1
|
Siraj S, Yameen D, Bhati S, Athar T, Khan S, Bhattacharya J, Islam A, Haque MM. Sugar osmolyte inhibits and attenuates the fibrillogenesis in RNase A: An in vitro and in silico characterizations. Int J Biol Macromol 2023; 253:127378. [PMID: 37839601 DOI: 10.1016/j.ijbiomac.2023.127378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Mechanisms of protein aggregation are of immense interest in therapeutic biology and neurodegenerative medicine. Biochemical processes within the living cell occur in a highly crowded environment. The phenomenon of macromolecular crowding affects the diffusional and conformational dynamics of proteins and modulates their folding. Macromolecular crowding is reported to cause protein aggregation in some cases, so it is a cause of concern as it leads to a plethora of neurodegenerative disorders and systemic amyloidosis. To divulge the mechanism of aggregation, it is imperative to study aggregation in well-characterized model proteins in the presence of macromolecular crowder. One such protein is ribonuclease A (RNase A), which deciphers neurotoxic function in humans; therefore we decided to explore the amyloid fibrillogenesis of this thermodynamically stable protein. To elucidate the impact of crowder, dextran-70 and its monomer glucose on the aggregation profile of RNase-A various techniques such as Absorbance, Fluorescence, Fourier Transforms Infrared, Dynamic Light Scattering and circular Dichroism spectroscopies along with imaging techniques like Atomic Force Microscopy and Transmission Electron Microscopy were employed. Thermal aggregation and fibrillation were further promoted by dextran-70 while glucose counteracted the effect of the crowding agent in a concentration-dependent manner. This study shows that glucose provides stability to the protein and prevents fibrillation. Intending to combat aggregation, which is the hallmark of numerous late-onset neurological disorders and systemic amyloidosis, this investigation unveils that naturally occurring osmolytes or other co-solutes can be further exploited in novel drug design strategies.
Collapse
Affiliation(s)
- Seerat Siraj
- Molecular Enzymology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Daraksha Yameen
- Molecular Enzymology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Shivani Bhati
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Teeba Athar
- Molecular Enzymology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Salman Khan
- Translational Research Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Mohammad Mahfuzul Haque
- Molecular Enzymology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
2
|
Panda A, Karhadkar S, Acharya B, Banerjee A, De S, Dasgupta S. Enhancement of angiogenin inhibition by polyphenol-capped gold nanoparticles. Biopolymers 2021; 112:e23429. [PMID: 33851721 DOI: 10.1002/bip.23429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 11/10/2022]
Abstract
Angiogenin (Ang), is a ribonucleolytic protein that is associated with angiogenesis, the formation of blood vessels. The involvement of Ang in vascularisation makes it a potential target for the identification of compounds that have the potential to inhibit the process. The compounds may be assessed for their ability to inhibit the ribonucleolytic activity of the protein and subsequently blood vessel formation, a crucial requirement for tumor formation. We report an inhibition of the ribonucleolytic activity of Ang with the gallate containing green tea polyphenols, ECG and EGCG that exhibits an increased efficacy upon forming polyphenol-capped gold nanoparticles (ECG-AuNPs and EGCG-AuNPs). The extent of inhibition was confirmed using an agarose gel-based assay followed by fluorescence titration studies that indicated a hundred fold stronger binding of polyphenol-capped gold nanoparticles (GTP-AuNPs) compared to the bare polyphenols. Interestingly, we found a change in the mode of inhibition from a noncompetitive type to a competitive mode of inhibition in case of the GTP-AuNPs, which is in agreement with the 'n' values obtained from the fluorescence quenching studies. The effect on angiogenesis has also been assessed by the chorioallantoic membrane (CAM) assay. We find an increase in the inhibition potency of GTP-AuNPs that could find applications in the development of anti-angiogenic compounds.
