1
|
Shegay PV, Shatova OP, Zabolotneva AA, Shestopalov AV, Kaprin AD. Moonlight functions of glycolytic enzymes in cancer. Front Mol Biosci 2023; 10:1076138. [PMID: 37449059 PMCID: PMC10337784 DOI: 10.3389/fmolb.2023.1076138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Since an extensive genome research has started, basic principle "one gene-one protein-one function" was significantly revised. Many proteins with more than one function were identified and characterized as "moonlighting" proteins, which activity depend not only on structural peculiarities but also on compartmentation and metabolic environment. It turned out that "housekeeping" glycolytic enzymes show important moonlight functions such as control of development, proliferation, apoptosis, migration, regulation of transcription and cell signaling. Glycolytic enzymes emerged very early in evolution and because of the limited content of genomes, they could be used as ancient regulators for intercellular and intracellular communication. The multifunctionality of the constitutively expressed enzymes began to serve cancer cell survival and growth. In the present review we discuss some moonlight functions of glycolytic enzymes that important for malignant transformation and tumor growth.
Collapse
Affiliation(s)
- Petr V. Shegay
- Federal State Budget Institution, National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Olga P. Shatova
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Biochemistry Department, Peoples’ Friendship University of Russia, Moscow, Russia
| | - Anastasia A. Zabolotneva
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- National Medical Research Centre for Endocrinology, Laboratory of Biochemistry of Signaling Pathways, Moscow, Russia
| | - Aleksandr V. Shestopalov
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- National Medical Research Centre for Endocrinology, Laboratory of Biochemistry of Signaling Pathways, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei D. Kaprin
- Federal State Budget Institution, National Medical Research Radiology Center of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Biochemistry Department, Peoples’ Friendship University of Russia, Moscow, Russia
| |
Collapse
|
2
|
Roosterman D, Cottrell GS. Discovery of a second citric acid cycle complex. Heliyon 2023; 9:e15968. [PMID: 37251852 PMCID: PMC10209337 DOI: 10.1016/j.heliyon.2023.e15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Together, Nobel Prize honoured work, mathematics, physics and the laws of nature have drawn a concept of clockwise cycling carboxylic acids in Krebs' Citric Acid Cycle. A Citric Acid Cycle complex is defined by specific substrate, product and regulation. Recently, the Citric Acid Cycle 1.1 complex was introduced as an NAD+-regulated cycle with the substrate, lactic acid and the product, malic acid. Here, we introduce the concept of the Citric Acid Cycle 2.1 complex as an FAD-regulated cycle with the substrate, malic acid and the products, succinic acid or citric acid. The function of the Citric Acid Cycle 2.1 complex is to balance stress situations within the cell. We propose that the biological function of Citric Acid Cycle 2.1 in muscles is to accelerate recovery of ATP; whereas in white tissue adipocytes our testing of the theoretical concept led to the storage of energy as lipids.
Collapse
|
3
|
Shatova OP, Shegay PV, Zabolotneva AA, Shestopalov AV, Kaprin AD. Evolutionary Acquisition of Multifunctionality by Glycolytic Enzymes. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s002209302301009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
4
|
Roosterman D, Cottrell GS. Rethinking the Citric Acid Cycle: Connecting Pyruvate Carboxylase and Citrate Synthase to the Flow of Energy and Material. Int J Mol Sci 2021; 22:ijms22020604. [PMID: 33435350 PMCID: PMC7827294 DOI: 10.3390/ijms22020604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
In 1937, Sir H. A Krebs first published the Citric Acid Cycle, a unidirectional cycle with carboxylic acids. The original concept of the Citric Acid Cycle from Krebs’ 1953 Nobel Prize lecture illustrates the unidirectional degradation of lactic acid to water, carbon dioxide and hydrogen. Here, we add the heart lactate dehydrogenase•proton-linked monocarboxylate transporter 1 complex, connecting the original Citric Acid Cycle to the flow of energy and material. The heart lactate dehydrogenase•proton-linked monocarboxylate transporter 1 complex catalyses the first reaction of the Citric Acid Cycle, the oxidation of lactate to pyruvate, and thus secures the provision of pyruvic acid. In addition, we modify Krebs’ original concept by feeding the cycle with oxaloacetic acid. Our concept enables the integration of anabolic processes and allows adaption of the organism to recover ATP faster.
