1
|
Akinniyi G, Akinboye AJ, Yang I, Lee JG. Plant proteins, peptides, and non-protein amino acids: Toxicity, sources, and analysis. Heliyon 2024; 10:e34890. [PMID: 39145010 PMCID: PMC11320209 DOI: 10.1016/j.heliyon.2024.e34890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Plants have evolved various mechanisms to synthesize diverse range of substances that contribute to their survival against pests, pathogens, predators, and adverse environmental conditions. Although several plant metabolites possess therapeutic potential, some can be potentially harmful to human and animal health when consumed in large proportion. Proteins, peptides, and non-protein amino acids are products of plant biochemical pathways with proven beneficial and nutritional effects. Despite these benefits, the in vivo toxicities associated with certain plant-derived proteins, peptides, and non-protein amino acids pose a significant risk to humans and animals. Symptoms of poisoning include nausea, vomiting, diarrhea, hair and weight loss, goiter, cataracts, and infertility. Even though plant processing methods such as soaking and drying can reduce the amount of toxin contained in plants, complete riddance is often impossible. As such, food regulatory bodies need to prevent uncontrolled consumption of the listed and many other toxin-containing plant species to keep the public safe. For this purpose, this review collates crucial insights into the sources, and in vivo toxicity associated with certain plant-derived proteins, peptides, and non-protein amino acids that have the clear potential to adversely affect human health. Additionally, this review provides information on analytical methods suitable for the detection of these substances in plants.
Collapse
Affiliation(s)
- Ganiyu Akinniyi
- Department of Convergence Study on the Ocean Science and Technology, National Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Adebayo J. Akinboye
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, South Korea
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, National Korea Maritime and Ocean University, Busan 49112, South Korea
| | - Joon-Goo Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, South Korea
| |
Collapse
|
2
|
Masella M, Léonforté F. Chitosan Polysaccharides from a Polarizable Multiscale Approach. ACS OMEGA 2023; 8:35592-35607. [PMID: 37810703 PMCID: PMC10551911 DOI: 10.1021/acsomega.3c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 10/10/2023]
Abstract
We report simulations of chitosan polysaccharides in the aqueous phase, at infinite dilute conditions and zero ionic strength. Those simulations are performed by means of a polarizable multiscale modeling scheme that relies on a polarizable all atom force field to model solutes and on a polarizable solvent coarse grained approach. Force field parameters are assigned only from quantum chemistry ab initio data. We simulate chitosan monomer units, dimers and 50-long chains. Regarding the 50-long chains we simulate three sets of ten randomly built chain replica at three different pH conditions (corresponding to different chain protonation states, the chain degree of deacetylation is 85%). Our simulations show the persistence length of 50-long chitosan chains at strong acidic conditions (pH <5) to be 24 ± 2 nm (at weak/negligible ionic strength conditions), and to be 1 order of magnitude shorter at usual pH conditions. Our simulation data support the most recent simulation and experimental studies devoted to chitosan polysaccharides in the aqueous phase.
Collapse
Affiliation(s)
- Michel Masella
- Laboratoire
de Biologie Bioénergétique, Métalloprotéines et Stress, Service de Bioénergétique,
Biologie Structurale et Mécanismes, Institut Joliot, CEA Saclay, Gif sur Yvette Cedex F-91191, France
| | - Fabien Léonforté
- L’Oréal
Group, Research & Innovation, Aulnay-Sous-Bois 93600, France
| |
Collapse
|
3
|
Sala G, Pasta S, Maggio A, La Mantia T. Sambucus nigra L. (fam. Viburnaceae) in Sicily: Distribution, Ecology, Traditional Use and Therapeutic Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:3457. [PMID: 37836198 PMCID: PMC10575429 DOI: 10.3390/plants12193457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Sambucus nigra, the elderberry, has long been used for its medicinal properties in treating numerous diseases. Based on this traditional knowledge, its different pharmacological activities have been the focus of active research. All parts of the tree have long been used in traditional medicine, that is, the bark, the leaves, the flowers and the fruit. This study, carried out in Sicily (Italy), concerns the traditional uses of elder against human diseases. In order to trace the history of man's interaction with elder on the island, multidisciplinary research was carried out, aiming at (1) presenting a comprehensive overview of elderberry's applications and activities and (2) bridging traditional knowledge (uses and beliefs) with modern science, i.e., the most recent scientific findings in the biomedical and pharmacological fields. A rigorous literature review of scientific (and other local) reports on the elderberry tree and its application in food, health and household applications was undertaken. This article also provides a synthetic and updated picture of the ecology and distribution of S. nigra in Sicily. The elderberry is quite widespread in Sicily, yet its distribution is discontinuous. It prefers hedges, riparian woodlands, forest margins and clearings and is rather common along the watercourses flowing in the canyons of the Hyblaean Plateau, in the Madonie Mts. and in Enna province. Indeed, many old plants are often found near sacred places and rural houses, suggesting that in the past, it was extensively planted on purpose for its multiple uses. The complementary data obtained from multidisciplinary research confirm the usefulness of this approach in building a comprehensive and correct picture of the distribution of the most common woody species, for which the available knowledge is often fragmentary and imprecise.