Collapse
Affiliation(s)
- Atashi Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Siddhant Karhadkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Bidisha Acharya
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Anwesha Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
3
|
Tripathy DR, Panda A, Dinda AK, Dasgupta S. Positional preferences in flavonoids for inhibition of ribonuclease A: Where "OH" where? Proteins 2021; 89:577-587. [PMID: 33423292 DOI: 10.1002/prot.26043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022]
Abstract
Flavonoids are a class of polyphenols that possess diverse properties. The structure-activity relationship of certain flavonoids and resveratrol with ribonuclease A (RNase A) has been investigated. The selected flavonoids have a similar skeleton and the positional preferences of the phenolic moieties toward inhibition of the catalytic activity of RNase A have been studied. The results obtained for RNase A inhibition by flavonoids suggest that the planarity of the molecules is necessary for effective inhibitory potency. Agarose gel electrophoresis and precipitation assay experiments along with kinetic studies reveal Ki values for the various flavonoids in the micromolar range. Minor secondary structural changes of RNase A were observed after interaction with the flavonoids. An insight into the specific amino acid involvement in the binding of the substrate using docking studies is also presented. The dipole moment of the flavonoids that depends on the orientation of the hydroxyl groups in the molecule bears direct correlation with the inhibitory potency against RNase A. The direct association of this molecular property with enzyme inhibition can be exploited for the design and development of inhibitors of proteins.
Collapse
Affiliation(s)
- Debi Ranjan Tripathy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Atashi Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Kumar Dinda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
4
|
Roy P, Bag S, Chakraborty D, Dasgupta S. Exploring the Inhibitory and Antioxidant Effects of Fullerene and Fullerenol on Ribonuclease A. ACS OMEGA 2018; 3:12270-12283. [PMID: 30320292 PMCID: PMC6173555 DOI: 10.1021/acsomega.8b01584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/18/2018] [Indexed: 05/07/2023]
Abstract
Fullerene-protein interaction studies have been a key topic of investigation in recent times, but the lower water solubility of fullerene somewhat limits its application in the biological system. In this work, we have compared the activities of fullerene and its water-soluble hydrated form, that is fullerenol, on ribonuclease A (RNase A) under physiological conditions (pH 7.4). The interaction studies of fullerene and fullerenol with protein suggest that the binding depends on the hydrophobic interactions between the protein and the ligand. In addition, fullerene and fullerenol slow down the ribonucleolytic activity of RNase A through noncompetitive and mixed types of inhibition, respectively. This precisely gives the idea about the ligand-binding sites in RNase A, which has further been explored using docking studies. Both these nanoparticles show a reduction in dityrosine formation in RNase A caused due to oxidative stress and also prevent RNase A dimer formation to different extents depending on their concentration.
Collapse
|
5
|
The Stability of Medicinal Plant microRNAs in the Herb Preparation Process. Molecules 2018; 23:molecules23040919. [PMID: 29659501 PMCID: PMC6016954 DOI: 10.3390/molecules23040919] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/23/2023] Open
Abstract
Herbal medicine is now globally accepted as a valid alternative system of pharmaceutical therapies. Various studies around the world have been initiated to develop scientific evidence-based herbal therapies. Recently, the therapeutic potential of medicinal plant derived miRNAs has attracted great attraction. MicroRNAs have been indicated as new bioactive ingredients in medicinal plants. However, the stability of miRNAs during the herbal preparation process and their bioavailability in humans remain unclear. Viscum album L. (European mistletoe) has been widely used in folk medicine for the treatment of cancer and cardiovascular diseases. Our previous study has indicated the therapeutic potential of mistletoe miRNAs by using bioinformatics tools. To evaluate the stability of these miRNAs, various mistletoe extracts that mimic the clinical medicinal use as well as traditional folk medicinal use were prepared. The mistletoe miRNAs including miR166a-3p, miR159a, miR831-5p, val-miR218 and val-miR11 were quantified by stem-loop qRT-PCR. As a result, miRNAs were detectable in the majority of the extracts, indicating that consumption of medicinal plant preparations might introduce miRNAs into mammals. The factors that might cause miRNA degradation include ultrasonic treatment, extreme heat, especially RNase treatment, while to be associated with plant molecules (e.g., proteins, exosomes) might be an efficient way to protect miRNAs against degradation. Our study confirmed the stability of plant derived miRNAs during herb preparations, suggesting the possibility of functionally intact medicinal plant miRNAs in mammals.
