1
|
Rodriguez JB, Szajnman SH. An updated review of chemical compounds with anti-Toxoplasma gondii activity. Eur J Med Chem 2023; 262:115885. [PMID: 37871407 DOI: 10.1016/j.ejmech.2023.115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.
Collapse
Affiliation(s)
- Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina.
| | - Sergio H Szajnman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Zhang H, Kim S, Im W. Practical Guidance for Consensus Scoring and Force Field Selection in Protein-Ligand Binding Free Energy Simulations. J Chem Inf Model 2022; 62:6084-6093. [PMID: 36399655 PMCID: PMC9772090 DOI: 10.1021/acs.jcim.2c01115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The advances in ligand binding affinity prediction have been fostered by system generation tools and improved force fields (FFs). CHARMM-GUI Free Energy Calculator provides input and postprocessing scripts for AMBER-TI free energy calculations with various FFs. In this study, we used 12 different FF combinations (ff14SB and ff19SB for protein, GAFF2.2 and OpenFF for ligand, and TIP3P, TIP4PEW, and OPC for water) to calculate relative binding free energies (ΔΔGbind) for 80 alchemical transformations (among the JACS benchmark set) with different numbers of λ windows (12 or 21) and simulation times (1, 5, or 10 ns). Our results show that 12 λ windows and 5 ns simulation time for each window are sufficient to obtain reliable ΔΔGbind with 4 independent runs for the current benchmark set. While there is no statistically noticeable performance difference among 12 different FF combinations compared to the experimental values, a combination of ff14SB + GAFF2.2 + TIP3P FFs appears to be best with a mean unsigned error of 0.87 [0.69, 1.07] kcal/mol, a root-mean-square error of 1.22 [0.94, 1.50] kcal/mol, a Pearson's correlation of 0.64 [0.52, 0.76], a Spearman's correlation of 0.73 [0.58, 0.83], and a Kendell's correlation of 0.54 [0.42, 0.64]. This large-scale ΔΔGbind calculation study provides useful information about ΔΔGbind prediction with different AMBER FF combinations and presents valuable suggestions for FF selection in AMBER-TI ΔΔGbind calculations.
Collapse
Affiliation(s)
- Han Zhang
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Seonghoon Kim
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA,Corresponding Author:
| |
Collapse
|
3
|
Li GB, Ji S, Yang LL, Zhang RJ, Chen K, Zhong L, Ma S, Yang SY. LEADOPT: An automatic tool for structure-based lead optimization, and its application in structural optimizations of VEGFR2 and SYK inhibitors. Eur J Med Chem 2015; 93:523-38. [DOI: 10.1016/j.ejmech.2015.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/03/2015] [Accepted: 02/12/2015] [Indexed: 01/07/2023]
|
4
|
Yilmaz S, Altinkanat-Gelmez G, Bolelli K, Guneser-Merdan D, Ufuk Over-Hasdemir M, Aki-Yalcin E, Yalcin I. Binding site feature description of 2-substituted benzothiazoles as potential AcrAB-TolC efflux pump inhibitors in E. coli. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:853-871. [PMID: 26559566 DOI: 10.1080/1062936x.2015.1106581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The resistance-nodulation-division (RND) family efflux pumps are important in the antibiotic resistance of Gram-negative bacteria. However, although a number of bacterial RND efflux pump inhibitors have been developed, there has been no clinically available RND efflux pump inhibitor to date. A set of BSN-coded 2-substituted benzothiazoles were tested alone and in combinations with ciprofloxacin (CIP) against the AcrAB-TolC overexpressor Escherichia coli AG102 clinical strain. The results indicated that the BSN compounds did not show intrinsic antimicrobial activity when tested alone. However, when used in combinations with CIP, a reversal in the antibacterial activity of CIP with up to 10-fold better MIC values was observed. In order to describe the binding site features of these BSN compounds with AcrB, docking studies were performed using the CDocker method. The performed docking poses and the calculated binding energy scores revealed that the tested compounds BSN-006, BSN-023, and BSN-004 showed significant binding interactions with the phenylalanine-rich region in the distal binding site of the AcrB binding monomer. Moreover, the tested compounds BSN-006 and BSN-023 possessed stronger binding energies than CIP, verifying that BSN compounds are acting as the putative substrates of AcrB.
