim M Ibrahim
- 2Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Badawi WA, Samir M, Fathy HM, Okda TM, Noureldin MH, Atwa GMK, AboulWafa OM. Design, synthesis and molecular docking study of new pyrimidine-based hydrazones with selective anti-proliferative activity against MCF-7 and MDA-MB-231 human breast cancer cell lines. Bioorg Chem 2023; 138:106610. [PMID: 37210828 DOI: 10.1016/j.bioorg.2023.106610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Efforts were directed on the design, synthesis and evaluation of the anticancer activity of some pyrimidine-based hydrazones against two breast cancer cell lines, MCF-7 and MDA-MB-231. Preliminary screening results revealed that some candidates scrutinized for their antiproliferative activities exhibited IC50 values of 0.87 μM-12.91 μM in MCF-7 and 1.75 μM-9.46 μM in MDA-MB-231 cells, indicating almost equal activities on both cell lines and better growth inhibition activities than those of the positive control 5-fluorouracil (5-FU) which displayed IC50 values of 17.02 μM and 11.73 μM respectively. Selectivity of the significantly active compounds was estimated against MCF-10A normal breast cells when compounds 7c, 8b, 9a and 10b exhibited superior activity for cancerous cells than for normal cells when compound 10b presented the best selectivity Index (SI) with respect to both MCF-7 and MDA-MB-231 cancer cells in comparison to the reference drug 5-FU. Mechanisms of their actions were explored by inspecting activation of caspase-9, annexin V staining and cell cycle analysis. It was noticed that compounds 7c, 8b, 8c 9a-c and 10b produced an increase in caspase-9 levels in MCF-7 treated cells with 10b inducing the highest elevation (27.13 ± 0.54 ng/mL) attaining 8.26-fold when compared to control MCF-7 which was higher than that of staurosporine (19.011 ± 0.40 ng/mL). The same compounds boosted caspase-9 levels in MDA-MB-231 treated cells when an increase in caspase-9 concentration reaching 20.40 ± 0.46 ng/mL (4.11-fold increase) was observed for compound 9a. We also investigated the role of these compounds for their increasing apoptosis ability against the 2 cell lines. Compounds 7c, 8b and 10b tested on MCF-7 cells displayed pre-G1 apoptosis and arrested cell cycle in particular at the S and G1 phases. Further clarification of their effects was made by modulating their related activities as inhibitors of ARO and EGFR enzymes when 8c and 9b showed 52.4% and 58.9% inhibition activity relative to letrozole respectively and 9b and 10b showed 36% and 39% inhibition activity of erlotinib. Also, the inhibition activity was verified by docking into the chosen enzymes.
Collapse
Affiliation(s)
- Waleed A Badawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, 22511, Egypt.
| | - Mohamed Samir
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch 71524, Assiut, Egypt
| | - Hazem M Fathy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch 71524, Assiut, Egypt
| | - Tarek M Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Mohamed H Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P. O. Box 1029, Egypt
| | - Gamal M K Atwa
- Department of Biochemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21215, Egypt
| |
Collapse
|
4
|
Takla FN, Bayoumi WA, El-Messery SM, Nasr MNA. Developing multitarget coumarin based anti-breast cancer agents: synthesis and molecular modeling study. Sci Rep 2023; 13:13370. [PMID: 37591917 PMCID: PMC10435442 DOI: 10.1038/s41598-023-40232-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
A new series of 7-substituted coumarin scaffolds containing a methyl ester moiety at the C4-position were synthesized and tested for their in vitro anti-proliferative activity against MCF-7 and MDA-MB-231 breast cancer cell lines using Doxorubicin (DOX) as reference. Compounds 2 and 8 showed noticeable selectivity against MCF-7 with IC50 = 6.0 and 5.8 µM, respectively compared to DOX with IC50 = 5.6 µM. Compounds 10, 12, and 14 exhibited considerable selectivity against Estrogen Negative cells with IC50 = 2.3, 3.5, and 1.9 µM, respectively) compared to DOX with (IC50 = 7.3 µM). The most promising compounds were tested as epidermal growth factor receptor and aromatase (ARO) enzymes inhibitors using erlotinib and exemestane (EXM) as standards, respectively. Results proved that compound 8 elicited the highest inhibitory activity (94.73% of the potency of EXM), while compounds 10 and 12 displayed 97.67% and 81.92% of the potency of Erlotinib, respectively. Further investigation showed that the promising candidates 8, 10, and 12 caused cell cycle arrest at G0-G1 and S phases and induced apoptosis. The mechanistic pathway was confirmed by elevating caspases-9 and Bax/Bcl-2 ratio. A set of in silico methods was also performed including docking, bioavailability ADMET screening and QSAR study.
Collapse
Affiliation(s)
- Fiby N Takla
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, 35712, Egypt
| | - Waleed A Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Shahenda M El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Magda N A Nasr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
AboulWafa OM, Daabees HMG, El-Said AH. Benzoxazole-appended piperidine derivatives as novel anticancer candidates against breast cancer. Bioorg Chem 2023; 134:106437. [PMID: 36842320 DOI: 10.1016/j.bioorg.2023.106437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Novel series of benzoxazole-appended piperidine derivatives were planned, synthesized and screened against two breast cancer cell lines. Considerable antiproliferative activity was observed for screened compounds (IC50 = 33.32 ± 0.2 µM to 7.31 ± 0.43 µM and 1.66 ± 0.08 µM to 12.10 ± 0.57 µM) against MCF-7 and MDA-MB-231 cell lines respectively being more potent than doxorubicin (IC50 = 8.20 ± 0.39 µM and 13.34 ± 0.63 µM respectively). Active compounds were submitted for enzyme inhibition assays when 4d and 7h demonstrated potent EGFR inhibition (0.08 ± 0.002 µM and 0.09 ± 0.002 µM respectively) compared to erlotinib (0.11 ± 0.003 µM). However, no one compound displayed effective ARO inhibition activity as tested compounds were less active than letrozole. Apoptosis inducing ability results implied that apoptosis was provoked by significant stimulation of caspase-9 protein levels (4.25-7.04-fold) upon treatment of MCF-7 cells with 4a, 7h, 9, 12e and 12f. Alternatively, MDA-MB-231 cells treated with 4d, 7a, 12b and 12c considerably increased caspase-9 levels (2.32-4.06-fold). Cell cycle arrest and annexin-V/Propidium iodide assays further confirmed apoptosis when tested compounds arrested cell cycle at various phases and demonstrated high annexin V binding affinity. Docking outcomes proved valuable binding affinities for compounds 4d and 7h to EGFR enzyme while compounds 4a and 12e, upon docking into the active site of ARO, failed to interact with heme, suggesting their inabilities to act as AIs. Therefore, these benzoxazoles can act as promising candidates exhibiting EGFR inhibition and apoptosis-promoting properties.