Collapse
Affiliation(s)
- Giovanna Sala
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Ed.4, 90128 Palermo, Italy;
| | - Salvatore Pasta
- Institute of Biosciences and BioResources, Italian National Research Council, via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Chemistry, University of Palermo, 90128 Palermo, Italy;
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Tommaso La Mantia
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Ed.4, 90128 Palermo, Italy;
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
4
|
Yue S, Wang X, Ge W, Li J, Yang C, Zhou Z, Zhang P, Yang X, Xiao W, Yang S. Deciphering Protein O-GalNAcylation: Method Development and Disease Implication. ACS OMEGA 2023; 8:19223-19236. [PMID: 37305274 PMCID: PMC10249083 DOI: 10.1021/acsomega.3c01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023]
Abstract
Mucin-type O-glycosylation is an important protein post-translational modification that is abundantly expressed on cell surface proteins. Protein O-glycosylation plays a variety of roles in cellular biological functions including protein structure and signal transduction to the immune response. Cell surface mucins are highly O-glycosylated and are the main substance of the mucosal barrier that protects the gastrointestinal or respiratory tract from infection by pathogens or microorganisms. Dysregulation of mucin O-glycosylation may impair mucosal protection against pathogens that can invade cells to trigger infection or immune evasion. Truncated O-glycosylation, also known as Tn antigen or O-GalNAcylation, is highly upregulated in diseases such cancer, autoimmune disorders, neurodegenerative diseases, and IgA nephropathy. Characterization of O-GalNAcylation helps decipher the role of Tn antigen in physiopathology and therapy. However, the analysis of O-glycosylation, specifically the Tn antigen, remains challenging due to the lack of reliable enrichment and identification assays compared to N-glycosylation. Here, we summarize recent advances in analytical methods for O-GalNAcylation enrichment and identification and highlight the biological role of the Tn antigen in various diseases and the clinical implications of identifying aberrant O-GalNAcylation.
Collapse
Affiliation(s)
- Shuang Yue
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
- Department
of Endocrinology, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiaotong Wang
- Department
of Hepatology and Gastroenterology, The
Affiliated Infectious Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Department
of Endocrinology, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Wei Ge
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
| | - Jiajia Li
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
| | - Chuanlai Yang
- Scientific
Research Department, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zeyang Zhou
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Peng Zhang
- Department
of Orthopedics, The Second Affiliated Hospital
of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiaodong Yang
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Wenjin Xiao
- Department
of Endocrinology, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
5
|
Sanz-Martinez I, Pereira S, Merino P, Corzana F, Hurtado-Guerrero R. Molecular Recognition of GalNAc in Mucin-Type O-Glycosylation. Acc Chem Res 2023; 56:548-560. [PMID: 36815693 PMCID: PMC9996832 DOI: 10.1021/acs.accounts.2c00723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
ConspectusN-Acetylgalactosamine (GalNAc)-type O-glycosylation is an essential posttranslational modification (PTM) that plays fundamental roles in biology. Malfunction of this PTM is exemplified by the presence of truncated O-glycans in cancer. For instance, the glycoprotein MUC1 is overexpressed in many tumor tissues and tends to carry simple oligosaccharides that allow for the presentation of different tumor-associated antigens, such as the Tn or sTn antigens (GalNAc-α-1-O-Thr/Ser and Neu5Acα2-6GalNAcα1-O-Ser/Thr, respectively). In other cases, such as tumoral calcinosis associated with O-glycosylation of the fibroblast growth factor 23, O-glycans are absent or less abundant. Significant progress has been made in determining the three-dimensional structures of biomolecules that recognize GalNAc, such as antibodies, lectins, mucinases, GalNAc-transferases, and other glycosyltransferases. Analysis of the complexes between these entities and GalNAc-containing glycopeptides, in most cases derived from crystallographic or NMR analysis, provides an understanding of the key structural elements that control molecular recognition of these glycopeptides. Here, we describe and compare the binding sites of these proteins in detail, focusing on how the GalNAc moieties interact selectively with them. We also summarize the differences and similarities in GalNAc recognition. In general, the recognition of GalNAc-containing glycopeptides is determined by hydrogen bonds between hydroxyl groups and the N-acetyl group of GalNAc with proteins, as well as CH-π contacts in which the hydrophobic α-face of the sugar and the methyl group of NHAc can be involved. The latter interaction usually provides the basis for selectivity. It is worth noting that binding of these glycopeptides depends primarily on recognition of the sugar moiety, with some exceptions such as a few anti-MUC1 antibodies that primarily recognize the peptide backbone and use the sugar to facilitate shape complementarity or to establish a limited number of interactions with the protein. Focusing specifically on the GalNAc moiety, we can observe that there is some degeneracy of interactions within the same protein families, likely due to substrate flexibility. However, when all studied proteins are considered together, despite the commonalities within each protein family, no pattern can be discerned between the different families, apart from the presence of common residues such as Tyr, His, or Asp, which are responsible for hydrogen bonds. The lack of a pattern can be anticipated, given the diverse functions of mucinases, glycosyltransferases, antibodies, and lectins. Finally, it is important to point out that the conformational differences observed in solution in glycopeptides bearing GalNAc-α-1-O-Ser or GalNAc-α-1-O-Thr also can be found in the bound state. This unique characteristic is exploited, for instance, by the enzyme C1GalT1 to broadly glycosylate both acceptor substrates. The findings summarized in this review may contribute to the rational structure-guided development of therapeutic vaccines, novel diagnostic tools for early cancer detection, and new cancer treatments for cancer with tailored anti-Tn or anti-STn antibodies or new drugs to inhibit GalNAc-T isoenzymes.
Collapse
Affiliation(s)
- Ignacio Sanz-Martinez
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Sandra Pereira
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Pedro Merino
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Francisco Corzana
- Department of Chemistry, Centro de Investigación en Síntesis Química, University of La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark.,Fundación ARAID, 50018 Zaragoza, Spain
| |
Collapse
|
6
|
Hassan AA, Wozniak JM, Vilen Z, Li W, Jadhav A, Parker CG, Huang ML. Chemoproteomic mapping of human milk oligosaccharide (HMO) interactions in cells. RSC Chem Biol 2022; 3:1369-1374. [PMID: 36544572 PMCID: PMC9709932 DOI: 10.1039/d2cb00176d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are a family of unconjugated soluble glycans found in human breast milk that exhibit a myriad of biological activity. While recent studies have uncovered numerous biological functions for HMOs (antimicrobial, anti-inflammatory & probiotic properties), the receptors and protein binding partners involved in these processes are not well characterized. This can be attributed largely in part to the low affinity and transient nature of soluble glycan-protein interactions, precluding the use of traditional characterization techniques to survey binding partners in live cells. Here, we present the use of synthetic photoactivatable HMO probes to capture, enrich and identify HMO protein targets in live cells using mass spectrometry-based chemoproteomics. Following initial validation studies using purified lectins, we profiled the targets of HMO probes in live mouse macrophages. Using this strategy, we mapped hundreds of HMO binding partners across multiple cellular compartments, including many known glycan-binding proteins as well as numerous proteins previously not known to bind glycans. We expect our findings to inform future investigations of the diverse roles of how HMOs may regulate protein function.