Collapse
Affiliation(s)
- S Yilmaz
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - G Altinkanat-Gelmez
- b Medical Microbiology Department, Faculty of Medicine , Marmara University , Istanbul , Turkey
| | - K Bolelli
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - D Guneser-Merdan
- b Medical Microbiology Department, Faculty of Medicine , Marmara University , Istanbul , Turkey
| | - M Ufuk Over-Hasdemir
- b Medical Microbiology Department, Faculty of Medicine , Marmara University , Istanbul , Turkey
| | - E Aki-Yalcin
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - I Yalcin
- a Pharmaceutical Chemistry Department, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| |
Collapse
|
5
|
Abstract
Structure-based drug design has become an essential tool for rapid lead discovery and optimization. As available structural information has increased, researchers have become increasingly aware of the importance of protein flexibility for accurate description of the native state. Typical protein-ligand docking efforts still rely on a single rigid receptor, which is an incomplete representation of potential binding conformations of the protein. These rigid docking efforts typically show the best performance rates between 50 and 75%, while fully flexible docking methods can enhance pose prediction up to 80-95%. This review examines the current toolbox for flexible protein-ligand docking and receptor surface mapping. Present limitations and possibilities for future development are discussed.
Collapse
Affiliation(s)
- Katrina W. Lexa
- Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | - Heather A. Carlson
- Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| |
Collapse
|
6
|
Rodriguez JB, Szajnman SH. New antibacterials for the treatment of toxoplasmosis; a patent review. Expert Opin Ther Pat 2012; 22:311-33. [PMID: 22404108 DOI: 10.1517/13543776.2012.668886] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Toxoplasma gondii is an opportunistic protozoan parasite responsible for toxoplasmosis. T. gondii is able to infect a wide range of hosts, particularly humans and warm-blooded animals. Toxoplasmosis can be considered as one of the most prevalent parasitic diseases affecting close to one billion people worldwide, but its current chemotherapy is still deficient and is only effective in the acute phase of the disease. AREAS COVERED This review covers different approaches to toxoplasmosis chemotherapy focused on the metabolic differences between the host and the parasite. Selective action on different targets such as the isoprenoid pathway, dihydrofolate reductase, T. gondii adenosine kinase, different antibacterials, T. gondii histone deacetylase and calcium-dependent protein kinases is discussed. EXPERT OPINION A new and safe chemotherapy is needed, as T. gondii causes serious morbidity and mortality in pregnant women and immunodeficient patients undergoing chemotherapy. A particular drawback of the available treatments is the lack of efficacy against the tissue cyst of the parasite. During this review a broad scope of several attractive targets for drug design have been presented. In this context, the isoprenoid pathway, dihydrofolate reductase, T. gondii histone deacetylase are promising molecular targets.
Collapse
Affiliation(s)
- Juan Bautista Rodriguez
- Universidad de Buenos Aires, Química Orgánica & UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Pab 2, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina.
| | | |
Collapse
|
7
|
Ivetac A, McCammon JA. Molecular recognition in the case of flexible targets. Curr Pharm Des 2011; 17:1663-71. [PMID: 21619526 DOI: 10.2174/138161211796355056] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/05/2011] [Indexed: 11/22/2022]
Abstract
A protein's flexibility is well recognized to underlie its capacity to engage in critical functions, such as signal transduction, biomolecular transport and biochemical reactivity. Molecular recognition is also tightly linked to the dynamics of the binding partners, yet protein flexibility has largely been ignored by the growing field of structure-based drug design (SBDD). In combination with experimentally determined structures, a number of computational methods have been proposed to model protein movements, which may be important for small molecule binding. Such techniques have the ability to expose new binding site conformations, which may in turn recognize and lead to the discovery of more potent and selective drugs through molecular docking. In this article, we discuss various methods and focus on the Relaxed Complex Scheme (RCS), which uses Molecular Dynamics (MD) simulations to model full protein flexibility and enhance virtual screening programmes. We review practical applications of the RCS and use a recent study of the HIV-1 reverse transcriptase to illustrate the various phases of the scheme. We also discuss some encouraging developments, aimed at addressing current weaknesses of the RCS.