Collapse
Affiliation(s)
- Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Hoda M G Daabees
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Damanhour, Damanhour, Egypt
| | - Ahmed H El-Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Mansoura 11152, Dakahliya, Egypt.
| |
Collapse
|
6
|
Al Mousa AA, Abouelela ME, Hassane AMA, Al-Khattaf FS, Hatamleh AA, Alabdulhadi HS, Dahmash ND, Abo-Dahab NF. Cytotoxic Potential of Alternaria tenuissima AUMC14342 Mycoendophyte Extract: A Study Combined with LC-MS/MS Metabolic Profiling and Molecular Docking Simulation. Curr Issues Mol Biol 2022; 44:5067-5085. [PMID: 36286059 PMCID: PMC9600980 DOI: 10.3390/cimb44100344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Breast, cervical, and ovarian cancers are among the most serious cancers and the main causes of mortality in females worldwide, necessitating urgent efforts to find newer sources of safe anticancer drugs. The present study aimed to evaluate the anticancer potency of mycoendophytic Alternaria tenuissima AUMC14342 ethyl acetate extract on HeLa (cervical cancer), SKOV-3 (ovarian cancer), and MCF-7 (breast adenocarcinoma) cell lines. The extract showed potent effect on MCF-7 cells with an IC50 value of 55.53 μg/mL. Cell cycle distribution analysis of treated MCF-7 cells revealed a cell cycle arrest at the S phase with a significant increase in the cell population (25.53%). When compared to control cells, no significant signs of necrotic or apoptotic cell death were observed. LC-MS/MS analysis of Alternaria tenuissima extract afforded the identification of 20 secondary metabolites, including 7-dehydrobrefeldin A, which exhibited the highest interaction score (-8.0156 kcal/mol) in molecular docking analysis against human aromatase. Regarding ADME pharmacokinetics and drug-likeness properties, 7-dehydrobrefeldin A, 4'-epialtenuene, and atransfusarin had good GIT absorption and water solubility without any violation of drug-likeness rules. These findings support the anticancer activity of bioactive metabolites derived from endophytic fungi and provide drug scaffolds and substitute sources for the future development of safe chemotherapy.
Collapse
Affiliation(s)
- Amal A. Al Mousa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, P.O. Box 71524, Assiut 11651, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, KY 40506, USA
| | - Abdallah M. A. Hassane
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut 11651, Egypt
| | - Fatimah S. Al-Khattaf
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Ashraf A. Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Hadeel S. Alabdulhadi
- Research Assistant Internship Program, Vice Rectorate for Graduate Studies and Scientific Research, King Saud University, Deanship of Scientific Research, Riyadh 4545, Saudi Arabia
| | - Noura D. Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Nageh F. Abo-Dahab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut 11651, Egypt
| |
Collapse
|
7
|
AboulWafa OM, Daabees HMG, Hammad A, Badawi WA. New functionalized 6-thienylpyrimidine-5-carbonitriles as antiproliferative agents against human breast cancer cells. Arch Pharm (Weinheim) 2021; 354:e2100177. [PMID: 34347303 DOI: 10.1002/ardp.202100177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023]
Abstract
6-Thienylpyrimidine-5-carbonitrile derivatives were synthesized and screened for their in vitro antiproliferative activities against two human breast cancer cell lines in comparison to 5-fluorouracil as a reference. Compounds 2, 3a-c, and 6b evolved as the most active congeners against both cell lines, while others showed selectivity for only one cell line. Compound 2 exerted its effect through inhibition of the epidermal growth factor receptor (EGFR), while 6b showed less aromatase inhibitory activity than letrozole. The rest of the tested compounds did not show significant inhibition, and it can be assumed that they exert their antiproliferative activity through different target mechanisms. In addition, caspase-9 protein activation assays, cell cycle analysis using flow cytometry, and annexin V-fluorescein isothiocyanate-propidium iodide (FITC/PI) dual staining assays were performed for the most active compounds. All the tested compounds were found to be potent pyrimidine derivatives able to initiate apoptosis in MCF-7 and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hoda M G Daabees
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ali Hammad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Waleed A Badawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
8
|
Farghaly AM, AboulWafa OM, Baghdadi HH, Abd El Razik HA, Sedra SMY, Shamaa MM. New thieno[3,2-d]pyrimidine-based derivatives: Design, synthesis and biological evaluation as antiproliferative agents, EGFR and ARO inhibitors inducing apoptosis in breast cancer cells. Bioorg Chem 2021; 115:105208. [PMID: 34365057 DOI: 10.1016/j.bioorg.2021.105208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/02/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023]
Abstract
An array of newly synthesized thieno[3,2-d]pyrimidine-based derivatives and thienotriazolopyrimidines hybridized with some pharmacophoric anticancer fragments were designed, synthesized and assessed for their in vitro antiproliferative activity against MCF-7 and MDA-MB-231 breast cancer cell lines using erlotinib and pictilisib as reference standards in the MTT assay. In general, many compounds were endowed with considerable antiproliferative activity (IC50 = 0.43-1.31 µM). Some of the tested compounds, namely 3c, 5b, 5c, 9d, 10, 11b and 13 displayed remarkable antiproliferative activity against both cell lines. Meanwhile, compounds 2c-e, 3b, 4a, 5a, 9c and 15b showed noticeable selectivity against MCF-7 cells while compounds 2b, 3a, 4b, 6a-c, 7, 8, 9b and 12 exhibited considerable selectivity against MDA-MB-231 cells. Further mechanistic evidences for their anticancer activities were provided by screening the most potent compounds against MCF-7 and/or MDA-MB-231 cells for EGFR and ARO inhibitory activities using erlotinib and letrozole as reference standards respectively. Results proved that, in general, tested compounds were better EGFRIs than ARIs. In addition, significant overexpression in caspase-9 level in treated MCF-7 breast cell line samples was observed for all tested compounds with the 4-fluorophenylhydrazone derivative 2d exhibiting the highest activation. In treated MDA-MB-231 breast cell line samples, 11b was found to highly induce caspase-9 level thereby inducing apoptosis. Cell cycle analysis and Annexin V-FITC/PI assay were also assessed for active compounds where results indicated that all tested compounds induced preG1 apoptosis and cell cycle arrest at G2/M phase. Compound 9d, as an inhibitor of ARO, was observed to downregulate the downstream signaling proteins HSP27 and p-ERK in MCF-7 cells. Furthermore, compound 11b downregulated EGFR expression as well as the downstream signaling protein p-AKT. Docking experiments on EGFR and ARO enzymes supported their in vitro results. Thus, the thienotriazolopyrimidines 11b and 12 showing good EGFR inhibition and the thieno[3,2-d]-pyrimidine derivatives 3b and 9d, eliciting the best ARO inhibition activity, can be considered as new candidates as anti-breast cancer agents that necessitate further development.
Collapse
Affiliation(s)
- Ahmed M Farghaly
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba A Abd El Razik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Samir M Y Sedra
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Marium M Shamaa
- Clinical and Biological Sciences (Biochemistry and Molecular Biology) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
9
|
Caciolla J, Bisi A, Belluti F, Rampa A, Gobbi S. Reconsidering Aromatase for Breast Cancer Treatment: New Roles for an Old Target. Molecules 2020; 25:molecules25225351. [PMID: 33207783 PMCID: PMC7696276 DOI: 10.3390/molecules25225351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/31/2022] Open
Abstract
The current therapeutic approach for the treatment of hormone dependent breast cancer includes interference with estrogen receptors via either selective modulators or estrogens deprivation, by preventing their biosynthesis with aromatase inhibitors. Severe side effects and acquired resistance are drawbacks of both drug classes, and the efforts to overcome these issues still allow for research in this field to be animated. This review reports on recent findings that have opened new avenues for reconsidering the role of aromatase enzymes (and estrogen receptors) leading to the possibility of looking at well-known targets in a new perspective.
Collapse
Affiliation(s)
- Jessica Caciolla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
10
|
Ratre P, Mishra K, Dubey A, Vyas A, Jain A, Thareja S. Aromatase Inhibitors for the Treatment of Breast Cancer: A Journey from the Scratch. Anticancer Agents Med Chem 2020; 20:1994-2004. [DOI: 10.2174/1871520620666200627204105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 01/08/2023]
Abstract
Background:
Estrogens are essential for the growth of breast cancer in the case of premenopausal as
well as in postmenopausal women. However, most of the breast cancer incidences are reported in postmenopausal
women and the concurrent risk surges with an increase in age. Since the enzyme aromatase catalyses
essential steps in estrogen biosynthesis, Aromatase Inhibitors (AIs) are effective targeted therapy in patients
with Estrogen Receptor positive (ER+) breast cancer. AIs are more effective than Selective Estrogen Receptor
Modulators (SERMs) because they block both the genomic and nongenomic activities of ER. Till date, first,
second and third-generation AIs have been approved by the FDA. The third-generation AIs, viz. Letrozole,
Anastrozole, Exemestane, are currently used in the standard treatment for postmenopausal breast cancer.