Collapse
|
5
|
Roosterman D, Cottrell GS. The two-cell model of glucose metabolism: a hypothesis of schizophrenia. Mol Psychiatry 2021; 26:1738-1747. [PMID: 33402704 PMCID: PMC8440173 DOI: 10.1038/s41380-020-00980-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a chronic and severe mental disorder that affects over 20 million people worldwide. Common symptoms include distortions in thinking, perception, emotions, language, and self awareness. Different hypotheses have been proposed to explain the development of schizophrenia, however, there are no unifying features between the proposed hypotheses. Schizophrenic patients have perturbed levels of glucose in their cerebrospinal fluid, indicating a disturbance in glucose metabolism. We have explored the possibility that disturbances in glucose metabolism can be a general mechanism for predisposition and manifestation of the disease. We discuss glucose metabolism as a network of signaling pathways. Glucose and glucose metabolites can have diverse actions as signaling molecules, such as regulation of transcription factors, hormone and cytokine secretion and activation of neuronal cells, such as microglia. The presented model challenges well-established concepts in enzyme kinetics and glucose metabolism. We have developed a 'two-cell' model of glucose metabolism, which can explain the effects of electroconvulsive therapy and the beneficial and side effects of olanzapine treatment. Arrangement of glycolytic enzymes into metabolic signaling complexes within the 'two hit' hypothesis, allows schizophrenia to be formulated in two steps. The 'first hit' is the dysregulation of the glucose signaling pathway. This dysregulation of glucose metabolism primes the central nervous system for a pathological response to a 'second hit' via the astrocytic glycogenolysis signaling pathway.
Collapse
Affiliation(s)
- Dirk Roosterman
- Ruhr Universität Bochum, LWL-Hospital of Psychiatry, Bochum, Germany.
| | - Graeme Stuart Cottrell
- grid.9435.b0000 0004 0457 9566School of Pharmacy, University of Reading, Reading, RG6 6AP UK
| |
Collapse
|
6
|
O'Brien CM, Mulukutla BC, Mashek DG, Hu WS. Regulation of Metabolic Homeostasis in Cell Culture Bioprocesses. Trends Biotechnol 2020; 38:1113-1127. [PMID: 32941791 DOI: 10.1016/j.tibtech.2020.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
Mammalian cells are the main tool for the production of therapeutic proteins, viruses for gene therapy, and cells for cell therapy. In production processes cell metabolism is the main driver that causes changes in the growth environment and affects productivity and product quality. Of all nutrients, glucose has the most prominent impact on bioprocesses. We summarize recent findings on the regulation of glucose and energy metabolism in cultured cells. Local allosteric regulations and post-translational modifications of enzymes in metabolic networks interplay with global signaling and transcriptional regulation. These regulatory networks sustain homeostasis across the cytosolic and mitochondrial compartments. Understanding the regulation of glucose metabolism and metabolic state is crucial for enhancing process productivity and product quality.
Collapse
Affiliation(s)
- Conor M O'Brien
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Substrate Channeling via a Transient Protein-Protein Complex: The case of D-Glyceraldehyde-3-Phosphate Dehydrogenase and L-Lactate Dehydrogenase. Sci Rep 2020; 10:10404. [PMID: 32591631 PMCID: PMC7320145 DOI: 10.1038/s41598-020-67079-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Substrate channeling studies have frequently failed to provide conclusive results due to poor understanding of this subtle phenomenon. We analyzed the mechanism of NADH-channeling from D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to L-lactate Dehydrogenase (LDH) using enzymes from different cells. Enzyme kinetics studies showed that LDH activity with free NADH and GAPDH-NADH complex always take place in parallel. The channeling is observed only in assays that mimic cytosolic conditions where free NADH concentration is negligible and the GAPDH-NADH complex is dominant. Molecular dynamics and protein-protein interaction studies showed that LDH and GAPDH can form a leaky channeling complex only at the limiting NADH concentrations. Surface calculations showed that positive electric field between the NAD(H) binding sites on LDH and GAPDH tetramers can merge in the LDH-GAPDH complex. NAD(H)-channeling within the LDH-GAPDH complex can be an extension of NAD(H)-channeling within each tetramer. In the case of a transient LDH-(GAPDH-NADH) complex, the relative contribution from the channeled and the diffusive paths depends on the overlap between the off-rates for the LDH-(GAPDH-NADH) complex and the GAPDH-NADH complex. Molecular evolution or metabolic engineering protocols can exploit substrate channeling for metabolic flux control by fine-tuning substrate-binding affinity for the key enzymes in the competing reaction paths.