Collapse
Affiliation(s)
- Abdullah A Hassan
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Jacob M Wozniak
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Zak Vilen
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Weichao Li
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Appaso Jadhav
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Christopher G Parker
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| | - Mia L Huang
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd. La Jolla CA 92037 USA
| |
Collapse
|
7
|
Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, Mahal LK. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem Biol 2022; 17:2993-3012. [PMID: 35084820 PMCID: PMC9679999 DOI: 10.1021/acschembio.1c00689] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycans are critical to every facet of biology and medicine, from viral infections to embryogenesis. Tools to study glycans are rapidly evolving; however, the majority of our knowledge is deeply dependent on binding by glycan binding proteins (e.g., lectins). The specificities of lectins, which are often naturally isolated proteins, have not been well-defined, making it difficult to leverage their full potential for glycan analysis. Herein, we use a combination of machine learning algorithms and expert annotation to define lectin specificity for this important probe set. Our analysis uses comprehensive glycan microarray analysis of commercially available lectins we obtained using version 5.0 of the Consortium for Functional Glycomics glycan microarray (CFGv5). This data set was made public in 2011. We report the creation of this data set and its use in large-scale evaluation of lectin-glycan binding behaviors. Our motif analysis was performed by integrating 68 manually defined glycan features with systematic probing of computational rules for significant binding motifs using mono- and disaccharides and linkages. Combining machine learning with manual annotation, we create a detailed interpretation of glycan-binding specificity for 57 unique lectins, categorized by their major binding motifs: mannose, complex-type N-glycan, O-glycan, fucose, sialic acid and sulfate, GlcNAc and chitin, Gal and LacNAc, and GalNAc. Our work provides fresh insights into the complex binding features of commercially available lectins in current use, providing a critical guide to these important reagents.
Collapse
Affiliation(s)
- Daniel Bojar
- Department
of Chemistry and Molecular Biology and Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Gothenburg, Sweden 405 30
| | - Lawrence Meche
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - Guanmin Meng
- Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - William Eng
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States
| | - David F. Smith
- Department
of Biochemistry, Glycomics Center, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Richard D. Cummings
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lara K. Mahal
- Biomedical
Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New
York, New York 10003, United States,Department
of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2,E-mail:
| |
Collapse
|
8
|
Lucas TM, Gupta C, Altman MO, Sanchez E, Naticchia MR, Gagneux P, Singharoy A, Godula K. Mucin-mimetic glycan arrays integrating machine learning for analyzing receptor pattern recognition by influenza A viruses. Chem 2021; 7:3393-3411. [PMID: 34993358 PMCID: PMC8726012 DOI: 10.1016/j.chempr.2021.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Influenza A viruses (IAVs) exploit host glycans in airway mucosa for entry and infection. Detection of changes in IAV glycan-binding phenotype can provide early indication of transmissibility and infection potential. While zoonotic viruses are monitored for mutations, the influence of host glycan presentation on viral specificity remains obscured. Here, we describe an array platform which uses synthetic mimetics of mucin glycoproteins to model how receptor presentation and density in the mucinous glycocalyx may impact IAV recognition. H1N1 and H3N2 binding in arrays of α2,3- and α2,6-sialyllactose receptors confirmed their known sialic acid-binding specificities and revealed their different sensitivities to receptor presentation. Further, the transition of H1N1 from avian to mammalian cell culture improved the ability of the virus to recognize mucin-like displays of α2,6-sialic acid receptors. Support vector machine (SVM) learning efficiently characterized this shift in binding preference and may prove useful to study viral evolution to a new host.
Collapse
Affiliation(s)
- Taryn M. Lucas
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Meghan O. Altman
- Department of Pathology, Division of Comparative Pathology and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Emi Sanchez
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Matthew R. Naticchia
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Pascal Gagneux
- Department of Pathology, Division of Comparative Pathology and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
9
|
Whitmore EK, Martin D, Guvench O. Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular Dynamics. Int J Mol Sci 2020; 21:ijms21207699. [PMID: 33080973 PMCID: PMC7589010 DOI: 10.3390/ijms21207699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) and are key mediators in the bioactivity of PGs in animal tissue. GAGs are heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharide units. These complexities make studying GAG conformation a challenge for existing experimental and computational methods. We previously described an algorithm we developed that applies conformational parameters (i.e., all bond lengths, bond angles, and dihedral angles) from molecular dynamics (MD) simulations of nonsulfated chondroitin GAG 20-mers to construct 3-D atomic-resolution models of nonsulfated chondroitin GAGs of arbitrary length. In the current study, we applied our algorithm to other GAGs, including hyaluronan and nonsulfated forms of dermatan, keratan, and heparan and expanded our database of MD-generated GAG conformations. Here, we show that individual glycosidic linkages and monosaccharide rings in 10- and 20-mers of hyaluronan and nonsulfated dermatan, keratan, and heparan behave randomly and independently in MD simulation and, therefore, using a database of MD-generated 20-mer conformations, that our algorithm can construct conformational ensembles of 10- and 20-mers of various GAG types that accurately represent the backbone flexibility seen in MD simulations. Furthermore, our algorithm efficiently constructs conformational ensembles of GAG 200-mers that we would reasonably expect from MD simulations.
Collapse
Affiliation(s)
- Elizabeth K. Whitmore
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Devon Martin
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
| | - Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; (E.K.W.); (D.M.)
- Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA
- Correspondence: ; Tel.: +1-207-221-4171
| |
Collapse
|
10
|
Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Semin Cancer Biol 2020; 80:87-106. [PMID: 32068087 DOI: 10.1016/j.semcancer.2020.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Plant lectins, a natural source of glycans with a therapeutic potential may lead to the discovery of new targeted therapies. Glycans extracted from plant lectins are known to act as ligands for C-type lectin receptors (CLRs) that are primarily present on immune cells. Plant-derived glycosylated lectins offer diversity in their N-linked oligosaccharide structures that can serve as a unique source of homogenous and heterogenous glycans. Among the plant lectins-derived glycan motifs, Man9GlcNAc2Asn exhibits high-affinity interactions with CLRs that may resemble glycan motifs of pathogens. Thus, such glycan domains when presented along with antigens complexed with a nanocarrier of choice may bewilder the immune cells and direct antigen cross-presentation - a cytotoxic T lymphocyte immune response mediated by CD8+ T cells. Glycan structure analysis has attracted considerable interest as glycans are looked upon as better therapeutic alternatives than monoclonal antibodies due to their cost-effectiveness, reduced toxicity and side effects, and high specificity. Furthermore, this approach will be useful to understand whether the multivalent glycan presentation on the surface of nanocarriers can overcome the low-affinity lectin-ligand interaction and thereby modulation of CLR-dependent immune response. Besides this, understanding how the heterogeneity of glycan structure impacts the antigen cross-presentation is pivotal to develop alternative targeted therapies. In the present review, we discuss the findings on structural analysis of glycans from natural lectins performed using GlycanBuilder2 - a software tool based on a thorough literature review of natural lectins. Additionally, we discuss how multiple parameters like the orientation of glycan ligands, ligand density, simultaneous targeting of multiple CLRs and design of antigen delivery nanocarriers may influence the CLR targeting efficacy. Integrating this information will eventually set the ground for new generation immunotherapeutic vaccine design for the treatment of various human malignancies.
Collapse
|
11
|
Nagarajan B, Sankaranarayanan NV, Desai UR. Perspective on computational simulations of glycosaminoglycans. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2019; 9:e1388. [PMID: 31080520 PMCID: PMC6504973 DOI: 10.1002/wcms.1388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/07/2018] [Indexed: 01/06/2023]
Abstract
Glycosaminoglycans (GAGs) represent a formidable frontier for chemists, biochemists, biologists, medicinal chemists and drug delivery specialists because of massive structural complexity. GAGs are arguably the most complex, natural linear biopolymers with theoretical diversity orders of magnitude higher than proteins and nucleic acids. Yet, this diversity remains generally untapped. Computational approaches offer major routes to understand GAG structure and dynamics so as to enable novel applications of these biopolymers. In fact, computational algorithms, softwares, online tools and techniques have reached a level of sophistication that help understand atomistic details of conformational variation and protein recognition of individual GAG sequences. This review describes current approaches and challenges in computational study of GAGs. It presents a history of major findings since the earliest mention of GAGs (the 1960s), the development of parameters and force fields specific for GAGs, and the application of these tools in understanding GAG structure-function relationship. This review also presents a section on how to perform simulation of GAGs, which is directed toward researchers interested in entering this promising field with potential to impact therapy.
Collapse
Affiliation(s)
- Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond,
VA 23298, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond,
VA 23298, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond,
VA 23298, USA
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
12
|
Poiroux G, Barre A, van Damme EJM, Benoist H, Rougé P. Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy. Int J Mol Sci 2017; 18:ijms18061232. [PMID: 28598369 PMCID: PMC5486055 DOI: 10.3390/ijms18061232] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022] Open
Abstract
Aberrant O-glycans expressed at the surface of cancer cells consist of membrane-tethered glycoproteins (T and Tn antigens) and glycolipids (Lewis a, Lewis x and Forssman antigens). All of these O-glycans have been identified as glyco-markers of interest for the diagnosis and the prognosis of cancer diseases. These epitopes are specifically detected using T/Tn-specific lectins isolated from various plants such as jacalin from Artocarpus integrifola, and fungi such as the Agaricus bisporus lectin. These lectins accommodate T/Tn antigens at the monosaccharide-binding site; residues located in the surrounding extended binding-site of the lectins often participate in the binding of more extended epitopes. Depending on the shape and size of the extended carbohydrate-binding site, their fine sugar-binding specificity towards complex O-glycans readily differs from one lectin to another, resulting in a great diversity in their sugar-recognition capacity. T/Tn-specific lectins have been extensively used for the histochemical detection of cancer cells in biopsies and for the follow up of the cancer progression and evolution. T/Tn-specific lectins also induce a caspase-dependent apoptosis in cancer cells, often associated with a more or less severe inhibition of proliferation. Moreover, they provide another potential source of molecules adapted to the building of photosensitizer-conjugates allowing a specific targeting to cancer cells, for the photodynamic treatment of tumors.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche, Centre de Recherche en Cancérologie de Toulouse, 31037 Toulouse, France.
| | - Annick Barre
- Unité Mixte de Recherche, 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers Université Paul Sabatier, 31062 Toulouse, France.
| | - Els J M van Damme
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Hervé Benoist
- Unité Mixte de Recherche, 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers Université Paul Sabatier, 31062 Toulouse, France.
| | - Pierre Rougé
- Unité Mixte de Recherche, 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers Université Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
13
|
Lubkowski J, Durbin SV, Silva MC, Farnsworth D, Gildersleeve JC, Oliva MLV, Wlodawer A. Structural analysis and unique molecular recognition properties of a Bauhinia forficata lectin that inhibits cancer cell growth. FEBS J 2017; 284:429-450. [PMID: 27973758 PMCID: PMC6257985 DOI: 10.1111/febs.13989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 11/27/2022]
Abstract
Lectins have been used at length for basic research and clinical applications. New insights into the molecular recognition properties enhance our basic understanding of carbohydrate-protein interactions and aid in the design/development of new lectins. In this study, we used a combination of cell-based assays, glycan microarrays, and X-ray crystallography to evaluate the structure and function of the recombinant Bauhinia forficata lectin (BfL). The lectin was shown to be cytostatic for several cancer cell lines included in the NCI-60 panel; in particular, it inhibited growth of melanoma cancer cells (LOX IMVI) by over 95%. BfL is dimeric in solution and highly specific for binding of oligosaccharides and glycopeptides with terminal N-acetylgalactosamine (GalNAc). BfL was found to have especially strong binding (apparent Kd = 0.5-1.0 nm) to the tumor-associated Tn antigen. High-resolution crystal structures were determined for the ligand-free lectin, as well as for its complexes with three Tn glycopeptides, globotetraose, and the blood group A antigen. Extensive analysis of the eight crystal structures and comparison to structures of related lectins revealed several unique features of GalNAc recognition. Of special note, the carboxylate group of Glu126, lining the glycan-binding pocket, forms H-bonds with both the N-acetyl of GalNAc and the peptide amido group of Tn antigens. Stabilization provided by Glu126 is described here for the first time for any GalNAc-specific lectin. Taken together, the results provide new insights into the molecular recognition of carbohydrates and provide a structural understanding that will enable rational engineering of BfL for a variety of applications. DATABASE Structural data are available in the PDB under the accession numbers 5T50, 5T52, 5T55, 5T54, 5T5L, 5T5J, 5T5P, and 5T5O.
