1
|
Sachsenhauser V, Deng X, Kim HH, Jankovic M, Bardwell JC. Yeast Tripartite Biosensors Sensitive to Protein Stability and Aggregation Propensity. ACS Chem Biol 2020; 15:1078-1088. [PMID: 32105441 DOI: 10.1021/acschembio.0c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In contrast to the myriad approaches available to study protein misfolding and aggregation in vitro, relatively few tools are available for the study of these processes in the cellular context. This is in part due to the complexity of the cellular environment which, for instance, interferes with many spectroscopic approaches. Here, we describe a tripartite fusion approach that can be used to assess in vivo protein stability and solubility in the cytosol of Saccharomyces cerevisiae. Our biosensors contain tripartite fusions in which a protein of interest is inserted into antibiotic resistance markers. These fusions act to directly link the aggregation susceptibility and stability of the inserted protein to antibiotic resistance. We demonstrate a linear relationship between the thermodynamic stabilities of variants of the model folding protein immunity protein 7 (Im7) fused into the resistance markers and their antibiotic resistance readouts. We also use this system to investigate the in vivo properties of the yeast prion proteins Sup35 and Rnq1 and proteins whose aggregation is associated with some of the most prevalent neurodegenerative misfolding disorders, including peptide amyloid beta 1-42 (Aβ42), which is involved in Alzheimer's disease, and protein α-synuclein, which is linked to Parkinson's disease.
Collapse
Affiliation(s)
- Veronika Sachsenhauser
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
- Department of Chemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Xiexiong Deng
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Hyun-hee Kim
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Maja Jankovic
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - James C.A. Bardwell
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| |
Collapse
|
2
|
Ishikawa T, Lisiecki K. Anti-prion drug screening system in Saccharomyces cerevisiae based on an artificial [LEU2 +] prion. Fungal Genet Biol 2019; 134:103280. [PMID: 31622671 DOI: 10.1016/j.fgb.2019.103280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022]
Abstract
Proteinaceous infectious particles causing mammalian transmissible spongiform encephalopathies or prions are being extensively studied. However due to their hazardous nature, the initial screening of potential anti-prion drugs is often made in a yeast-based screening system utilizing a well-characterized [PSI+] prion (amyloid formed by the translation termination factor Sup35p). In the [PSI+] prion screening system (white/red colony assay), the prion phenotype yields white colonies while addition of an anti-prion drug will yield red colonies. However, this system has some limitations. It is difficult to quantify the effectiveness of the anti-prion compound, the diffusion of the studied compound may affect the result, and the deficiency of glutathione in cells may prevent the formation of red pigment in cured cells. Therefore, alternative yeast prion screening systems are still needed. This article aims to present an alternative yeast-based system to evaluate anti-prion activity of chemical compounds. The method that was used is based on an artificial [LEU2+] prion created by fusing Leu2p with the prion-forming domain of Sup35p in Saccharomyces cerevisiae. Phenotypic analysis and semi-denaturating detergent agarose gel electrophoresis (SDD-AGE) confirmed the presence of the artificial [LEU2+] prion in yeast cells. This screening system verified the anti-prion activity of 3 drugs that were found to have been active in the white/red colony assay, while one compound (6-chlorotacrine) that was active in the white/red colony assay was found to be inactive in the [LEU2+] system. This new system also appears to be more sensitive than the white/red colony assay.
Collapse
Affiliation(s)
- Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Poland.
| | - Kamil Lisiecki
- Laboratory of Natural Products Chemistry, Division of Organic Chemistry, Faculty of Chemistry, University of Warsaw, Poland
| |
Collapse
|
3
|
Deryusheva EI, Machulin AV, Selivanova OM, Galzitskaya OV. Taxonomic distribution, repeats, and functions of the S1 domain-containing proteins as members of the OB-fold family. Proteins 2017; 85:602-613. [PMID: 28056497 DOI: 10.1002/prot.25237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Proteins of the nucleic acid-binding proteins superfamily perform such functions as processing, transport, storage, stretching, translation, and degradation of RNA. It is one of the 16 superfamilies containing the OB-fold in protein structures. Here, we have analyzed the superfamily of nucleic acid-binding proteins (the number of sequences exceeds 200,000) and obtained that this superfamily prevalently consists of proteins containing the cold shock DNA-binding domain (ca. 131,000 protein sequences). Proteins containing the S1 domain compose 57% from the cold shock DNA-binding domain family. Furthermore, we have found that the S1 domain was identified mainly in the bacterial proteins (ca. 83%) compared to the eukaryotic and archaeal proteins, which are available in the UniProt database. We have found that the number of multiple repeats of S1 domain in the S1 domain-containing proteins depends on the taxonomic affiliation. All archaeal proteins contain one copy of the S1 domain, while the number of repeats in the eukaryotic proteins varies between 1 and 15 and correlates with the protein size. In the bacterial proteins, the number of repeats is no more than 6, regardless of the protein size. The large variation of the repeat number of S1 domain as one of the structural variants of the OB-fold is a distinctive feature of S1 domain-containing proteins. Proteins from the other families and superfamilies have either one OB-fold or change slightly the repeat numbers. On the whole, it can be supposed that the repeat number is a vital for multifunctional activity of the S1 domain-containing proteins. Proteins 2017; 85:602-613. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Evgeniia I Deryusheva