Collapse
|
8
|
Roosterman D, Cottrell GS. Astrocytes and neurons communicate via a monocarboxylic acid shuttle. AIMS Neurosci 2020; 7:94-106. [PMID: 32607414 PMCID: PMC7321766 DOI: 10.3934/neuroscience.2020007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023] Open
Abstract
Since formulation of the Astrocyte-Neuron Lactate Shuttle (ANLS) hypothesis in 1994, the hypothesis has provoked criticism and debate. Our review does not criticise, but rather integrates experimental data characterizing proton-linked monocarboxylate transporters (MCTs) into the ANLS. MCTs have wide substrate specificity and are discussed to be in protein complex with a proton donor (PD). We particularly focus on the proton-driven transfer of l-lactic acid (l-lacH) and pyruvic acid (pyrH), were PDs link MCTs to a flow of energy. The precise nature of the PD predicts the activity and catalytic direction of MCTs. By doing so, we postulate that the MCT4·phosphoglycerate kinase complex exports and at the same time in the same astrocyte, MCT1·carbonic anhydrase II complex imports monocarboxylic acids. Similarly, neuronal MCT2 preferentially imports pyrH. The repertoire of MCTs in astrocytes and neurons allows them to communicate via monocarboxylic acids. A change in imported pyrH/l-lacH ratio in favour of l-lacH encodes signals stabilizing the transit of glucose from astrocytes to neurons. The presented astrocyte neuron communication hypothesis has the potential to unite the community by suggesting that the exchange of monocarboxylic acids paves the path of glucose provision.
Collapse
Affiliation(s)
- Dirk Roosterman
- Ruhr Universität Bochum, LWL-Hospital of Psychiatry, Bochum, Germany
| | | |
Collapse
|
9
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
10
|
Gaude E, Schmidt C, Gammage PA, Dugourd A, Blacker T, Chew SP, Saez-Rodriguez J, O'Neill JS, Szabadkai G, Minczuk M, Frezza C. NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction. Mol Cell 2019; 69:581-593.e7. [PMID: 29452638 PMCID: PMC5823973 DOI: 10.1016/j.molcel.2018.01.034] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/12/2017] [Accepted: 01/25/2018] [Indexed: 11/27/2022]
Abstract
The bioenergetics and molecular determinants of the metabolic response to mitochondrial dysfunction are incompletely understood, in part due to a lack of appropriate isogenic cellular models of primary mitochondrial defects. Here, we capitalize on a recently developed cell model with defined levels of m.8993T>G mutation heteroplasmy, mTUNE, to investigate the metabolic underpinnings of mitochondrial dysfunction. We found that impaired utilization of reduced nicotinamide adenine dinucleotide (NADH) by the mitochondrial respiratory chain leads to cytosolic reductive carboxylation of glutamine as a new mechanism for cytosol-confined NADH recycling supported by malate dehydrogenase 1 (MDH1). We also observed that increased glycolysis in cells with mitochondrial dysfunction is associated with increased cell migration in an MDH1-dependent fashion. Our results describe a novel link between glycolysis and mitochondrial dysfunction mediated by reductive carboxylation of glutamine.
Collapse
Affiliation(s)
- Edoardo Gaude
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Christina Schmidt
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Payam A Gammage
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Aurelien Dugourd
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Blacker
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Sew Peak Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 2QH, UK
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 2QH, UK
| | - Gyorgy Szabadkai
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Department of Biomedical Sciences, University of Padua and CNR Neuroscience Institute, Padua 35121, Italy; The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.
| |
Collapse
|
11
|
Roosterman D, Meyerhof W, Cottrell GS. Proton Transport Chains in Glucose Metabolism: Mind the Proton. Front Neurosci 2018; 12:404. [PMID: 29962930 PMCID: PMC6014028 DOI: 10.3389/fnins.2018.00404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/25/2018] [Indexed: 01/11/2023] Open
Abstract
The Embden-Meyerhof-Parnas (EMP) pathway comprises eleven cytosolic enzymes interacting to metabolize glucose to lactic acid [CH3CH(OH)COOH]. Glycolysis is largely considered as the conversion of glucose to pyruvate (CH3COCOO-). We consider glycolysis to be a cellular process and as such, transporters mediating glucose uptake and lactic acid release and enable the flow of metabolites through the cell, must be considered as part of the EMP pathway. In this review, we consider the flow of metabolites to be coupled to a flow of energy that is irreversible and sufficient to form ordered structures. This latter principle is highlighted by discussing that lactate dehydrogenase (LDH) complexes irreversibly reduce pyruvate/H+ to lactate [CH3CH(OH)COO-], or irreversibly catalyze the opposite reaction, oxidation of lactate to pyruvate/H+. However, both LDH complexes are considered to be driven by postulated proton transport chains. Metabolism of glucose to two lactic acids is introduced as a unidirectional, continuously flowing pathway. In an organism, cell membrane-located proton-linked monocarboxylate transporters catalyze the final step of glycolysis, the release of lactic acid. Consequently, both pyruvate and lactate are discussed as intermediate products of glycolysis and substrates of regulated crosscuts of the glycolytic flow.