Collapse
Affiliation(s)
- Anthony Ivetac
- Department of Chemistry and Biochemistry University of California San Diego, La Jolla, CA 92093-0365, USA.
| | | |
Collapse
|
8
|
Pistarà V, Rescifina A, Punzo F, Greco G, Barbera V, Corsaro A. Design, Synthesis, Molecular Docking and Crystal Structure Prediction of New Azasugar Analogues of α-Glucosidase Inhibitors. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100832] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Nannemann DP, Kaufmann KW, Meiler J, Bachmann BO. Design and directed evolution of a dideoxy purine nucleoside phosphorylase. Protein Eng Des Sel 2010; 23:607-16. [PMID: 20525731 DOI: 10.1093/protein/gzq033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Purine nucleoside phosphorylase (PNP) catalyzes the synthesis and phosphorolysis of purine nucleosides, interconverting nucleosides with their corresponding purine base and ribose-1-phosphate. While PNP plays significant roles in human and pathogen physiology, we are interested in developing PNP as a catalyst for the formation of nucleoside analog drugs of clinical relevance. Towards this aim, we describe the engineering of human PNP to accept 2',3'-dideoxyinosine (ddI, Videx((R))) as a substrate for phosphorolysis using a combination of site-directed mutagenesis and directed evolution. In human PNP, we identified a single amino acid, Tyr-88, as a likely modulator of ribose selectivity. RosettaLigand was employed to calculate binding energies for substrate and substrate analog transition state complexes for single mutants of PNP where Tyr-88 was replaced with another amino acid. In parallel, these mutants were generated by site-directed mutagenesis, expressed and purified. A tyrosine to phenylalanine mutant (Y88F) was predicted by Rosetta to improve PNP catalytic activity with respect to ddI. Kinetic characterization of this mutant determined a 9-fold improvement in k(cat) and greater than 2-fold reduction in K(M). Subsequently, we used directed evolution to select for improved variants of PNP-Y88F in Escherichia coli cell extracts resulting in an additional 3-fold improvement over the progenitor strain. The engineered PNP may form the basis for catalysts and pathways for the biosynthesis of ddI.
Collapse
Affiliation(s)
- David P Nannemann
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
10
|
Rueda M, Bottegoni G, Abagyan R. Recipes for the selection of experimental protein conformations for virtual screening. J Chem Inf Model 2010; 50:186-93. [PMID: 20000587 DOI: 10.1021/ci9003943] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of multiple X-ray protein structures has been reported to be an efficient alternative for the representation of the binding pocket flexibility needed for accurate small molecules docking. However, the docking performance of the individual single conformations varies widely, and adding certain conformations to an ensemble is even counterproductive. Here we used a very large and diverse benchmark of 1068 X-ray protein conformations of 99 therapeutically relevant proteins, first, to compare the performance of the ensemble and single-conformation docking and, second, to find the properties of the best-performing conformers that can be used to select a smaller set of conformers for ensemble docking. The conformer selection has been validated through retrospective virtual screening experiments aimed at separating known ligand binders from decoys. We found that the conformers cocrystallized with the largest ligands displayed high selectivity for binders, and when combined in ensembles they consistently provided better results than randomly chosen protein conformations. The use of ensembles encompassing between 3 and 5 experimental conformations consistently improved the docking accuracy and binders vs decoys separation.
Collapse
Affiliation(s)
- Manuel Rueda
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, Mail TPC-28, La Jolla, California 92037, USA
| | | | | |
Collapse
|
11
|
Paulsen JL, Anderson AC. Scoring ensembles of docked protein:ligand interactions for virtual lead optimization. J Chem Inf Model 2010; 49:2813-9. [PMID: 19950979 DOI: 10.1021/ci9003078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ensembles of protein structures to simulate protein flexibility are widely used throughout several applications including virtual lead optimization where they have been shown to improve ligand ranking. Yet, there is no established convention for weighting individual scores generated from ensemble members. To investigate the best method for weighting ensemble scores for proper ligand ranking, a series of dihydrofolate reductase inhibitors was docked to ensembles of Candida albicans dihydrofolate reductase (CaDHFR) structures created from a molecular dynamics (MD) simulation. From a single MD simulation, two ensemble collections were generated, one of which was subjected to a minimization procedure to create a group of structures of equal probability. As expected, ligand ranking accuracy was significantly improved when Boltzmann weighting was applied to the energies of the ensemble without structural minimization (60%), relative to that achieved with averaging (36%). However, accuracy was further improved (72%) by averaging docking scores across a minimized ensemble. To examine whether this accuracy results from structural variation in the single trajectory versus the possibility that error is minimized by averaging, a third collection of receptor structures was created in which each member was taken from an independent molecular dynamics simulation after minimization. Comparison of the docking accuracy results from the single trajectory (72%) to this third collection (61%) showed decreased accuracy, suggesting that ligands are more accurately oriented and assessed when docked to the minimized ensemble from a single MD trajectory, an effect that is more than simply error minimization. Averaging docking scores over a minimized ensemble of another target, influenza A neuraminidase, yielded a ligand ranking accuracy of 83%, representing a 24% improvement over other methods tested.