Methods:
Data were collected from Medline, PubMed, Google Scholar, Science Direct through searching of
keywords: ‘aromatase’, ‘aromatase inhibitors’, ‘breast cancer’, ‘steroidal aromatase inhibitors’, ‘non-steroidal
inhibitors’ and ‘generations of aromatase inhibitors’.
Results:
In the current scenario of breast cancer chemotherapy, AIs are the most widely used agents which reveal
optimum efficacy along with the least side effects. Keeping in view the prominence of AIs in breast cancer
therapy, this review covered the detailed description of aromatase including its role in the biosynthesis of estrogen,
biochemistry, gene expression, 3D-structure, and information of reported AIs along with their role in breast
cancer treatment.
Conclusion:
AIs are the mainstream solution of the ER+ breast cancer treatment regimen with the continuous
improvement of human understanding of the importance of a healthy life of women suffering from breast cancer.
Collapse
Affiliation(s)
- Pooja Ratre
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur-495 009 (C.G.), India
| | - Keerti Mishra
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur-495 009 (C.G.), India
| | - Amit Dubey
- Chhattisgarh Council of Science and Technology, Raipur-492 014 (C.G.), India
| | - Amber Vyas
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur-492 010 (C.G.), India
| | - Akhlesh Jain
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur-495 009 (C.G.), India
| | - Suresh Thareja
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur-495 009 (C.G.), India
| |
Collapse
|
11
|
Spinello A, Ritacco I, Magistrato A. Recent advances in computational design of potent aromatase inhibitors: open-eye on endocrine-resistant breast cancers. Expert Opin Drug Discov 2019; 14:1065-1076. [DOI: 10.1080/17460441.2019.1646245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Angelo Spinello
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ida Ritacco
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- National Research Council - Istituto Officina dei Materiali c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
12
|
Santen RJ, Simpson E. History of Estrogen: Its Purification, Structure, Synthesis, Biologic Actions, and Clinical Implications. Endocrinology 2019; 160:605-625. [PMID: 30566601 DOI: 10.1210/en.2018-00529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
This mini-review summarizes key points from the Clark Sawin Memorial Lecture on the History of Estrogen delivered at Endo 2018 and focuses on the rationales and motivation leading to various discoveries and their clinical applications. During the classical period of antiquity, incisive clinical observations uncovered important findings; however, extensive anatomical dissections to solidify proof were generally lacking. Initiation of the experimental approach followed later, influenced by Claude Bernard's treatise "An Introduction to the Study of Experimental Medicine." With this approach, investigators began to explore the function of the ovaries and their "internal secretions" and, after intensive investigations for several years, purified various estrogens. Clinical therapies for hot flashes, osteoporosis, and dysmenorrhea were quickly developed and, later, methods of hormonal contraception. Sophisticated biochemical methods revealed the mechanisms of estrogen synthesis through the enzyme aromatase and, after discovery of the estrogen receptors, their specific biologic actions. Molecular techniques facilitated understanding of the specific transcriptional and translational events requiring estrogen. This body of knowledge led to methods to prevent and treat hormone-dependent neoplasms as well as a variety of other estrogen-related conditions. More recently, the role of estrogen in men was uncovered by prismatic examples of estrogen deficiency in male patients and by knockout of the estrogen receptor and aromatase in animals. As studies became more extensive, the effects of estrogen on nearly every organ were described. We conclude that the history of estrogen illustrates the role of intellectual reasoning, motivation, and serendipity in advancing knowledge about this important sex steroid.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia
| | - Evan Simpson
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Wu X, Clavaguera C, Lagardère L, Piquemal JP, de la Lande A. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms. J Chem Theory Comput 2018; 14:2705-2720. [PMID: 29630819 DOI: 10.1021/acs.jctc.7b01128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H2O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.
Collapse
Affiliation(s)
- Xiaojing Wu
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| | - Carine Clavaguera
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| | - Louis Lagardère
- Sorbonne Université, CNRS , Institut Parisien de Chimie Physique et Théorique (IP2CT) , 4 Place Jussieu , F-75005 , Paris , France.,Sorbonne Université , Institut des Sciences du Calcul et des Données (ISCD) , 4 place Jussieu , F-75005 , Paris , France
| | - Jean-Philip Piquemal
- Sorbonne Université, CNRS , Laboratoire de Chimie Théorique (LCT) , 4 Place Jussieu , F-75005 , Paris , France.,Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,Institut Universitaire de France , 75005 , Paris , France
| | - Aurélien de la Lande
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| |
Collapse
|
14
|
Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Coumarin: A Natural, Privileged and Versatile Scaffold for Bioactive Compounds. Molecules 2018; 23:E250. [PMID: 29382051 PMCID: PMC6017103 DOI: 10.3390/molecules23020250] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 12/22/2022] Open
Abstract
Many naturally occurring substances, traditionally used in popular medicines around the world, contain the coumarin moiety. Coumarin represents a privileged scaffold for medicinal chemists, because of its peculiar physicochemical features, and the versatile and easy synthetic transformation into a large variety of functionalized coumarins. As a consequence, a huge number of coumarin derivatives have been designed, synthesized, and tested to address many pharmacological targets in a selective way, e.g., selective enzyme inhibitors, and more recently, a number of selected targets (multitarget ligands) involved in multifactorial diseases, such as Alzheimer's and Parkinson's diseases. In this review an overview of the most recent synthetic pathways leading to mono- and polyfunctionalized coumarins will be presented, along with the main biological pathways of their biosynthesis and metabolic transformations. The many existing and recent reviews in the field prompted us to make some drastic selections, and therefore, the review is focused on monoamine oxidase, cholinesterase, and aromatase inhibitors, and on multitarget coumarins acting on selected targets of neurodegenerative diseases.
Collapse
Affiliation(s)
- Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
15
|
van Dijk M, ter Laak AM, Wichard JD, Capoferri L, Vermeulen NPE, Geerke DP. Comprehensive and Automated Linear Interaction Energy Based Binding-Affinity Prediction for Multifarious Cytochrome P450 Aromatase Inhibitors. J Chem Inf Model 2017; 57:2294-2308. [PMID: 28776988 PMCID: PMC5615371 DOI: 10.1021/acs.jcim.7b00222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 aromatase (CYP19A1) plays a key role in the development of estrogen dependent breast cancer, and aromatase inhibitors have been at the front line of treatment for the past three decades. The development of potent, selective and safer inhibitors is ongoing with in silico screening methods playing a more prominent role in the search for promising lead compounds in bioactivity-relevant chemical space. Here we present a set of comprehensive binding affinity prediction models for CYP19A1 using our automated Linear Interaction Energy (LIE) based workflow on a set of 132 putative and structurally diverse aromatase inhibitors obtained from a typical industrial screening study. We extended the workflow with machine learning methods to automatically cluster training and test compounds in order to maximize the number of explained compounds in one or more predictive LIE models. The method uses protein-ligand interaction profiles obtained from Molecular Dynamics (MD) trajectories to help model search and define the applicability domain of the resolved models. Our method was successful in accounting for 86% of the data set in 3 robust models that show high correlation between calculated and observed values for ligand-binding free energies (RMSE < 2.5 kJ mol-1), with good cross-validation statistics.