Collapse
MESH Headings
- Acetylgalactosamine/chemistry
- Acetylgalactosamine/metabolism
- Antigens, Tumor-Associated, Carbohydrate/chemistry
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Bauhinia/chemistry
- Binding Sites
- Blood Group Antigens/chemistry
- Blood Group Antigens/metabolism
- Cell Line, Tumor
- Cloning, Molecular
- Crystallography, X-Ray
- Dimerization
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Globosides/chemistry
- Globosides/metabolism
- Glycopeptides/chemistry
- Glycopeptides/metabolism
- Humans
- Hydrogen Bonding
- Kinetics
- Models, Molecular
- Oligosaccharides/chemistry
- Oligosaccharides/metabolism
- Plant Extracts/chemistry
- Plant Lectins/chemistry
- Plant Lectins/isolation & purification
- Plant Lectins/pharmacology
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- Jacek Lubkowski
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sarah V. Durbin
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Mariana C.C. Silva
- Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de Maio, 100, 04044-020 São Paulo, SP, Brazil
| | - David Farnsworth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Maria Luiza V. Oliva
- Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de Maio, 100, 04044-020 São Paulo, SP, Brazil
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
14
|
Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types. Sci Rep 2016; 6:28344. [PMID: 27321048 PMCID: PMC4913266 DOI: 10.1038/srep28344] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/31/2016] [Indexed: 01/07/2023] Open
Abstract
MytiLec is a lectin, isolated from bivalves, with cytotoxic activity against cancer cell lines that express globotriaosyl ceramide, Galα(1,4)Galβ(1,4)Glcα1-Cer, on the cell surface. Functional analysis shows that the protein binds to the disaccharide melibiose, Galα(1,6)Glc, and the trisaccharide globotriose, Galα(1,4)Galβ(1,4)Glc. Recombinant MytiLec expressed in bacteria showed the same haemagglutinating and cytotoxic activity against Burkitt's lymphoma (Raji) cells as the native form. The crystal structure has been determined to atomic resolution, in the presence and absence of ligands, showing the protein to be a member of the β-trefoil family, but with a mode of ligand binding unique to a small group of related trefoil lectins. Each of the three pseudo-equivalent binding sites within the monomer shows ligand binding, and the protein forms a tight dimer in solution. An engineered monomer mutant lost all cytotoxic activity against Raji cells, but retained some haemagglutination activity, showing that the quaternary structure of the protein is important for its cellular effects.
Collapse
|
15
|
Makyio H, Kato R. Classification and Comparison of Fucose-Binding Lectins Based on Their Structures. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1429.1e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hisayoshi Makyio
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science,
High Energy Accelerator Research Organization (KEK)
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science,
High Energy Accelerator Research Organization (KEK)
| |
Collapse
|
16
|
Makyio H, Kato R. Classification and Comparison of Fucose-Binding Lectins Based on Their Structures. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1429.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hisayoshi Makyio
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science,
High Energy Accelerator Research Organization (KEK)
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science,
High Energy Accelerator Research Organization (KEK)
| |
Collapse
|
17
|
Revoredo L, Wang S, Bennett EP, Clausen H, Moremen KW, Jarvis DL, Ten Hagen KG, Tabak LA, Gerken TA. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology 2015; 26:360-76. [PMID: 26610890 DOI: 10.1093/glycob/cwv108] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/16/2015] [Indexed: 01/02/2023] Open
Abstract
A large family of UDP-GalNAc:polypeptide GalNAc transferases (ppGalNAc-Ts) initiates and defines sites of mucin-type Ser/Thr-O-GalNAc glycosylation. Family members have been classified into peptide- and glycopeptide-preferring subfamilies, although both families possess variable activities against glycopeptide substrates. All but one isoform contains a C-terminal carbohydrate-binding lectin domain whose roles in modulating glycopeptide specificity is just being understood. We have previously shown for several peptide-preferring isoforms that the presence of a remote Thr-O-GalNAc, 6-17 residues from a Ser/Thr acceptor site, may enhance overall catalytic activity in an N- or C-terminal direction. This enhancement varies with isoform and is attributed to Thr-O-GalNAc interactions at the lectin domain. We now report on the glycopeptide substrate utilization of a series of glycopeptide (human-ppGalNAc-T4, T7, T10, T12 and fly PGANT7) and peptide-preferring transferases (T2, T3 and T5) by exploiting a series of random glycopeptide substrates designed to probe the functions of their catalytic and lectin domains. Glycosylation was observed at the -3, -1 and +1 residues relative to a neighboring Thr-O-GalNAc, depending on isoform, which we attribute to specific Thr-O-GalNAc binding at the catalytic domain. Additionally, these glycopeptide-preferring isoforms show remote lectin domain-assisted Thr-O-GalNAc enhancements that vary from modest to none. We conclude that the glycopeptide specificity of the glycopeptide-preferring isoforms predominantly resides in their catalytic domain but may be further modulated by remote lectin domain interactions. These studies further demonstrate that both domains of the ppGalNAc-Ts have specialized and unique functions that work in concert to control and order mucin-type O-glycosylation.