Collapse
Affiliation(s)
- Janet L Paulsen
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | | |
Collapse
|
12
|
Bolstad ESD, Anderson AC. In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking. Proteins 2009; 75:62-74. [PMID: 18781587 DOI: 10.1002/prot.22214] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Representing receptors as ensembles of protein conformations during docking is a powerful method to approximate protein flexibility and increase the accuracy of the resulting ranked list of compounds. Unfortunately, docking compounds against a large number of ensemble members can increase computational cost and time investment. In this article, we present an efficient method to evaluate and select the most contributive ensemble members prior to docking for targets with a conserved core of residues that bind a ligand moiety. We observed that ensemble members that preserve the geometry of the active site core are most likely to place ligands in the active site with a conserved orientation, generally rank ligands correctly and increase interactions with the receptor. A relative distance approach is used to quantify the preservation of the three-dimensional interatomic distances of the conserved ligand-binding atoms and prune large ensembles quickly. In this study, we investigate dihydrofolate reductase as an example of a protein with a conserved core; however, this method for accurately selecting relevant ensemble members a priori can be applied to any system with a conserved ligand-binding core, including HIV-1 protease, kinases, and acetylcholinesterase. Representing a drug target as a pruned ensemble during in silico screening should increase the accuracy and efficiency of high-throughput analyses of lead analogs.
Collapse
Affiliation(s)
- Erin S D Bolstad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
13
|
Schormann N, Senkovich O, Walker K, Wright DL, Anderson AC, Rosowsky A, Ananthan S, Shinkre B, Velu S, Chattopadhyay D. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function. Proteins 2008; 73:889-901. [PMID: 18536013 DOI: 10.1002/prot.22115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have employed a structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) approach to predict the biochemical activity for inhibitors of T. cruzi dihydrofolate reductase-thymidylate synthase (DHFR-TS). Crystal structures of complexes of the enzyme with eight different inhibitors of the DHFR activity together with the structure in the substrate-free state (DHFR domain) were used to validate and refine docking poses of ligands that constitute likely active conformations. Structural information from these complexes formed the basis for the structure-based alignment used as input for the QSAR study. Contrary to indirect ligand-based approaches the strategy described here employs a direct receptor-based approach. The goal is to generate a library of selective lead inhibitors for further development as antiparasitic agents. 3D-QSAR models were obtained for T. cruzi DHFR-TS (30 inhibitors in learning set) and human DHFR (36 inhibitors in learning set) that show a very good agreement between experimental and predicted enzyme inhibition data. For crossvalidation of the QSAR model(s), we have used the 10% leave-one-out method. The derived 3D-QSAR models were tested against a few selected compounds (a small test set of six inhibitors for each enzyme) with known activity, which were not part of the learning set, and the quality of prediction of the initial 3D-QSAR models demonstrated that such studies are feasible. Further refinement of the models through integration of additional activity data and optimization of reliable docking poses is expected to lead to an improved predictive ability.