Collapse
|
6
|
Kayet A, Datta D, Das A, Dasgupta S, Pathak T. 1,5-Disubstituted 1,2,3-triazole linked disaccharides: Metal-free syntheses and screening of a new class of ribonuclease A inhibitors. Bioorg Med Chem 2018; 26:455-462. [DOI: 10.1016/j.bmc.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/28/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
|
7
|
Roy P, Dinda AK, Chaudhury S, Dasgupta S. β-cyclodextrin encapsulated polyphenols as effective antioxidants. Biopolymers 2017; 109. [DOI: 10.1002/bip.23084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Pritam Roy
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Amit Kumar Dinda
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | | | - Swagata Dasgupta
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| |
Collapse
|
8
|
Nie RZ, Zhu W, Peng JM, Ge ZZ, Li CM. Comparison of disaggregative effect of A-type EGCG dimer and EGCG monomer on the preformed bovine insulin amyloid fibrils. Biophys Chem 2017; 230:1-9. [PMID: 28818314 DOI: 10.1016/j.bpc.2017.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/14/2022]
Abstract
In the present study, the disruptive effects of epigallocatechin-3-gallate (EGCG) and A-type dimeric epigallocatechin-3-gallate (A-type EGCG dimer) on the preformed bovine insulin amyloid fibrils were studied by several biophysical methods including thioflavin-T (ThT) fluorescence assay, 1-anilinonaphthalene-8-sulfonic (ANS) fluorescence assay, Congo red (CR) binding assay, dynamic light scattering (DLS), transmission electron microscopy (TEM), Gel electrophoresis (SDS-PAGE) and Bradford assay. Our results demonstrated that A-type EGCG dimer showed significantly more potential disaggregative effects on the bovine insulin amyloid fibrils than EGCG. A-type EGCG dimer could not only dramatically promote the disaggregation of the preformed bovine insulin amyloid fibrils, but also restructure the amyloid fibrils into amorphous aggregates. While, EGCG could only shorten and thin the fibrils, but induce no small amorphous aggregates. Our present results provided additional evidence for the more potent disaggregation effects of dimeric polyphenols than monomeric polyphenols and suggested that A-type EGCG dimer seems to have potential application as an excellent anti-amyloidogenic agent.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Ming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen-Zhen Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Mei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
9
|
Wang N, He J, Chang AK, Wang Y, Xu L, Chong X, Lu X, Sun Y, Xia X, Li H, Zhang B, Song Y, Kato A, Jones GW. (-)-epigallocatechin-3-gallate inhibits fibrillogenesis of chicken cystatin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1347-1351. [PMID: 25620201 DOI: 10.1021/jf505277e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Previous studies have reported that (-)-epigallocatechin-3-gallate (EGCG), the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. To elucidate whether this antifibril activity is specific to disease-related target proteins or is more generic, we investigated the ability of EGCG to inhibit amyloid fibril formation of amyloidogenic mutant chicken cystatin I66Q, a generic amyloid-forming model protein that undergoes fibril formation through a domain swapping mechanism. We demonstrated that EGCG was a potent inhibitor of amyloidogenic cystatin I66Q amyloid fibril formation in vitro. Computational analysis suggested that EGCG prevented amyloidogenic cystatin fibril formation by stabilizing the molecule in its native-like state as opposed to redirecting aggregation toward disordered and amorphous aggregates. Therefore, although EGCG appears to be a generic inhibitor of amyloid-fibril formation, the mechanism by which it achieves such inhibition may be specific to the target fibril-forming polypeptide.
Collapse
Affiliation(s)
- Na Wang
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University , Shenyang 110036, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Datta D, Dasgupta S, Pathak T. Ribonuclease A inhibition by carboxymethylsulfonyl-modified xylo- and arabinopyrimidines. ChemMedChem 2014; 9:2138-49. [PMID: 25125220 DOI: 10.1002/cmdc.201402179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Indexed: 11/10/2022]
Abstract
A group of acidic nucleosides were synthesized to develop a new class of ribonuclease A (RNase A) inhibitors. Our recent study on carboxymethylsulfonyl-modified nucleosides revealed some interesting results in RNase A inhibition. This positive outcome triggered an investigation of the role played by secondary sugar hydroxy groups in inhibiting RNase A activity. Uridines and cytidines modified with SO2 CH2 COOH groups at the 2'- and 3'-positions show good inhibitory properties with low inhibition constant (Ki ) values in the range of 109-17 μM. The present work resulted in a set of inhibitors that undergo more effective interactions with the RNase A active site, as visualized by docking studies.