Collapse
Affiliation(s)
| | - Shengjun Wang
- Copenhagen Center for Glycomics (CCG), Departments of Cellular and Molecular Medicine and Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Eric Paul Bennett
- Copenhagen Center for Glycomics (CCG), Departments of Cellular and Molecular Medicine and Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics (CCG), Departments of Cellular and Molecular Medicine and Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Lawrence A Tabak
- Section on Biological Chemistry, Department of Health and Human Services, NIDCR, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A Gerken
- Department of Chemistry Department of Pediatrics and Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Walski T, Van Damme EJM, Smagghe G. Penetration through the peritrophic matrix is a key to lectin toxicity against Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2014; 70:94-101. [PMID: 25240534 DOI: 10.1016/j.jinsphys.2014.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 06/03/2023]
Abstract
In the last decades lectins have received a lot of attention as potential tools in pest control. Despite substantial progress in the field not all the factors determining insecticidal potency and selectivity of these proteins have been described. Recently, three lectins, RSA (Rhizoctonia solani agglutinin), SNA-I and SNA-II (Sambucus nigra agglutinin I and II) have been shown to be toxic to aphids and caterpillars. In this project we investigated if these lectins are also toxic against larvae and a cell line of the red flour beetle, Tribolium castaneum, a model organism and important pest of stored products. Furthermore, we analyzed the stability of the lectins in the larval gut and used confocal microscopy to compare their efficiency in passing through the peritrophic matrix (PM). We observed that all three lectins were toxic against the T. castaneum cell line and their effectiveness in vitro was in decreasing order SNA-II>SNA-I>RSA with the respective EC50 being 0.1, 0.5 and 3.6 μg/ml. Larvae feeding for 16 day on diets containing 2% RSA, 2% SNA-II and 2% SNA-I weighed 0.14 ± 0.07 mg, 0.67 ± 0.44 mg and 1.89 ± 0.38 mg, corresponding to approximately 7%, 36% and 80% of control larvae, respectively. As a consequence, RSA increased the time to adult emergence by over 3-fold, SNA-II by 1.9-fold and SNA-I by 1.2-fold. RSA and SNA-II were stable in the larval gut, while SNA-I was digested and excreted with the feces. Finally, confocal microscopy confirmed that RSA passed through the PM more efficiently than SNA-II. In conclusion, our data suggest that the lectin ability to pass through the PM, governed by molecule dimensions, charge and size of PM pores, is one of the features that determine the toxicity of these insecticidal proteins.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Coupure Links 653, Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, Ghent, Belgium; NB-Photonics, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, Ghent, Belgium.
| |
Collapse
|
19
|
Agostino M, Velkov T, Dingjan T, Williams SJ, Yuriev E, Ramsland PA. The carbohydrate-binding promiscuity of Euonymus europaeus lectin is predicted to involve a single binding site. Glycobiology 2014; 25:101-14. [PMID: 25209582 DOI: 10.1093/glycob/cwu095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Euonymus europaeus lectin (EEL) is a carbohydrate-binding protein derived from the fruit of the European spindle tree. EEL was first identified for its erythrocyte agglutinating properties and specificity for B and H blood groups. However, a detailed molecular picture of the structural basis of carbohydrate recognition by EEL remains to be developed. In this study, we performed fluorescence titrations of a range of carbohydrates against EEL. Binding of EEL to a wide range of carbohydrates was observed, including a series of blood group-related carbohydrates, mannosides, chitotriose and sialic acid. Affinity was strongest for carbohydrates with H-related structures and the B trisaccharide. A homology model of EEL was produced from templates identified using the HHPred server, which employs hidden Markov models (HMMs) to identify templates. The HMM approach identified that the best templates for EEL were proteins featuring a ricin B-like (R-type) fold. Separate templates were used to model the core and binding site regions of the lectin. Through the use of constrained docking and spatial comparison with a template ligand, binding modes for the carbohydrate ligands were predicted. A relationship between the experimental binding energies and the computed binding energies of the selected docked poses was determined and optimized. Collectively, our results suggest that EEL utilizes a single site for recognition of carbohydrates terminating in a variety of monosaccharides.
Collapse
Affiliation(s)
- Mark Agostino
- School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, WA 6845, Australia Joint BSC-IRB Research Program in Computational Biology, Life Science Department, Barcelona Supercomputing Centre, Barcelona 08034, Spain Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Tony Velkov
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Tamir Dingjan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Elizabeth Yuriev
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Paul A Ramsland
- School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, WA 6845, Australia Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia Department of Surgery Austin Health, University of Melbourne, Heidelberg, VIC 3084, Australia Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
20
|
Shang C, Van Damme EJM. Comparative analysis of carbohydrate binding properties of Sambucus nigra lectins and ribosome-inactivating proteins. Glycoconj J 2014; 31:345-54. [PMID: 24853865 DOI: 10.1007/s10719-014-9527-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 12/12/2022]
Abstract
In the past three decades a lot of research has been done on the extended family of carbohydrate-binding proteins from Sambucus nigra, including several so-called type 2 RIPs as well as hololectins. Although all these proteins have been studied for their carbohydrate-binding properties using hapten inhibition assays, detailed carbohydrate specificity studies have only been performed for a few Sambucus proteins. In particular SNA-I, has been studied extensively. Because of its unique binding characteristics this lectin was developed as an important tool in glycoconjugate research to detect sialic acid containing glycoconjugates. At present much less information is available with respect to the detailed carbohydrate binding specificity of other S. nigra lectins and RIPs, and as a consequence their applications remain limited. In this paper we report a comparative analysis of several lectins from S. nigra using the glycan microarray technology. Ultimately a better understanding of the ligands for each lectin can contribute to new/more applications for these lectins in glycoconjugate research. Furthermore, the data from glycan microarray analyses combined with the previously obtained sequence information can help to explain how evolution within a single lectin family eventually yielded a set of carbohydrate-binding proteins with a very broad specificity range.