Collapse
Affiliation(s)
- Marc van Dijk
- AIMMS
Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | | | - Jörg D. Wichard
- Bayer AG, Pharmaceuticals Division, Müllerstrasse
178, D-13353 Berlin, Germany
| | - Luigi Capoferri
- AIMMS
Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- AIMMS
Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daan P. Geerke
- AIMMS
Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
16
|
Asadi P, Khodarahmi G, Farrokhpour H, Hassanzadeh F, Saghaei L. Quantum mechanical/molecular mechanical and docking study of the novel analogues based on hybridization of common pharmacophores as potential anti-breast cancer agents. Res Pharm Sci 2017; 12:233-240. [PMID: 28626481 PMCID: PMC5465832 DOI: 10.4103/1735-5362.207204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In an attempt to identify some new potential leads as anti-breast cancer agents, novel hybrid compounds were designed by molecular hybridization approach. These derivatives were structurally derived from hybrid benzofuran-imidazole and quinazolinone derivatives, which had shown good cytotoxicity against the breast cancer cell line (MCF-7). Since aromatase enzyme (CYP19) is highly expressed in the MCF-7 cell line, the binding of these novel hybrid compounds to aromatase was investigated using the docking method. In this study, due to the positive charge on the imidazole ring of the designed ligands and also, the presence of heme iron in the active site of the enzyme, it was decided to optimize the ligand inside the protein to obtain more realistic atomic charges for it. Quantum mechanical/molecular mechanical (QM/MM) method was used to obtain more accurate atomic charges of ligand for docking calculations by considering the polarization effects of CYP19 on ligands. It was observed that the refitted charge improved the binding energy of the docked compounds. Also, the results showed that these novel hybrid compounds were adopted properly within the aromatase binding site, thereby suggesting that they could be potential inhibitors of aromatase. The main binding modes in these complexes were through hydrophobic and H bond interactions showing agreement with the basic physicochemical features of known anti aromatase compounds. Finally, the complex structures obtained from the docking study were used for single point QM/MM calculations to obtain more accurate electronic interaction energy, considering the electronic polarization of the ligand by its protein environment.
Collapse
Affiliation(s)
- Parvin Asadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan, I.R. Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
17
|
Jha T, Adhikari N, Halder AK, Saha A. Ligand- and Structure-Based Drug Design of Non-Steroidal Aromatase Inhibitors (NSAIs) in Breast Cancer. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aromatase is a multienzyme complex overexpressed in breast cancer and responsible for estrogen production. It is the potential target for designing anti-breast cancer drugs. Ligand and Structure-Based Drug Designing approaches (LBDD and SBDD) are involved in development of active and more specific Nonsteroidal Aromatase Inhibitors (NSAIs). Different LBDD and SBDD approaches are presented here to understand their utility in designing novel NSAIs. It is observed that molecules should possess a five or six membered heterocyclic nitrogen containing ring to coordinate with heme portion of aromatase for inhibition. Moreover, one or two hydrogen bond acceptor features, hydrophobicity, and steric factors may play crucial roles for anti-aromatase activity. Electrostatic, van der Waals, and p-p interactions are other important factors that determine binding affinity of inhibitors. HQSAR, LDA-QSAR, GQSAR, CoMFA, and CoMSIA approaches, pharmacophore mapping followed by virtual screening, docking, and dynamic simulation may be effective approaches for designing new potent anti-aromatase molecules.
Collapse
|
18
|
Kesharwani SS, Nandekar PP, Pragyan P, Rathod V, Sangamwar AT. Characterization of differences in substrate specificity among CYP1A1, CYP1A2 and CYP1B1: an integrated approach employing molecular docking and molecular dynamics simulations. J Mol Recognit 2016; 29:370-90. [PMID: 26916064 DOI: 10.1002/jmr.2537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/16/2015] [Accepted: 01/08/2016] [Indexed: 01/05/2023]
Abstract
Recent trends in new drug discovery of anticancer drugs have made oncologists more aware of the fact that the new drug discovery must target the developing mechanism of tumorigenesis to improve the therapeutic efficacy of antineoplastic drugs. The drugs designed are expected to have high affinity towards the novel targets selectively. Current research highlights overexpression of CYP450s, particularly cytochrome P450 1A1 (CYP1A1), in tumour cells, representing a novel target for anticancer therapy. However, the CYP1 family is identified as posing significant problems in selectivity of anticancer molecules towards CYP1A1. Three members have been identified in the human CYP1 family: CYP1A1, CYP1A2 and CYP1B1. Although sequences of the three isoform have high sequence identity, they have distinct substrate specificities. The understanding of macromolecular features that govern substrate specificity is required to understand the interplay between the protein function and dynamics, design novel antitumour compounds that could be specifically metabolized by only CYP1A1 to mediate their antitumour activity and elucidate the reasons for differences in substrate specificity profile among the three proteins. In the present study, we employed a combination of computational methodologies: molecular docking and molecular dynamics simulations. We utilized eight substrates for elucidating the difference in substrate specificity of the three isoforms. Lastly, we conclude that the substrate specificity of a particular substrate depends upon the type of the active site residues, the dynamic motions in the protein structure upon ligand binding and the physico-chemical characteristics of a particular ligand. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siddharth S Kesharwani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-, 160062 Punjab, India
| | - Prajwal P Nandekar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-, 160062 Punjab, India
| | - Preeti Pragyan
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-, 160062 Punjab, India
| | - Vijay Rathod
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-, 160062 Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-, 160062 Punjab, India
| |
Collapse
|
19
|
Chouchene L, Pellegrini E, Gueguen MM, Hinfray N, Brion F, Piccini B, Kah O, Saïd K, Messaoudi I, Pakdel F. Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc. J Appl Toxicol 2016; 36:863-71. [DOI: 10.1002/jat.3285] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Lina Chouchene
- Génétique, Biodiversité et Valorisation des Bioressources; Université de Monastir, Institut Supérieur de Biotechnologie de Monastir; Tunisia
| | - Elisabeth Pellegrini
- Neuroendocrine Effects of Endocrine Disruptors; University of Rennes 1, Campus de Beaulieu; France
| | - Marie-Madeleine Gueguen
- Neuroendocrine Effects of Endocrine Disruptors; University of Rennes 1, Campus de Beaulieu; France
| | - Nathalie Hinfray
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques; Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte; France
| | - François Brion
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques; Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte; France
| | - Benjamin Piccini
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques; Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte; France
| | - Olivier Kah
- Neuroendocrine Effects of Endocrine Disruptors; University of Rennes 1, Campus de Beaulieu; France
| | - Khaled Saïd
- Génétique, Biodiversité et Valorisation des Bioressources; Université de Monastir, Institut Supérieur de Biotechnologie de Monastir; Tunisia
| | - Imed Messaoudi
- Génétique, Biodiversité et Valorisation des Bioressources; Université de Monastir, Institut Supérieur de Biotechnologie de Monastir; Tunisia
| | - Farzad Pakdel
- Transcription, Environnement et Cancer; Institut de Recherche en Santé-Environnement-Travail (Irset), Inserm UMR 1085, Université de Rennes 1; France
| |
Collapse
|
20
|
Ghosh D, Lo J, Egbuta C. Recent Progress in the Discovery of Next Generation Inhibitors of Aromatase from the Structure-Function Perspective. J Med Chem 2016; 59:5131-48. [PMID: 26689671 DOI: 10.1021/acs.jmedchem.5b01281] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human aromatase catalyzes the synthesis of estrogen from androgen with high substrate specificity. For the past 40 years, aromatase has been a target of intense inhibitor discovery research for the prevention and treatment of estrogen-dependent breast cancer. The so-called third generation aromatase inhibitors (AIs) letrozole, anastrozole, and the steroidal exemestane were approved in the U.S. in the late 1990s for estrogen-dependent postmenopausal breast cancer. Efforts to develop better AIs with higher selectivity and lower side effects were handicapped by the lack of an experimental structure of this unique P450. The year 2009 marked the publication of the crystal structure of aromatase purified from human placenta, revealing an androgen-specific active site. The structure has reinvigorated research activities on this fascinating enzyme and served as the catalyst for next generation AI discovery research. Here, we present an account of recent developments in the AI field from the perspective of the enzyme's structure-function relationships.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| | - Jessica Lo
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| | - Chinaza Egbuta
- Department of Pharmacology, State University of New York Upstate Medical University , 750 East Adams Street, Syracuse, New York 13210, United States
| |
Collapse
|
21
|
Abstract
Oestrogens exert important effects on the reproductive as well as many other organ systems in both men and women. The history of the discovery of oestrogens, the mechanisms of their synthesis, and their therapeutic applications are very important components of the fabric of endocrinology. These aspects provide the rationale for highlighting several key components of this story. Two investigators, Edward Doisy and Alfred Butenandt, purified and crystalized oestrone nearly simultaneously in 1929, and Doisy later discovered oestriol and oestradiol. Butenandt won the Nobel Prize for this work and Doisy's had to await his purification of vitamin K. Early investigators quickly recognized that oestrogens must be synthesized from androgens and later investigators called this process aromatization. The aromatase enzyme was then characterized, its mechanism determined, and its structure identified after successful crystallization. With the development of knock-out methodology, the precise effects of oestrogen in males and females were defined and clinical syndromes of deficiency and excess described. Their discovery ultimately led to the development of oral contraceptives, treatment of menopausal symptoms, therapies for breast cancer, and induction of fertility, among others. The history of the use of oestrogens for postmenopausal women to relieve symptoms has been characterized by cyclic periods of enthusiasm and concern. The individuals involved in these studies, the innovative thinking required, and the detailed understanding made possible by evolving biologic and molecular techniques provide many lessons for current endocrinologists.