- Laboratory of new methods for biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Andrey V Machulin
- Laboratory of cytology of microorganisms, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Olga M Selivanova
- Group of Bioinformatics, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Oxana V Galzitskaya
- Group of Bioinformatics, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
4
|
Takai E, Uda K, Yoshida T, Zako T, Maeda M, Shiraki K. Cysteine inhibits the fibrillisation and cytotoxicity of amyloid-β 40 and 42: implications for the contribution of the thiophilic interaction. Phys Chem Chem Phys 2014; 16:3566-72. [PMID: 24413447 DOI: 10.1039/c3cp54245a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhibitors of amyloid fibril formation have been at the centre of intense research efforts for the prevention of amyloidosis. Here, we hypothesise that a specific non-covalent interaction, the thiophilic interaction between the side chain of an aromatic residue in a polypeptide and a sulphur atom of the compound, effectively inhibits amyloid fibril formation. Fluorescence spectroscopy and transmission electron microscopy revealed that sulphur compounds, particularly Cys, inhibit the fibrillisation of amyloid-β 1-40 (Aβ40) and 1-42 (Aβ42). Interestingly, aggregates of Aβ40 and Aβ42 induced by Cys were less cytotoxic than those induced by catechin, which is the most typical inhibitor of amyloid fibril formation. Because the essential amino acid, Cys, is an abundant molecule in the blood and cytosol, our data provide a new basis for the prevention of amyloid-related diseases and the elucidation of the mechanism of these diseases.
Collapse
Affiliation(s)
- Eisuke Takai
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Nair S, Traini M, Dawes IW, Perrone GG. Genome-wide analysis of Saccharomyces cerevisiae identifies cellular processes affecting intracellular aggregation of Alzheimer's amyloid-β42: importance of lipid homeostasis. Mol Biol Cell 2014; 25:2235-49. [PMID: 24870034 PMCID: PMC4116298 DOI: 10.1091/mbc.e13-04-0216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amyloid-β (Aβ)-containing plaques are a major neuropathological feature of Alzheimer's disease (AD). The two major isoforms of Aβ peptide associated with AD are Aβ40 and Aβ42, of which the latter is highly prone to aggregation. Increased presence and aggregation of intracellular Aβ42 peptides is an early event in AD progression. Improved understanding of cellular processes affecting Aβ42 aggregation may have implications for development of therapeutic strategies. Aβ42 fused to green fluorescent protein (Aβ42-GFP) was expressed in ∼4600 mutants of a Saccharomyces cerevisiae genome-wide deletion library to identify proteins and cellular processes affecting intracellular Aβ42 aggregation by assessing the fluorescence of Aβ42-GFP. This screening identified 110 mutants exhibiting intense Aβ42-GFP-associated fluorescence. Four major cellular processes were overrepresented in the data set, including phospholipid homeostasis. Disruption of phosphatidylcholine, phosphatidylserine, and/or phosphatidylethanolamine metabolism had a major effect on intracellular Aβ42 aggregation and localization. Confocal microscopy indicated that Aβ42-GFP localization in the phospholipid mutants was juxtaposed to the nucleus, most likely associated with the endoplasmic reticulum (ER)/ER membrane. These data provide a genome-wide indication of cellular processes that affect intracellular Aβ42-GFP aggregation and may have important implications for understanding cellular mechanisms affecting intracellular Aβ42 aggregation and AD disease progression.
Collapse
Affiliation(s)
- S Nair
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - M Traini
- Atherosclerosis Laboratory, ANZAC Research Institute, Concord Hospital, Concord, NSW 2139, Australia
| | - I W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, AustraliaRamaciotti Centre for Gene Function Analysis, University of New South Wales, Sydney, NSW 2052, Australia
| | - G G Perrone
- School of Science and Health, University of Western Sydney, Penrith, NSW 1797, Australia
| |
Collapse
|
6
|
Matsunaga R, Yanaka S, Nagatoishi S, Tsumoto K. Hyperthin nanochains composed of self-polymerizing protein shackles. Nat Commun 2014; 4:2211. [PMID: 23884289 DOI: 10.1038/ncomms3211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/27/2013] [Indexed: 12/29/2022] Open
Abstract
Protein fibrils are expected to have applications as functional nanomaterials because of their sophisticated structures; however, nanoscale ordering of the functional units of protein fibrils remains challenging. Here we design a series of self-polymerizing protein monomers, referred to as protein shackles, derived from modified recombinant subunits of pili from Streptococcus pyogenes. The monomers polymerize into nanochains through spontaneous irreversible covalent bond formation. We design the protein shackles so that their reactions can be controlled by altering redox conditions, which affect disulphide bond formation between engineered cysteine residues. The interaction between the monomers improves their polymerization reactivity and determines morphologies of the polymers. In addition, green fluorescent protein-tagged protein shackles can polymerize, indicating proteins can be stably attached to the nanochains with its functionality preserved. Furthermore we demonstrate that a molecular-recognizable nanochain binds to its partner with an enhanced binding ability in solution. These characteristics are expected to be applied for novel protein nanomaterials.