Collapse
Affiliation(s)
- Chenjing Shang
- Department of Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | |
Collapse
|
21
|
Structure and Function of Carbohydrate-Binding Module Families 13 and 42 of Glycoside Hydrolases, Comprising a β-Trefoil Fold. Biosci Biotechnol Biochem 2014; 77:1363-71. [DOI: 10.1271/bbb.130183] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Gregorio-Jauregui KM, Carrizalez-Alvarez SA, Rivera-Salinas JE, Saade H, Martinez JL, López RG, Segura EP, Ilyina A. Extraction and Immobilization of SA-α-2,6-Gal Receptors on Magnetic Nanoparticles to Study Receptor Stability and Interaction with Sambucus nigra Lectin. Appl Biochem Biotechnol 2014; 172:3721-35. [DOI: 10.1007/s12010-014-0801-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|
23
|
Fei Y, Landry JP, Li Y, Yu H, Lau K, Huang S, Chokhawala HA, Chen X, Zhu XD. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:114102. [PMID: 24289409 PMCID: PMC3838479 DOI: 10.1063/1.4826352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10,000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.
Collapse
Affiliation(s)
- Yiyan Fei
- Department of Physics, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gerken TA, Revoredo L, Thome JJC, Tabak LA, Vester-Christensen MB, Clausen H, Gahlay GK, Jarvis DL, Johnson RW, Moniz HA, Moremen K. The lectin domain of the polypeptide GalNAc transferase family of glycosyltransferases (ppGalNAc Ts) acts as a switch directing glycopeptide substrate glycosylation in an N- or C-terminal direction, further controlling mucin type O-glycosylation. J Biol Chem 2013; 288:19900-14. [PMID: 23689369 PMCID: PMC3707691 DOI: 10.1074/jbc.m113.477877] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/17/2013] [Indexed: 01/22/2023] Open
Abstract
Mucin type O-glycosylation is initiated by a large family of polypeptide GalNAc transferases (ppGalNAc Ts) that add α-GalNAc to the Ser and Thr residues of peptides. Of the 20 human isoforms, all but one are composed of two globular domains linked by a short flexible linker: a catalytic domain and a ricin-like lectin carbohydrate binding domain. Presently, the roles of the catalytic and lectin domains in peptide and glycopeptide recognition and specificity remain unclear. To systematically study the role of the lectin domain in ppGalNAc T glycopeptide substrate utilization, we have developed a series of novel random glycopeptide substrates containing a single GalNAc-O-Thr residue placed near either the N or C terminus of the glycopeptide substrate. Our results reveal that the presence and N- or C-terminal placement of the GalNAc-O-Thr can be important determinants of overall catalytic activity and specificity that differ between transferase isoforms. For example, ppGalNAc T1, T2, and T14 prefer C-terminally placed GalNAc-O-Thr, whereas ppGalNAc T3 and T6 prefer N-terminally placed GalNAc-O-Thr. Several transferase isoforms, ppGalNAc T5, T13, and T16, display equally enhanced N- or C-terminal activities relative to the nonglycosylated control peptides. This N- and/or C-terminal selectivity is presumably due to weak glycopeptide binding to the lectin domain, whose orientation relative to the catalytic domain is dynamic and isoform-dependent. Such N- or C-terminal glycopeptide selectivity provides an additional level of control or fidelity for the O-glycosylation of biologically significant sites and suggests that O-glycosylation may in some instances be exquisitely controlled.
Collapse
Affiliation(s)
- Thomas A. Gerken
- From the Departments of Pediatrics (W. A. Bernbaum Center for Cystic Fibrosis Research)
- Biochemistry, and
- Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Leslie Revoredo
- Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Joseph J. C. Thome
- From the Departments of Pediatrics (W. A. Bernbaum Center for Cystic Fibrosis Research)
| | - Lawrence A. Tabak
- the Section on Biological Chemistry, NIDCR, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892
| | - Malene Bech Vester-Christensen
- the Copenhagen Center for Glycomics (CCG), Departments of Cellular and Molecular Medicine and Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- the Copenhagen Center for Glycomics (CCG), Departments of Cellular and Molecular Medicine and Dentistry, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Gagandeep K. Gahlay
- the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, and
| | - Donald L. Jarvis
- the Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, and
| | - Roy W. Johnson
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Heather A. Moniz
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Kelley Moremen
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
25
|
Schubert M, Bleuler-Martinez S, Butschi A, Wälti MA, Egloff P, Stutz K, Yan S, Wilson IBH, Hengartner MO, Aebi M, Allain FHT, Künzler M. Plasticity of the β-trefoil protein fold in the recognition and control of invertebrate predators and parasites by a fungal defence system. PLoS Pathog 2012; 8:e1002706. [PMID: 22615566 PMCID: PMC3355094 DOI: 10.1371/journal.ppat.1002706] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/02/2012] [Indexed: 11/29/2022] Open
Abstract
Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, we present a novel fruiting body lectin, CCL2, from the ink cap mushroom Coprinopsis cinerea. We demonstrate the toxicity of the lectin towards Caenorhabditis elegans and Drosophila melanogaster and present its NMR solution structure in complex with the trisaccharide, GlcNAcβ1,4[Fucα1,3]GlcNAc, to which it binds with high specificity and affinity in vitro. The structure reveals that the monomeric CCL2 adopts a β-trefoil fold and recognizes the trisaccharide by a single, topologically novel carbohydrate-binding site. Site-directed mutagenesis of CCL2 and identification of C. elegans mutants resistant to this lectin show that its nematotoxicity is mediated by binding to α1,3-fucosylated N-glycan core structures of nematode glycoproteins; feeding with fluorescently labeled CCL2 demonstrates that these target glycoproteins localize to the C. elegans intestine. Since the identified glycoepitope is characteristic for invertebrates but absent from fungi, our data show that the defence function of fruiting body lectins is based on the specific recognition of non-self carbohydrate structures. The trisaccharide specifically recognized by CCL2 is a key carbohydrate determinant of pollen and insect venom allergens implying this particular glycoepitope is targeted by both fungal defence and mammalian immune systems. In summary, our results demonstrate how the plasticity of a common protein fold can contribute to the recognition and control of antagonists by an innate defence mechanism, whereby the monovalency of the lectin for its ligand implies a novel mechanism of lectin-mediated toxicity.