Collapse
Affiliation(s)
- Evan Simpson
- Hudson Institute of Medical ResearchClayton, Victoria 3168, AustraliaDivision of Endocrinology and MetabolismDepartment of Medicine, University of Virginia Health Sciences System, Charlottesville, Virginia 22908-1416, USA
| | - Richard J Santen
- Hudson Institute of Medical ResearchClayton, Victoria 3168, AustraliaDivision of Endocrinology and MetabolismDepartment of Medicine, University of Virginia Health Sciences System, Charlottesville, Virginia 22908-1416, USA
| |
Collapse
|
22
|
Khodarahmi G, Asadi P, Farrokhpour H, Hassanzadeh F, Dinari M. Design of novel potential aromatase inhibitors via hybrid pharmacophore approach: docking improvement using the QM/MM method. RSC Adv 2015. [DOI: 10.1039/c5ra10097f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
QM/MM and docking methods were used for designing novel hybrid aromatase inhibitors incorporating benzofuran, imidazole and quinazolinone moieties.
Collapse
Affiliation(s)
- Ghadamali Khodarahmi
- Department of Medicinal Chemistry
- School of Pharmacy and Pharmaceutical Sciences
- Isfahan University of Medical Sciences
- Isfahan
- I. R. Iran
| | - Parvin Asadi
- Department of Medicinal Chemistry
- School of Pharmacy and Pharmaceutical Sciences
- Isfahan University of Medical Sciences
- Isfahan
- I. R. Iran
| | | | - Farshid Hassanzadeh
- Department of Medicinal Chemistry
- School of Pharmacy and Pharmaceutical Sciences
- Isfahan University of Medical Sciences
- Isfahan
- I. R. Iran
| | - Mohammad Dinari
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- I. R. Iran
| |
Collapse
|
23
|
Jha T, Adhikari N, Halder AK, Saha A. Ligand- and Structure-Based Drug Design of Non-Steroidal Aromatase Inhibitors (NSAIs) in Breast Cancer. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS IN DRUG DESIGN, PREDICTIVE TOXICOLOGY, AND RISK ASSESSMENT 2015. [DOI: 10.4018/978-1-4666-8136-1.ch011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aromatase is a multienzyme complex overexpressed in breast cancer and responsible for estrogen production. It is the potential target for designing anti-breast cancer drugs. Ligand and Structure-Based Drug Designing approaches (LBDD and SBDD) are involved in development of active and more specific Nonsteroidal Aromatase Inhibitors (NSAIs). Different LBDD and SBDD approaches are presented here to understand their utility in designing novel NSAIs. It is observed that molecules should possess a five or six membered heterocyclic nitrogen containing ring to coordinate with heme portion of aromatase for inhibition. Moreover, one or two hydrogen bond acceptor features, hydrophobicity, and steric factors may play crucial roles for anti-aromatase activity. Electrostatic, van der Waals, and p-p interactions are other important factors that determine binding affinity of inhibitors. HQSAR, LDA-QSAR, GQSAR, CoMFA, and CoMSIA approaches, pharmacophore mapping followed by virtual screening, docking, and dynamic simulation may be effective approaches for designing new potent anti-aromatase molecules.
Collapse
|
24
|
Rana A, Alex JM, Chauhan M, Joshi G, Kumar R. A review on pharmacophoric designs of antiproliferative agents. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1196-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Awasthi M, Singh S, Pandey VP, Dwivedi UN. Molecular docking and 3D-QSAR-based virtual screening of flavonoids as potential aromatase inhibitors against estrogen-dependent breast cancer. J Biomol Struct Dyn 2014; 33:804-19. [DOI: 10.1080/07391102.2014.912152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Manika Awasthi
- Department of Biochemistry, Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Swati Singh
- Department of Biochemistry, Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Veda P. Pandey
- Department of Biochemistry, Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Upendra N. Dwivedi
- Department of Biochemistry, Bioinformatics Infrastructure Facility, Centre of Excellence in Bioinformatics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
26
|
Li GY, Li WL, Zhang H, Sun XR. Theoretical study on phthalocynine-Fe(II)-based fluorescent sensors for cyanide anion. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1142/s0219633614500060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three fluorescent sensors bearing phthalocynine- Fe ( II ) moiety were designed specifically for detecting cyanide anions, and investigated by DFT/TDDFT method. Comparison of the geometrical and photophysical properties of these sensor molecules, equipped with H -, carbamoyl and phthalimino groups, provided a deep insight into the sensor–cyanide interactions. The binding energy calculation shows that all the three sensors have good selectivity to the cyanide anion. Especially, frontier molecular orbital analysis confirmed that there was a photoinduced electron transfer (PET) process in the sensor with phthalimino group upon the addition of cyanide anion. This process could cause the fluorescence change. As a result, the sensor with phthalimino group displayed several favorable sensing properties.