Collapse
Affiliation(s)
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | | |
Collapse
|
12
|
Hsu HH, Araki M, Mochizuki M, Hori Y, Murata M, Kahar P, Yoshida T, Hasunuma T, Kondo A. A Systematic Approach to Time-series Metabolite Profiling and RNA-seq Analysis of Chinese Hamster Ovary Cell Culture. Sci Rep 2017; 7:43518. [PMID: 28252038 PMCID: PMC5333161 DOI: 10.1038/srep43518] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/27/2017] [Indexed: 11/11/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput "omics" methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it possible to identify key genes and metabolites in antibody production. Systematic omics approaches using different types of time-series data are expected to further enhance understanding of cellular behaviours and molecular networks for rational design of CHO cells. This study developed a systematic method for obtaining and analysing time-dependent intracellular and extracellular metabolite profiles, RNA-seq data (enzymatic mRNA levels) and cell counts from CHO cell cultures to capture an overall view of the CHO central metabolic pathway (CMP). We then calculated correlation coefficients among all the profiles and visualised the whole CMP by heatmap analysis and metabolic pathway mapping, to classify genes and metabolites together. This approach provides an efficient platform to identify key genes and metabolites in CHO cell culture.
Collapse
Affiliation(s)
- Han-Hsiu Hsu
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Michihiro Araki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masao Mochizuki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yoshimi Hori
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masahiro Murata
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takanobu Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
13
|
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been recognized as an important enzyme for energy metabolism and the production of ATP and pyruvate through anaerobic glycolysis in the cytoplasm. Recent studies have shown that GAPDH has multiple functions independent of its role in energy metabolism. Although increased GAPDH gene expression and enzymatic function is associated with cell proliferation and tumourigenesis, conditions such as oxidative stress impair GAPDH catalytic activity and lead to cellular aging and apoptosis. The mechanism(s) underlying the effects of GAPDH on cellular proliferation remains unclear, yet much evidence has been accrued that demonstrates a variety of interacting partners for GAPDH, including proteins, various RNA species and telomeric DNA. The present mini review summarizes recent findings relating to the extraglycolytic functions of GAPDH and highlights the significant role this enzyme plays in regulating both cell survival and apoptotic death.
Collapse
Affiliation(s)
- Craig Nicholls
- Molecular Signalling Laboratory, Murdoch Childrens Research Institute, Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
14
|
Rodacka A, Serafin E, Bubinski M, Krokosz A, Puchala M. The influence of oxygen on radiation-induced structural and functional changes in glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase. Radiat Phys Chem Oxf Engl 1993 2012. [DOI: 10.1016/j.radphyschem.2012.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Zahid S, Oellerich M, Asif AR, Ahmed N. Phosphoproteome profiling of substantia nigra and cortex regions of Alzheimer's disease patients. J Neurochem 2012; 121:954-63. [PMID: 22436009 DOI: 10.1111/j.1471-4159.2012.07737.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and cognitive impairment usually characterized by widespread neurodegeneration throughout the association cortex, limbic system and hippocampus. Aberrant protein phosphorylation is a defining pathological hallmark of AD and implicated in the dysregulation of major cellular processes through highly dynamic and complex signaling pathways. Here in, we demonstrate 81 proteins, of 600 spots selected, unambiguously identified as phosphorylated, providing a partial phosphoproteome profile of AD substantia nigra and cortex and respective control brain regions. More importantly, abnormal phosphorylation signal intensity of nine physiologically important proteins observed can profoundly affect cell metabolism, signal transduction, cytoskeleton integration, and synaptic function and accounts for biological and morphological alterations. Our studies employed two-dimensional gel electrophoresis for protein separation, Pro-Q(®) Diamond phosphoprotein staining and electrospray ionization quadrupole time of flight tandem MS for protein identification. NetPhosk 1.0 is used for the confirmation of protein modification status as well known/putative phosphoproteins. A further insight into the links among the identified phosphoproteins and functional roles STRING 8.3, KEGG and REACTOME pathway databases were applied. The present quantitative phosphoproteomic analysis can be supportive in establishing a broad database of potential protein targets of abnormal phosphorylation in AD brain.