Collapse
Affiliation(s)
- Mario Schubert
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | | | - Alex Butschi
- Institute of Molecular Life Sciences, University of Zürich, Switzerland
| | | | - Pascal Egloff
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Katrin Stutz
- Institute of Molecular Life Sciences, University of Zürich, Switzerland
| | - Shi Yan
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Iain B. H. Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Markus Aebi
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Markus Künzler
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
26
|
Sattelle BM, Almond A. Is N-acetyl-D-glucosamine a rigid 4C1 chair? Glycobiology 2011; 21:1651-62. [PMID: 21807769 PMCID: PMC3219419 DOI: 10.1093/glycob/cwr101] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 06/28/2011] [Accepted: 07/19/2011] [Indexed: 12/17/2022] Open
Abstract
Understanding microsecond-timescale dynamics is crucial to establish three-dimensional (3D) structure-activity relationships in sugars but has been intractable to experiments and simulations. As a consequence, whether arguably the most important chemical scaffold in glycobiology, N-acetyl-d-glucosamine (GlcNAc), deviates from a rigid (4)C(1) chair is unknown. Here, conformer populations and exchange kinetics were quantified from the longest aqueous carbohydrate simulations to date (0.2 ms total) of GlcNAc, four derivatives from heparan sulfate and their methylglycosides. Unmodified GlcNAc took 3-5 μs to reach a conformational equilibrium, which comprised a metastable (4)C(1) chair that underwent (4)C(1) ↔ (1)C(4) transitions at a predicted forward rate of 0.8 μs(-1) with an average (1)C(4)-chair lifetime of 3 ns. These predictions agree with high-resolution crystallography and nuclear magnetic resonance but not with the hypothesis that GlcNAc is a rigid (4)C(1) chair, concluded from previous experimental analyses and non-aqueous modeling. The methylglycoside was calculated to have a slower forward rate (0.3 μs(-1)) and a more stable (4)C(1) conformer (0.2 kcal mol(-1)), suggesting that pivotal 3D intermediates (particularly (2)S(O), (1)S(5) and B(2,5)) increased in energy, and water was implicated as a major cause. Sulfonation (N-, 3-O and 6-O) significantly augmented this effect by blocking pseudorotation, but did not alter the rotational preferences of hydroyxl or hydroxymethyl groups. We therefore propose that GlcNAc undergoes puckering exchange that is dependent on polymerization and sulfo substituents. Our analyses, and 3D model of the equilibrium GlcNAc conformer in water, can be used as dictionary data and present new opportunities to rationally modify puckering and carbohydrate bioactivity, with diverse applications from improving crop yields to disease amelioration.
Collapse
Affiliation(s)
| | - Andrew Almond
- Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
27
|
Yang JP, Ma XX, He YX, Li WF, Kang Y, Bao R, Chen Y, Zhou CZ. Crystal structure of the 30K protein from the silkworm Bombyx mori reveals a new member of the β-trefoil superfamily. J Struct Biol 2011; 175:97-103. [DOI: 10.1016/j.jsb.2011.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/07/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
|
28
|
Nakamura T, Tonozuka T, Ito S, Takeda Y, Sato R, Matsuo I, Ito Y, Oguma K, Nishikawa A. Molecular diversity of the two sugar-binding sites of the β-trefoil lectin HA33/C (HA1) from Clostridium botulinum type C neurotoxin. Arch Biochem Biophys 2011; 512:69-77. [PMID: 21640703 DOI: 10.1016/j.abb.2011.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
A critical role in internalizing the Clostridium botulinum neurotoxin into gastrointestinal cells is played by nontoxic components complexed with the toxin. One of the components, a β-trefoil lectin has been known as HA33 or HA1. The HA33 from C. botulinum type A (HA33/A) has been predicted to have a single sugar-binding site, while type C HA33 (HA33/C) has two sites. Here we constructed HA33/C mutants and evaluated the binding capacities of the individual sites through mucin-assay and isothermal titration calorimetry. The mutant W176A (site I knockout) had a K(d) value of 31.5mM for galactose (Gal) and 61.3mM for N-acetylgalactosamine (GalNAc), while the K(d) value for N-acetylneuraminic acid (Neu5Ac) was too high to be determined. In contrast, the double mutant N278A/Q279A (site II knockout) had a K(d) value of 11.8mM for Neu5Ac. We also determined the crystal structures of wild-type and the F179I mutant in complex with GalNAc at site II. The results suggest that site I of HA33/C is quite unique in that it mainly recognizes Neu5Ac, and site II seems less important for the lectin specificity. The architectures and the properties of the sugar-binding sites of HA33/C and HA33/A were shown to be drastically different.
Collapse
Affiliation(s)
- Toshio Nakamura
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Karalewitz APA, Kroken AR, Fu Z, Baldwin MR, Kim JJP, Barbieri JT. Identification of a unique ganglioside binding loop within botulinum neurotoxins C and D-SA . Biochemistry 2010; 49:8117-26. [PMID: 20731382 PMCID: PMC2939319 DOI: 10.1021/bi100865f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G) based on a lack of cross antiserum neutralization. BoNTs utilize gangliosides as components of the host receptors for binding and entry into neurons. Members of BoNT/C and BoNT/D serotypes include mosaic toxins that are organized in D/C and C/D toxins. One D/C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with BoNT serotype C or D, which stimulated this study. Here the crystal structures of the receptor binding domains of BoNT/C, BoNT/D, and BoNT/D-SA are presented. Biochemical and cell binding studies show that BoNT/C and BoNT/D-SA possess unique mechanisms for ganglioside binding. These studies provide new information about how the BoNTs can enter host cells as well as a basis for understanding the immunological diversity of these neurotoxins.
Collapse
Affiliation(s)
- Andrew P-A. Karalewitz
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Abby R. Kroken
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zhuji Fu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael R. Baldwin
- Department of Microbiology and Immunology at the University of Missouri, Columbia, Missouri
| | - Jung-Ja P. Kim
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joseph T. Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
30
|
|