Collapse
Affiliation(s)
- Guang-Yue Li
- College of Chemical Engineering, Hebei United University, Tangshan 063009, P. R. China
| | - Wen-Liang Li
- Xinjiang Institute of Engineering, Urumqi 830091, P. R. China
| | - Hang Zhang
- Modern Technology and Education Centre, Hebei United University, Tangshan 063009, P. R. China
| | - Xiao-Ran Sun
- College of Chemical Engineering, Hebei United University, Tangshan 063009, P. R. China
| |
Collapse
|
27
|
Favia AD, Nicolotti O, Stefanachi A, Leonetti F, Carotti A. Computational methods for the design of potent aromatase inhibitors. Expert Opin Drug Discov 2013; 8:395-409. [DOI: 10.1517/17460441.2013.768983] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Angelo Danilo Favia
- Dipartimento di Farmacia, Università degli Studi di Bari “Aldo Moro”,
via Orabona 4, I-70125 Bari, Italy ;
- Lilly China R&D Center,
Building 8, 338 Jia Li Lue Road Zhangjiang Hi-Tech Park Pudong, 201203, Shanghai, China
| | - Orazio Nicolotti
- Dipartimento di Farmacia, Università degli Studi di Bari “Aldo Moro”,
via Orabona 4, I-70125 Bari, Italy ;
| | - Angela Stefanachi
- Dipartimento di Farmacia, Università degli Studi di Bari “Aldo Moro”,
via Orabona 4, I-70125 Bari, Italy ;
| | - Francesco Leonetti
- Dipartimento di Farmacia, Università degli Studi di Bari “Aldo Moro”,
via Orabona 4, I-70125 Bari, Italy ;
| | - Angelo Carotti
- Dipartimento di Farmacia, Università degli Studi di Bari “Aldo Moro”,
via Orabona 4, I-70125 Bari, Italy ;
| |
Collapse
|
28
|
Sgrignani J, Magistrato A. Influence of the Membrane Lipophilic Environment on the Structure and on the Substrate Access/Egress Routes of the Human Aromatase Enzyme. A Computational Study. J Chem Inf Model 2012; 52:1595-606. [DOI: 10.1021/ci300151h] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jacopo Sgrignani
- CNR-IOM-Democritos National Simulation Center c/o International Studies for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34165 Trieste
(TS), Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center c/o International Studies for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34165 Trieste
(TS), Italy
| |
Collapse
|
29
|
Barroso-Neto IL, Marques JPC, da Costa RF, Caetano EWS, Cavada BS, Gottfried C, Freire VN. Inactivation of Ovine Cyclooxygenase-1 by Bromoaspirin and Aspirin: A Quantum Chemistry Description. J Phys Chem B 2012; 116:3270-9. [DOI: 10.1021/jp206397z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ito L. Barroso-Neto
- Department of Biochemistry, Universidade Federal do Ceará, Fortaleza 60455-760, Ceará, Brazil
| | - João Paulo C. Marques
- Department of Physics, Universidade Federal do Ceará, Fortaleza 60455-760,
Ceará, Brazil
| | - Roner F. da Costa
- Department of Physics, Universidade Federal do Ceará, Fortaleza 60455-760,
Ceará, Brazil
| | - Ewerton W. S. Caetano
- Instituto
Federal de Educação, Ciência e Tecnologia do Ceará, Fortaleza 60040-531, Ceará,
Brazil
| | - Benildo S. Cavada
- Department of Biochemistry, Universidade Federal do Ceará, Fortaleza 60455-760, Ceará, Brazil
| | - Carmem Gottfried
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre
90035-003, Rio Grande do Sul, Brazil
| | - Valder N. Freire
- Department of Physics, Universidade Federal do Ceará, Fortaleza 60455-760,
Ceará, Brazil
| |
Collapse
|
30
|
Kirchmair J, Williamson MJ, Tyzack JD, Tan L, Bond PJ, Bender A, Glen RC. Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J Chem Inf Model 2012; 52:617-48. [PMID: 22339582 PMCID: PMC3317594 DOI: 10.1021/ci200542m] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Metabolism of xenobiotics remains a central challenge
for the discovery
and development of drugs, cosmetics, nutritional supplements, and
agrochemicals. Metabolic transformations are frequently related to
the incidence of toxic effects that may result from the emergence
of reactive species, the systemic accumulation of metabolites, or
by induction of metabolic pathways. Experimental investigation of
the metabolism of small organic molecules is particularly resource
demanding; hence, computational methods are of considerable interest
to complement experimental approaches. This review provides a broad
overview of structure- and ligand-based computational methods for
the prediction of xenobiotic metabolism. Current computational approaches
to address xenobiotic metabolism are discussed from three major perspectives:
(i) prediction of sites of metabolism (SOMs), (ii) elucidation of
potential metabolites and their chemical structures, and (iii) prediction
of direct and indirect effects of xenobiotics on metabolizing enzymes,
where the focus is on the cytochrome P450 (CYP) superfamily of enzymes,
the cardinal xenobiotics metabolizing enzymes. For each of these domains,
a variety of approaches and their applications are systematically
reviewed, including expert systems, data mining approaches, quantitative
structure–activity relationships (QSARs), and machine learning-based
methods, pharmacophore-based algorithms, shape-focused techniques,
molecular interaction fields (MIFs), reactivity-focused techniques,
protein–ligand docking, molecular dynamics (MD) simulations,
and combinations of methods. Predictive metabolism is a developing
area, and there is still enormous potential for improvement. However,
it is clear that the combination of rapidly increasing amounts of
available ligand- and structure-related experimental data (in particular,
quantitative data) with novel and diverse simulation and modeling
approaches is accelerating the development of effective tools for
prediction of in vivo metabolism, which is reflected by the diverse
and comprehensive data sources and methods for metabolism prediction
reviewed here. This review attempts to survey the range and scope
of computational methods applied to metabolism prediction and also
to compare and contrast their applicability and performance.
Collapse
Affiliation(s)
- Johannes Kirchmair
- Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Hong Y, Chen S. Aromatase, estrone sulfatase, and 17β-hydroxysteroid dehydrogenase: structure-function studies and inhibitor development. Mol Cell Endocrinol 2011; 340:120-6. [PMID: 20888390 PMCID: PMC3035767 DOI: 10.1016/j.mce.2010.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/15/2010] [Accepted: 09/18/2010] [Indexed: 11/23/2022]
Abstract
Aromatase, estrone sulfatase, and 17β-hydroxysteroid dehydrogenase type 1 are involved in the key steps of 17β-estradiol biosynthesis. Structure-function studies of aromatase, estrone sulfatase and 17β-hydroxysteroid dehydrogenase type 1 are important to evaluate the molecular basis of the interaction between these enzymes and their inhibitors. Selective and potent inhibitors of the three enzymes have been developed as antiproliferative agents in hormone-dependent breast carcinoma. New treatment strategies for hormone-dependent breast cancer are discussed.
Collapse
Affiliation(s)
- Yanyan Hong
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, United States
| | | |
Collapse
|
32
|
Galeazzi R, Massaccesi L. Insight into the binding interactions of CYP450 aromatase inhibitors with their target enzyme: a combined molecular docking and molecular dynamics study. J Mol Model 2011; 18:1153-66. [DOI: 10.1007/s00894-011-1144-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
|
33
|
Caporuscio F, Rastelli G, Imbriano C, Del Rio A. Structure-Based Design of Potent Aromatase Inhibitors by High-Throughput Docking. J Med Chem 2011; 54:4006-17. [DOI: 10.1021/jm2000689] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fabiana Caporuscio
- Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - Giulio Rastelli
- Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - Carol Imbriano
- Dipartimento di Biologia, Università di Modena e Reggio Emilia, Via Campi 213/D, 41100 Modena, Italy
| | - Alberto Del Rio
- Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| |
Collapse
|
34
|
Abstract
Aromatase is an enzyme that plays a critical role in the development of estrogen receptor positive breast cancer. As aromatase catalyzes the aromatization of androstenedione to estrone, a naturally occurring estrogen, it is a promising drug target for therapeutic management. The undesirable effects found in aromatase inhibitors (AIs) that are in clinical use necessitate the discovery of novel AIs with higher selectivity, less toxicity and improving potency. In this study, we elucidate the binding mode of all three generations of AI drugs to the crystal structure of aromatase by means of molecular docking. It was demonstrated that the docking protocol could reliably reproduce the interaction of aromatase with its substrate with an RMSD of 1.350 Å. The docking study revealed that polar (D309, T310, S478 and M374), aromatic (F134, F221 and W224) and non-polar (A306, A307, V370, L372 and L477) residues were important for interacting with the AIs. The insights gained from the study herein have great potential for the design of novel AIs.