Collapse
Affiliation(s)
- N Schormann
- Department of Pharmaceutical Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Development of a New Predictive Model for Interactions with Human Cytochrome P450 2A6 Using Pharmacophore Ensemble/Support Vector Machine (PhE/SVM) Approach. Pharm Res 2008; 26:987-1000. [DOI: 10.1007/s11095-008-9807-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 12/08/2008] [Indexed: 02/06/2023]
|
15
|
Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenases. Proc Natl Acad Sci U S A 2008; 105:20464-9. [PMID: 19074288 DOI: 10.1073/pnas.0810962106] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cyclooxygenase (COX-1/COX-2)-catalyzed eicosanoid formation plays a key role in inflammation-associated diseases. Natural forms of vitamin E are recently shown to be metabolized to long-chain carboxychromanols and their sulfated counterparts. Here we find that vitamin E forms differentially inhibit COX-2-catalyzed prostaglandin E(2) in IL-1beta-stimulated A549 cells without affecting COX-2 expression, showing the relative potency of gamma-tocotrienol approximately delta-tocopherol > gamma-tocopherol >> alpha- or beta-tocopherol. The cellular inhibition is partially diminished by sesamin, which blocks the metabolism of vitamin E, suggesting that their metabolites may be inhibitory. Consistently, conditioned media enriched with long-chain carboxychromanols, but not their sulfated counterparts or vitamin E, reduce COX-2 activity in COX-preinduced cells with 5 microM arachidonic acid as substrate. Under this condition, 9'- or 13'-carboxychromanol, the vitamin E metabolites that contain a chromanol linked with a 9- or 13-carbon-length carboxylated side chain, inhibits COX-2 with an IC(50) of 6 or 4 microM, respectively. But 13'-carboxychromanol inhibits purified COX-1 and COX-2 much more potently than shorter side-chain analogs or vitamin E forms by competitively inhibiting their cyclooxygenase activity with K(i) of 3.9 and 10.7 microM, respectively, without affecting the peroxidase activity. Computer simulation consistently indicates that 13'-carboxychromanol binds more strongly than 9'-carboxychromanol to the substrate-binding site of COX-1. Therefore, long-chain carboxychromanols, including 13'-carboxychromanol, are novel cyclooxygenase inhibitors, may serve as anti-inflammation and anticancer agents, and may contribute to the beneficial effects of certain forms of vitamin E.
Collapse
|
16
|
Bolstad ESD, Anderson AC. In pursuit of virtual lead optimization: the role of the receptor structure and ensembles in accurate docking. Proteins 2008; 73:566-80. [PMID: 18473360 DOI: 10.1002/prot.22081] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accurate ranking during in silico lead optimization is critical to drive the generation of new ligands with higher affinity, yet it is especially difficult because of the subtle changes between analogs. In order to assess the role of the structure of the receptor in delivering accurate lead ranking results, we docked a set of forty related inhibitors to structures of one species of dihydrofolate reductase (DHFR) derived from crystallographic, NMR solution data, and homology models. In this study, the crystal structures yielded the superior results: the compounds were placed in the active site in the conserved orientation and the docking scores for 80% percent of the compounds clustered into the same bins as the measured affinity. Single receptor structures derived from NMR data or homology models did not serve as accurate docking receptors. To our knowledge, these are the first experiments that assess ranking of homologous lead compounds using a variety of receptor structures. We then extended the study to investigate whether ensembles, either computationally or experimentally derived, of all of the single starting structures aid, hinder or have no effect on the performance of the starting template. Impressively, when ensembles of receptor structures derived from NMR data or homology models were employed, docking accuracy improved to a level equal to that of the high resolution crystal structures. The same experiments using a second species of DHFR and set of ligands confirm the results. A comparison of the structures of the individual ensemble members to the starting structures shows that the effect of the ensembles can be ascribed to protein flexibility in addition to absorption of computational error.