Collapse
Affiliation(s)
- Saadia Zahid
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | | | | | | |
Collapse
|
16
|
Zhang YHP. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 2011; 29:715-25. [PMID: 21672618 DOI: 10.1016/j.biotechadv.2011.05.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/19/2011] [Accepted: 05/30/2011] [Indexed: 12/25/2022]
Abstract
Substrate channeling is a process of transferring the product of one enzyme to an adjacent cascade enzyme or cell without complete mixing with the bulk phase. Such phenomena can occur in vivo, in vitro, or ex vivo. Enzyme-enzyme or enzyme-cell complexes may be static or transient. In addition to enhanced reaction rates through substrate channeling in complexes, numerous potential benefits of such complexes are protection of unstable substrates, circumvention of unfavorable equilibrium and kinetics imposed, forestallment of substrate competition among different pathways, regulation of metabolic fluxes, mitigation of toxic metabolite inhibition, and so on. Here we review numerous examples of natural and synthetic complexes featuring substrate channeling. Constructing synthetic in vivo, in vitro or ex vivo complexes for substrate channeling would have great biotechnological potentials in metabolic engineering, multi-enzyme-mediated biocatalysis, and cell-free synthetic pathway biotransformation (SyPaB).
Collapse
Affiliation(s)
- Y-H Percival Zhang
- Biological Systems Engineering Department, 210-A Seitz Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
17
|
Odet F, Gabel SA, Williams J, London RE, Goldberg E, Eddy EM. Lactate dehydrogenase C and energy metabolism in mouse sperm. Biol Reprod 2011; 85:556-64. [PMID: 21565994 DOI: 10.1095/biolreprod.111.091546] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We demonstrated previously that disruption of the germ cell-specific lactate dehydrogenase C gene (Ldhc) led to male infertility due to defects in sperm function, including a rapid decline in sperm ATP levels, a decrease in progressive motility, and a failure to develop hyperactivated motility. We hypothesized that lack of LDHC disrupts glycolysis by feedback inhibition, either by causing a defect in renewal of the NAD(+) cofactor essential for activity of glyceraldehyde 3-phosphate dehydrogenase, sperm (GAPDHS), or an accumulation of pyruvate. To test these hypotheses, nuclear magnetic resonance analysis was used to follow the utilization of labeled substrates in real time. We found that in sperm lacking LDHC, glucose consumption was disrupted, but the NAD:NADH ratio and pyruvate levels were unchanged, and pyruvate was rapidly metabolized to lactate. Moreover, the metabolic disorder induced by treatment with the lactate dehydrogenase (LDH) inhibitor sodium oxamate was different from that caused by lack of LDHC. This supported our earlier conclusion that LDHA, an LDH isozyme present in the principal piece of the flagellum, is responsible for the residual LDH activity in sperm lacking LDHC, but suggested that LDHC has an additional role in the maintenance of energy metabolism in sperm. By coimmunoprecipitation coupled with mass spectrometry, we identified 27 proteins associated with LDHC. A majority of these proteins are implicated in ATP synthesis, utilization, transport, and/or sequestration. This led us to hypothesize that in addition to its role in glycolysis, LDHC is part of a complex involved in ATP homeostasis that is disrupted in sperm lacking LDHC.
Collapse
Affiliation(s)
- Fanny Odet
- Laboratories of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ohlendieck K. Proteomics of skeletal muscle glycolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2089-101. [DOI: 10.1016/j.bbapap.2010.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/01/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
|
19
|
Echigoya Y, Sato T, Itou T, Endo H, Sakai T. Molecular characterization and expression pattern of the equine lactate dehydrogenase A and B genes. Gene 2009; 447:40-50. [DOI: 10.1016/j.gene.2009.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/18/2009] [Accepted: 07/22/2009] [Indexed: 11/16/2022]
|
20
|
Dai RP, Yu FX, Goh SR, Chng HW, Tan YL, Fu JL, Zheng L, Luo Y. Histone 2B (H2B) Expression Is Confined to a Proper NAD+/NADH Redox Status. J Biol Chem 2008; 283:26894-901. [DOI: 10.1074/jbc.m804307200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|