Collapse
|
35
|
Stefanachi A, Favia AD, Nicolotti O, Leonetti F, Pisani L, Catto M, Zimmer C, Hartmann RW, Carotti A. Design, synthesis, and biological evaluation of imidazolyl derivatives of 4,7-disubstituted coumarins as aromatase inhibitors selective over 17-α-hydroxylase/C17-20 lyase. J Med Chem 2011; 54:1613-25. [PMID: 21341743 DOI: 10.1021/jm101120u] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design, synthesis, and biological evaluation of a series of new aromatase (AR, CYP19) inhibitors bearing an imidazole ring linked to a 7-substituted coumarin scaffold at position 4 (or 3) are reported. Many compounds exhibited an aromatase inhibitory potency in the nanomolar range along with a high selectivity over 17-α-hydroxylase/C17-20 lyase (CYP17). The most potent AR inhibitor was the 7-(3,4-difluorophenoxy)-4-imidazolylmethyl coumarin 24 endowed with an IC(50) = 47 nM. Docking simulations on a selected number of coumarin derivatives allowed the identification of the most important interactions driving the binding and clearly indicated the allowed and disallowed regions for appropriate structural modifications of coumarins and closely related heterocyclic molecular scaffolds.
Collapse
Affiliation(s)
- Angela Stefanachi
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari Aldo Moro, via Orabona 4, I-70125 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Flexibility of human cytochrome P450 enzymes: Molecular dynamics and spectroscopy reveal important function-related variations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:58-68. [DOI: 10.1016/j.bbapap.2010.07.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 07/11/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022]
|
37
|
Roy PP, Roy K. Molecular docking and QSAR studies of aromatase inhibitor androstenedione derivatives. J Pharm Pharmacol 2010; 62:1717-28. [DOI: 10.1111/j.2042-7158.2010.01154.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Objectives
Aromatase (CYP19) inhibitors have emerged as promising candidates for the treatment of estrogen-dependent breast cancer. In this study, a series of androstenedione derivatives with CYP19 inhibitory activity was subjected to a molecular docking study followed by quantitative structure–activity relationship (QSAR) analyses in search of ideal physicochemical characteristics of potential aromatase inhibitors.
Methods
The QSAR studies were carried out using both two-dimensional (topological, and structural) and three-dimesional (spatial) descriptors. We also used thermodynamic parameters along with 2D and 3D descriptors. Genetic function approximation (GFA) and genetic partial least squares (G/PLS) were used as chemometric tools for QSAR modelling.
Key findings
The docking study indicated that the important interacting amino acids in the active site were Met374, Arg115, Ile133, Ala306, Thr310, Asp309, Val370, Leu477 and Ser478. The 17-keto oxygen of the ligands is responsible for the formation of a hydrogen bond with Met374 and the remaining parts of the molecules are stabilized by the hydrophobic interactions with the non-polar amino acids. The C2 and C19 positions in the ligands are important for maintaining the appropriate orientation of the molecules in the active site. The results of docking experiments and QSAR studies supported each other.
Conclusions
The developed QSAR models indicated the importance of some Jurs parameters, structural parameters, topological branching index and E-state indices of different fragments. All the developed QSAR models were statistically significant according to the internal and external validation parameters.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
38
|
Molecular docking and QSAR study on steroidal compounds as aromatase inhibitors. Eur J Med Chem 2010; 45:5612-20. [PMID: 20926163 DOI: 10.1016/j.ejmech.2010.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/06/2010] [Accepted: 09/06/2010] [Indexed: 11/21/2022]
Abstract
In order to develop more potent, selective and less toxic steroidal aromatase (AR) inhibitors, molecular docking, 2D and 3D hybrid quantitative structure-activity relationship (QSAR) study have been conducted using topological, molecular shape, spatial, structural and thermodynamic descriptors on 32 steroidal compounds. The molecular docking study shows that one or more hydrogen bonds with MET374 are one of the essential requirements for the optimum binding of ligands. The QSAR model obtained indicates that the aromatase inhibitory activity can be enhanced by increasing SIC, SC_3_C, Jurs_WNSA_1, Jurs_WPSA_1 and decreasing CDOCKER interaction energy (ECD), IAC_Total and Shadow_XZfrac. The predicted results shows that this model has a comparatively good predictive power which can be used in prediction of activity of new steroidal aromatase inhibitors.
Collapse
|
39
|
Schyman P, Usharani D, Wang Y, Shaik S. Brain chemistry: how does P450 catalyze the O-demethylation reaction of 5-methoxytryptamine to yield serotonin? J Phys Chem B 2010; 114:7078-89. [PMID: 20405876 DOI: 10.1021/jp1008994] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory has been applied to elucidate the mechanism of the O-demethylation reaction that generates serotonin from 5-methoxytryptamine (5-MT); a process that is efficiently catalyzed by P450 CYP2D6. Two substrates, the neutral 5-MT and the protonated 5-MTH(+), were used to probe the reactivity of CYP2D6 compound I. Notably, the H-abstraction process is found to be slightly more facile for 5-MT. However, our DFT augmented by docking results show that the amino acid Glu216 in the active site holds the NH(3)(+) tail of the 5-MTH(+) substrate in an upright conformation and thereby controls the regioselectivity of the bond activation. Thus, the substrate protonation serves an important function in maximizing the yield of serotonin. This finding is in accord with experimental conclusions that 5-MTH(+) serves as the substrate for the CYP2D6 enzyme. The study further shows that the H-abstraction follows two-state reactivity (TSR), whereas the rebound path may involve more states due to the appearance of both Fe(IV) and Fe(III) electromers during the reaction of 5-MTH(+).
Collapse
Affiliation(s)
- Patric Schyman
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91940 Jerusalem, Israel
| | | | | | | |
Collapse
|
40
|
Pharmacophore modeling strategies for the development of novel nonsteroidal inhibitors of human aromatase (CYP19). Bioorg Med Chem Lett 2010; 20:3050-64. [DOI: 10.1016/j.bmcl.2010.03.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 03/27/2010] [Accepted: 03/31/2010] [Indexed: 12/17/2022]
|
41
|
Roy PP, Roy K. Docking and 3D-QSAR studies of diverse classes of human aromatase (CYP19) inhibitors. J Mol Model 2010; 16:1597-616. [DOI: 10.1007/s00894-010-0667-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/18/2010] [Indexed: 11/30/2022]
|
42
|
Dunbier AK, Hong Y, Masri S, Brown KA, Sabnis GJ, Palomares MR. Progress in aromatase research and identification of key future directions. J Steroid Biochem Mol Biol 2010; 118:311-5. [PMID: 19778609 DOI: 10.1016/j.jsbmb.2009.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/11/2009] [Indexed: 12/16/2022]
Abstract
The IX International Aromatase Conference focused upon key developments in research related to the aromatase enzyme that had occurred since the last meeting. A session took place at the conclusion of conference discussing key areas for future research and issues currently facing researchers in the field. While significant progress on understanding structural elements of the enzyme and regulatory mechanisms of both the gene and protein provides an excellent basis for development of improved aromatase inhibitors and exploration of the important problem of aromatase inhibitor resistance, significant challenges remain. Increasing the speed with which findings are translated into clinical practice and finding an appropriate balance between basic and translational research were identified as areas which require further attention before the next meeting in 2010.