Collapse
Affiliation(s)
- Ryo Matsunaga
- The Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
7
|
Quinn SD, Dalgarno PA, Cameron RT, Hedley GJ, Hacker C, Lucocq JM, Baillie GS, Samuel IDW, Penedo JC. Real-time probing of β-amyloid self-assembly and inhibition using fluorescence self-quenching between neighbouring dyes. ACTA ACUST UNITED AC 2014; 10:34-44. [DOI: 10.1039/c3mb70272c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Forman CJ, Wang N, Yang ZY, Mowat CG, Jarvis S, Durkan C, Barker PD. Probing the location of displayed cytochrome b562 on amyloid by scanning tunnelling microscopy. NANOTECHNOLOGY 2013; 24:175102. [PMID: 23571459 DOI: 10.1088/0957-4484/24/17/175102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Amyloid fibres displaying cytochrome b562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias (<1.5 V) the fibres appeared as regions of low conductivity with no evidence of cytochrome mediated electron transfer. At a high bias, stable peaks in tunnelling current were observed for all three fibre species containing haem and one species of fibre that did not contain haem. In images of this kind, some of the current peaks were collinear and spaced around 10 nm apart over ranges longer than 100 nm, but background monomers complicate interpretation. Images of the third kind were rare (1 in 150 fibres); in these, fully conducting structures with the approximate dimensions of fibres were observed, suggesting the possibility of an intermittent conduction mechanism, for which a precedent exists in DNA. To test the conductivity, some fibres were immobilized with sputtered gold, and no evidence of conduction between the grains of gold was seen. In control experiments, a variation of monomeric cytochrome b562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid.
Collapse
Affiliation(s)
- C J Forman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
9
|
van Ham TJ, Esposito A, Kumita JR, Hsu STD, Kaminski Schierle GS, Kaminski CF, Dobson CM, Nollen EAA, Bertoncini CW. Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of alpha-synuclein aggregation. J Mol Biol 2009; 395:627-42. [PMID: 19891973 DOI: 10.1016/j.jmb.2009.10.066] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/04/2009] [Accepted: 10/27/2009] [Indexed: 12/16/2022]
Abstract
Misfolding and aggregation of proteins are characteristics of a range of increasingly prevalent neurodegenerative disorders including Alzheimer's and Parkinson's diseases. In Parkinson's disease and several closely related syndromes, the protein alpha-synuclein (AS) aggregates and forms amyloid-like deposits in specific regions of the brain. Fluorescence microscopy using fluorescent proteins, for instance the yellow fluorescent protein (YFP), is the method of choice to image molecular events such as protein aggregation in living organisms. The presence of a bulky fluorescent protein tag, however, may potentially affect significantly the properties of the protein of interest; for AS in particular, its relative small size and, as an intrinsically unfolded protein, its lack of defined secondary structure could challenge the usefulness of fluorescent-protein-based derivatives. Here, we subject a YFP fusion of AS to exhaustive studies in vitro designed to determine its potential as a means of probing amyloid formation in vivo. By employing a combination of biophysical and biochemical studies, we demonstrate that the conjugation of YFP does not significantly perturb the structure of AS in solution and find that the AS-YFP protein forms amyloid deposits in vitro that are essentially identical with those observed for wild-type AS, except that they are fluorescent. Of the several fluorescent properties of the YFP chimera that were assayed, we find that fluorescence anisotropy is a particularly useful parameter to follow the aggregation of AS-YFP, because of energy migration Förster resonance energy transfer (emFRET or homoFRET) between closely positioned YFP moieties occurring as a result of the high density of the fluorophore within the amyloid species. Fluorescence anisotropy imaging microscopy further demonstrates the ability of homoFRET to distinguish between soluble, pre-fibrillar aggregates and amyloid fibrils of AS-YFP. Our results validate the use of fluorescent protein chimeras of AS as representative models for studying protein aggregation and offer new opportunities for the investigation of amyloid aggregation in vivo using YFP-tagged proteins.
Collapse
Affiliation(s)
- Tjakko J van Ham
- Department of Genetics, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hamada D, Tanaka T, Tartaglia GG, Pawar A, Vendruscolo M, Kawamura M, Tamura A, Tanaka N, Dobson CM. Competition between Folding, Native-State Dimerisation and Amyloid Aggregation in β-Lactoglobulin. J Mol Biol 2009; 386:878-90. [DOI: 10.1016/j.jmb.2008.12.038] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/10/2008] [Accepted: 12/15/2008] [Indexed: 11/15/2022]
|
11
|
Inclusion bodies: Specificity in their aggregation process and amyloid-like structure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1815-25. [DOI: 10.1016/j.bbamcr.2008.06.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 05/28/2008] [Accepted: 06/03/2008] [Indexed: 01/10/2023]
|