Collapse
Affiliation(s)
- Erin S D Bolstad
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
17
|
AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening. BMC Bioinformatics 2008; 9:438. [PMID: 18925937 PMCID: PMC2588602 DOI: 10.1186/1471-2105-9-438] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 10/16/2008] [Indexed: 11/25/2022] Open
Abstract
Background Virtual or in silico ligand screening combined with other computational methods is one of the most promising methods to search for new lead compounds, thereby greatly assisting the drug discovery process. Despite considerable progresses made in virtual screening methodologies, available computer programs do not easily address problems such as: structural optimization of compounds in a screening library, receptor flexibility/induced-fit, and accurate prediction of protein-ligand interactions. It has been shown that structural optimization of chemical compounds and that post-docking optimization in multi-step structure-based virtual screening approaches help to further improve the overall efficiency of the methods. To address some of these points, we developed the program AMMOS for refining both, the 3D structures of the small molecules present in chemical libraries and the predicted receptor-ligand complexes through allowing partial to full atom flexibility through molecular mechanics optimization. Results The program AMMOS carries out an automatic procedure that allows for the structural refinement of compound collections and energy minimization of protein-ligand complexes using the open source program AMMP. The performance of our package was evaluated by comparing the structures of small chemical entities minimized by AMMOS with those minimized with the Tripos and MMFF94s force fields. Next, AMMOS was used for full flexible minimization of protein-ligands complexes obtained from a mutli-step virtual screening. Enrichment studies of the selected pre-docked complexes containing 60% of the initially added inhibitors were carried out with or without final AMMOS minimization on two protein targets having different binding pocket properties. AMMOS was able to improve the enrichment after the pre-docking stage with 40 to 60% of the initially added active compounds found in the top 3% to 5% of the entire compound collection. Conclusion The open source AMMOS program can be helpful in a broad range of in silico drug design studies such as optimization of small molecules or energy minimization of pre-docked protein-ligand complexes. Our enrichment study suggests that AMMOS, designed to minimize a large number of ligands pre-docked in a protein target, can successfully be applied in a final post-processing step and that it can take into account some receptor flexibility within the binding site area.
Collapse
|
18
|
Sauton N, Lagorce D, Villoutreix BO, Miteva MA. MS-DOCK: accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics 2008; 9:184. [PMID: 18402678 PMCID: PMC2373571 DOI: 10.1186/1471-2105-9-184] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 04/10/2008] [Indexed: 11/21/2022] Open
Abstract
Background The number of protein targets with a known or predicted tri-dimensional structure and of drug-like chemical compounds is growing rapidly and so is the need for new therapeutic compounds or chemical probes. Performing flexible structure-based virtual screening computations on thousands of targets with millions of molecules is intractable to most laboratories nor indeed desirable. Since shape complementarity is of primary importance for most protein-ligand interactions, we have developed a tool/protocol based on rigid-body docking to select compounds that fit well into binding sites. Results Here we present an efficient multiple conformation rigid-body docking approach, MS-DOCK, which is based on the program DOCK. This approach can be used as the first step of a multi-stage docking/scoring protocol. First, we developed and validated the Multiconf-DOCK tool that generates several conformers per input ligand. Then, each generated conformer (bioactives and 37970 decoys) was docked rigidly using DOCK6 with our optimized protocol into seven different receptor-binding sites. MS-DOCK was able to significantly reduce the size of the initial input library for all seven targets, thereby facilitating subsequent more CPU demanding flexible docking procedures. Conclusion MS-DOCK can be easily used for the generation of multi-conformer libraries and for shape-based filtering within a multi-step structure-based screening protocol in order to shorten computation times.
Collapse
Affiliation(s)
- Nicolas Sauton
- INSERM, U648, 45 rue des Sts Peres, University Paris Descartes, 75006 Paris, France.
| | | | | | | |
Collapse
|
19
|
Muralidhara B, Sun L, Negi S, Halpert JR. Thermodynamic Fidelity of the Mammalian Cytochrome P450 2B4 Active Site in Binding Substrates and Inhibitors. J Mol Biol 2008; 377:232-45. [DOI: 10.1016/j.jmb.2007.12.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 12/18/2007] [Accepted: 12/27/2007] [Indexed: 01/19/2023]
|
20
|
McInnes C. Virtual screening strategies in drug discovery. Curr Opin Chem Biol 2007; 11:494-502. [PMID: 17936059 DOI: 10.1016/j.cbpa.2007.08.033] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 08/10/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
The identification of novel therapeutic targets and characterization of their 3D structures is increasing at a dramatic rate. Computational screening methods continue to be developed and improved as credible and complementary alternatives to high-throughput biochemical compound screening (HTS). While the majority of drug candidates currently being developed have been found using HTS methods, high-throughput docking and pharmacophore-based searching algorithms are gaining acceptance and becoming a major source of lead molecules in drug discovery. Refinements and optimization of high-throughput docking methods have lead to improvements in reproducing experimental data and in hit rates obtained, validating their use in hit identification. In parallel with virtual screening methods, concomitant developments in cheminformatics including identification, design and manipulation of drug-like small molecule libraries have been achieved. Herein, currently used in silico screening techniques and their utility on a comparative and target dependent basis is discussed.
Collapse
Affiliation(s)
- Campbell McInnes
- Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|