Collapse
Affiliation(s)
- Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur (India), Fax: (+91) 3222-255303
| | | | | |
Collapse
|
11
|
Comparison of the ribonucleolytic activity of the dityrosine cross-linked Ribonuclease A dimer with its monomer in the presence of inhibitors. Int J Biol Macromol 2014; 63:107-13. [DOI: 10.1016/j.ijbiomac.2013.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022]
|
12
|
Singha Roy A, Ghosh KS, Dasgupta S. An investigation into the altered binding mode of green tea polyphenols with human serum albumin on complexation with copper. J Biomol Struct Dyn 2013; 31:1191-206. [DOI: 10.1080/07391102.2012.729158] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Ghosh S, Pandey NK, Dasgupta S. (-)-Epicatechin gallate prevents alkali-salt mediated fibrillogenesis of hen egg white lysozyme. Int J Biol Macromol 2012; 54:90-8. [PMID: 23219698 DOI: 10.1016/j.ijbiomac.2012.11.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 01/26/2023]
Abstract
Green tea polyphenols (GTPs) are found to be potent inhibitors of amyloid fibril formation. We report the effective inhibitory property of (-)-epicatechin gallate (ECG) during the alkali-salt induced fibrillogenesis of hen egg white lysozyme (HEWL) at 37 °C. Spectroscopic techniques such as fluorescence, circular dichroism and microscopic images show that (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG) show moderate inhibition of fibrillation with ECG as the most potent polyphenol. Aromatic interactions, hydrophobic interactions, the radical scavenging activity and autoxidation of polyphenols are likely to be the major reasons for ECG being the most effective inhibitor.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | | |
Collapse
|
14
|
Bazl R, Ganjali MR, Saboury AA, Foroumadi A, Nourozi P, Amanlou M. A new strategy based on pharmacophore-based virtual screening in adenosine deaminase inhibitors detection and in-vitro study. ACTA ACUST UNITED AC 2012; 20:64. [PMID: 23351306 PMCID: PMC3556010 DOI: 10.1186/2008-2231-20-64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/14/2012] [Indexed: 12/03/2022]
Abstract
Background and the purpose of the study Adenosine deaminase (ADA) inhibition not only may be applied for the treatment of ischemic injury, hypertension, lymphomas and leukaemia, but also they have been considered as anti- inflammatory drugs. On the other hand according to literatures, ADA inhibitors without a nucleoside framework would improve pharmacokinetics and decrease toxicity. Hence we have carried out a rational pharmacophore design for non-nucleoside inhibitors filtration. Methods A merged pharmacophore model based on the most potent non-nucleoside inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) and natural products were generated and applied for compounds filtration. The effects of filtrated compounds based on pharmacophore and docking studies investigated on ADA by UV and Fluorescence spectroscopy techniques. Results Extracted compounds were find efficiently inhibit ADA, and the most potent (2) shows an inhibition constant equal to 20 μM. Besides, Fluorescence spectroscopy studies revealed that enzyme 3D structure bear further change in lower concentrations of compound 2. Conclusion 3 non-nucleoside inhibitors for ADA are presented. According to obtained results from UV and fluorescence spectroscopy, such interesting pharmacophore template with multiple approaches will help us to extract or design compound with desired properties.
Collapse
Affiliation(s)
- Roya Bazl
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
15
|
Kandeel M, Kitade Y. Binding dynamics and energetic insight into the molecular forces driving nucleotide binding by guanylate kinase. J Mol Recognit 2010; 24:322-32. [PMID: 21360614 DOI: 10.1002/jmr.1074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/16/2010] [Accepted: 07/16/2010] [Indexed: 11/11/2022]
Abstract
Plasmodium deoxyguanylate pathways are an attractive area of investigation for future metabolic and drug discovery studies due to their unique substrate specificities. We investigated the energetic contribution to guanylate kinase substrate binding and the forces underlying ligand recognition. In the range from 20 to 35°C, the thermodynamic profiles displayed marked decrease in binding enthalpy, while the free energy of binding showed little changes. GMP produced a large binding heat capacity change of -356 cal mol(-1) K(-1), indicating considerable conformational changes upon ligand binding. Interestingly, the calculated ΔCp was -32 cal mol(-1) K(-1), indicating that the accessible surface area is not the central change in substrate binding, and that other entropic forces, including conformational changes, are more predominant. The thermodynamic signature for GMP is inconsistent with rigid-body association, while dGMP showed more or less rigid-body association. These binding profiles explain the poor catalytic efficiency and low affinity for dGMP compared with GMP. At low temperature, the ligands bind to the receptor site under the effect of hydrophobic forces. Interestingly, by increasing the temperature, the entropic forces gradually vanish and proceed to a nonfavorable contribution, and the interaction occurs mainly through bonding, electrostatic forces, and van der Waals interactions.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr El-Shikh University, Kafr El-Shikh 33516, Egypt.