Collapse
Affiliation(s)
- Anita K Dunbier
- Academic Department of Biochemistry, Royal Marsden Hospital, London SW3 6JJ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
43
|
Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: A molecular docking analysis. J Mol Model 2009; 16:311-26. [DOI: 10.1007/s00894-009-0547-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/11/2009] [Indexed: 11/25/2022]
|
44
|
Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev 2009; 30:343-75. [PMID: 19389994 DOI: 10.1210/er.2008-0016] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aromatase is the enzyme that catalyzes the conversion of androgens to estrogens. Initial studies of its enzymatic activity and function took place in an environment focused on estrogen as a component of the birth control pill. At an early stage, investigators recognized that inhibition of this enzyme could have major practical applications for treatment of hormone-dependent breast cancer, alterations of ovarian and endometrial function, and treatment of benign disorders such as gynecomastia. Two general approaches ultimately led to the development of potent and selective aromatase inhibitors. One targeted the enzyme using analogs of natural steroidal substrates to work out the relationships between structure and function. The other approach initially sought to block adrenal function as a treatment for breast cancer but led to the serendipitous finding that a nonsteroidal P450 steroidogenesis inhibitor, aminoglutethimide, served as a potent but nonselective aromatase inhibitor. Proof of the therapeutic concept of aromatase inhibition involved a variety of studies with aminoglutethimide and the selective steroidal inhibitor, formestane. The requirement for even more potent and selective inhibitors led to intensive molecular studies to identify the structure of aromatase, to development of high-sensitivity estrogen assays, and to "mega" clinical trials of the third-generation aromatase inhibitors, letrozole, anastrozole, and exemestane, which are now in clinical use in breast cancer. During these studies, unexpected findings led investigators to appreciate the important role of estrogens in males as well as in females and in multiple organs, particularly the bone and brain. These studies identified the important regulatory properties of aromatase acting in an autocrine, paracrine, intracrine, neurocrine, and juxtacrine fashion and the organ-specific enhancers and promoters controlling its transcription. The saga of these studies of aromatase and the ultimate utilization of inhibitors as highly effective treatments of breast cancer and for use in reproductive disorders serves as the basis for this first Endocrine Reviews history manuscript.
Collapse
Affiliation(s)
- R J Santen
- University of Virginia Health System, Division of Endocrinology, P.O. Box 801416, Charlottesville, Virginia 22908, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Aromatase is an estrogen synthetase. Estrogens are female sex hormones involved in the development and growth of breast tumors. Elucidation of the structure-function relationship of aromatase has been of significant interest since its inhibitors have shown great promise in fighting breast cancer. Aromatase belongs to the cytochrome P450 family and forms an electron-transfer complex with its partner, NADPH-cytochrome P450 reductase. Because of the membrane-bound character and heme-binding instability, no crystal structure of aromatase has been reported so far. Much remains to be investigated, including the 3-dimensional structure of aromatase, interaction between aromatase and reductase, catalytic mechanism of estrogen synthesis by aromatase, and the binding mechanism of aromatase inhibitors. This review presents current knowledge about structural and functional characteristics of aromatase to address unsolved mysteries about this enzyme.
Collapse
Affiliation(s)
- Yanyan Hong
- Department of Surgical Research, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
46
|
Cepa MMDS, Tavares da Silva EJ, Correia-da-Silva G, Roleira FMF, Teixeira NAA. Synthesis and biochemical studies of 17-substituted androst-3-enes and 3,4-epoxyandrostanes as aromatase inhibitors. Steroids 2008; 73:1409-15. [PMID: 18691607 DOI: 10.1016/j.steroids.2008.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/02/2008] [Accepted: 07/09/2008] [Indexed: 11/26/2022]
Abstract
A series of 5alpha-androst-3-enes and 3alpha,4alpha-epoxy-5alpha-androstanes were synthesized and tested for their abilities to inhibit aromatase in human placental microsomes. In these series the original C-17 carbonyl group was replaced by hydroxyl, acetyl and hydroxyimine groups. Inhibition kinetic analysis on the most potent steroid of these series revealed that it inhibits the enzyme in a competitive manner (IC(50)=6.5 microM). The achieved data pointed out the importance of the C-17 carbonyl group in the D-ring of the studied steroids as a structural feature required to reach maximum aromatase inhibitory activity. Further, at least one carbonyl group (C-3 or C-17) seems to be essential to effective aromatase inhibition.
Collapse
Affiliation(s)
- Margarida M D S Cepa
- Biochemistry Laboratory, Faculty of Pharmacy, University of Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
| | | | | | | | | |
Collapse
|
47
|
Neves MAC, Dinis TCP, Colombo G, Sá e Melo ML. Fast Three Dimensional Pharmacophore Virtual Screening of New Potent Non-Steroid Aromatase Inhibitors. J Med Chem 2008; 52:143-50. [DOI: 10.1021/jm800945c] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marco A. C. Neves
- Centro de Estudos Farmacêuticos, Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295, Coimbra, Portugal, Centro de Neurociências, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295, Coimbra, Portugal, and Istituto di Chimica del Riconoscimento Molecolare, CNR, 20131, Milano, Italy
| | - Teresa C. P. Dinis
- Centro de Estudos Farmacêuticos, Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295, Coimbra, Portugal, Centro de Neurociências, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295, Coimbra, Portugal, and Istituto di Chimica del Riconoscimento Molecolare, CNR, 20131, Milano, Italy
| | - Giorgio Colombo
- Centro de Estudos Farmacêuticos, Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295, Coimbra, Portugal, Centro de Neurociências, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295, Coimbra, Portugal, and Istituto di Chimica del Riconoscimento Molecolare, CNR, 20131, Milano, Italy
| | - M. Luisa Sá e Melo
- Centro de Estudos Farmacêuticos, Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295, Coimbra, Portugal, Centro de Neurociências, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295, Coimbra, Portugal, and Istituto di Chimica del Riconoscimento Molecolare, CNR, 20131, Milano, Italy
| |
Collapse
|
48
|
Cepa M, Correia-da-Silva G, Tavares da Silva EJ, Roleira FMF, Hong Y, Chen S, Teixeira NA. Molecular mechanisms of aromatase inhibition by new A, D-ring modified steroids. Biol Chem 2008; 389:1183-91. [PMID: 18713005 DOI: 10.1515/bc.2008.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A recent approach for treatment and prevention of estrogen-dependent breast cancer focuses on the inhibition of aromatase, the enzyme that catalyzes the final step of estrogen biosynthesis. Some synthetic steroids, such as formestane and exemestane, resembling the natural enzyme substrate androstenedione, revealed to be potent and useful aromatase inhibitors (AIs) and were approved for the treatment of estrogen-dependent breast cancer in postmenopausal women. Recently, we found that five newly synthesized steroids with chemical features in the A- and D-rings considered important for drug-receptor interaction efficiently inhibit aromatase derived from human placental microsomes. In this work, these steroids showed a similar pattern of anti-aromatase activity in several aromatase-expressing cell lines. 5alpha-androst-3-en-17-one and 3alpha,4alpha-epoxy-5alpha-androstan-17-one were revealed to be the most potent inhibitors. These compounds induced a time-dependent inhibition of aromatase, showing to be irreversible AIs. The specific interactions of these compounds with aromatase active sites were further demonstrated by site-directed mutagenesis studies and evaluated by computer-aided molecular modeling. Both compounds were able to suppress hormone-dependent proliferation of MCF-7aro cells in a dose-dependent manner. These findings are important for the elucidation of a structure-activity relationship on aromatase, which may help in the development of new AIs.
Collapse
Affiliation(s)
- Margarida Cepa
- Serviço de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
49
|
Paoletta S, Steventon G, Wildeboer D, Ehrman T, Hylands P, Barlow D. Screening of herbal constituents for aromatase inhibitory activity. Bioorg Med Chem 2008; 16:8466-70. [DOI: 10.1016/j.bmc.2008.08.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 08/05/2008] [Accepted: 08/13/2008] [Indexed: 11/30/2022]
|
50
|
Castellano S, Stefancich G, Ragno R, Schewe K, Santoriello M, Caroli A, Hartmann RW, Sbardella G. CYP19 (aromatase): Exploring the scaffold flexibility for novel selective inhibitors. Bioorg Med Chem 2008; 16:8349-58. [DOI: 10.1016/j.bmc.2008.08.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 08/09/2008] [Accepted: 08/22/2008] [Indexed: 10/21/2022]
|