| | | |
Collapse
|
16
|
Dutta S, Basak A, Dasgupta S. Synthesis and ribonuclease A inhibition activity of resorcinol and phloroglucinol derivatives of catechin and epicatechin: Importance of hydroxyl groups. Bioorg Med Chem 2010; 18:6538-46. [DOI: 10.1016/j.bmc.2010.06.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/18/2010] [Accepted: 06/19/2010] [Indexed: 11/29/2022]
|
17
|
Tian J, Zhao Y, Liu X, Zhao S. A steady-state and time-resolved fluorescence, circular dichroism study on the binding of myricetin to bovine serum albumin. LUMINESCENCE 2010; 24:386-93. [PMID: 19480002 DOI: 10.1002/bio.1124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The binding mechanism of myricetin (Myr) to bovine serum albumin was investigated by using steady-state and time-resolved fluorescence and circular dichroism. The results of the steady-state fluorescence quenching experiment indicate that it is a static quenching process (C(Myr)/C(BSA) < or = 3) at low quencher concentration and the binding site is located near the Trp212 residue. The association constants at the different temperatures were calculated. From the thermodynamic parameters, enthalpy change (DeltaH(0)), Gibbs free energy change (DeltaG(0)) and entropy change (DeltaS(0)) obtained in the experiment, it was found that hydrophobic and electrostatic interactions play important roles in binding Myr to BSA. According to the Föster energy transfer theory, the separation distance, r, the energy transfer efficiency, E, and Föster radius, R(0), were calculated. The results obtained from the above experiments indicate that Myr can be tightly bound to BSA. Then, the effects of ionic strength, metal ion, pH and surfactants on the binding Myr and BSA were investigated, which also showed that electrostatic and hydrophobic interactions play a major role in the association process. On the other hand, the conformation and secondary structure of BSA were further studied through circular dichroism and fluorescence synchronous spectra. It was found that the conformation and secondary structure of BSA had also changed after interaction with Myr. The time-resolved fluorescence study showed that the short lifetime of BSA decreased after the addition of Myr, which implies that the buried Trp 212 is the main binding site.
Collapse
Affiliation(s)
- Jianniao Tian
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Ministry of Education of China, Guilin, 541004, People's Republic of China.
| | | | | | | |
Collapse
|
18
|
Roy B, Chakraborty A, Ghosh SK, Basak A. Design, synthesis and bioactivity of catechin/epicatechin and 2-azetidinone derived chimeric molecules. Bioorg Med Chem Lett 2009; 19:7007-10. [DOI: 10.1016/j.bmcl.2009.04.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/26/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
|
19
|
Ghosh KS, Debnath J, Pathak T, Dasgupta S. Using proton nuclear magnetic resonance to study the mode of ribonuclease A inhibition by competitive and noncompetitive inhibitors. Bioorg Med Chem Lett 2008; 18:5503-6. [DOI: 10.1016/j.bmcl.2008.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/02/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
|
20
|
Roy B, Dutta S, Choudhary A, Chowdhary A, Basak A, Dasgupta S. Design, synthesis and RNase A inhibition activity of catechin and epicatechin and nucleobase chimeric molecules. Bioorg Med Chem Lett 2008; 18:5411-4. [PMID: 18829315 DOI: 10.1016/j.bmcl.2008.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/17/2008] [Accepted: 09/10/2008] [Indexed: 11/17/2022]
Abstract
Several novel catechin/epicatechin and nucleobase chimeric molecules 1-6 have been synthesized via azide-alkyne click chemistry. The structures of these hybrids have been confirmed by NMR and mass spectroscopic data. The synthesized molecules were tested for their RNase A inhibition activities. Gel-based assays showed inhibition in micromolar concentrations. The extent of inhibition was found to be dependent upon the nature of base as well as the configuration at C-3 position of catechin.
Collapse
Affiliation(s)
- Basab Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | | | | | | | | | |
Collapse
|
21
|
Ghosh KS, Sahoo BK, Jana D, Dasgupta S. Studies on the interaction of copper complexes of (−)-epicatechin gallate and (−)-epigallocatechin gallate with calf thymus DNA. J Inorg Biochem 2008; 102:1711-8. [DOI: 10.1016/j.jinorgbio.2008.04.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Revised: 04/21/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
|