1
|
Zhang X, Zhang Y, Fan T, Feng Z, Yang L. Structure-guided engineered urethanase from Candida parapsilosis with pH and ethanol tolerance to efficiently degrade ethyl carbamate in Chinese rice wine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116335. [PMID: 38626603 DOI: 10.1016/j.ecoenv.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Urethane hydrolase can degrade the carcinogen ethyl carbamate (EC) in fermented food, but its stability and activity limit its application. In this study, a mutant G246A and a double mutant N194V/G246A with improved cpUH activity and stability of Candida parapsilosis were obtained by site-directed mutagenesis. The catalytic efficiency (Kcat/Km) of mutant G246A and double mutant N194V/G246A are 1.95 times and 1.88 times higher than that of WT, respectively. In addition, compared with WT, the thermal stability and pH stability of mutant G246A and double mutant N194V/G246A were enhanced. The ability of mutant G246A and double mutant N194V/G246A to degrade EC in rice wine was also stronger than that of WT. The mutation increased the stability of the enzyme, as evidenced by decreased root mean square deviation (RMSD) and increased hydrogen bonds between the enzyme and substrate by molecular dynamics simulation and molecular docking analysis. The molecule modification of new cpUH promotes the industrial process of EC degradation.
Collapse
Affiliation(s)
- Xian Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Yao Zhang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Tingting Fan
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China.
| | - Zhiping Feng
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| | - Lijuan Yang
- College of Bioengineering, Sichuan University of Science & Engineering, Yinbin, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, China.
| |
Collapse
|
2
|
Singh RK, Chaurasiya AK, Kumar A. Ab initio modeling of human IRS1 protein to find novel target to dock with drug MH to mitigate T2DM diabetes by insulin signaling. 3 Biotech 2024; 14:108. [PMID: 38476643 PMCID: PMC10925585 DOI: 10.1007/s13205-024-03955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
IRS1 is a cytoplasmic adaptor protein that helps in cellular growth, glucose metabolism, proliferation, and differentiation. Highly disordered (insulin receptor substrate 1) IRS1 protein sequence (mol.wt- 131,590.97 da) has been used to develop model using ab initio modeling technique by I-Tassar tool and Discovery Studio/ DogSite Server to decipher a novel active site. The constructed protein model has been submitted with PMDB Id- PM0082210. GRAVY index of IRS1 model ( - 0.675) indicated surface protein-water interaction. Protparam tool instability index (75.22) demonstrated disorderedness combined with loops owing to prolines/glycines. After refinement, the Ramachandran plot showed that 88 percent of AAs were present in the allowed region and only 0.5% in the disallowed region. Novel IRS1 model protein has 10 α-helices, 22 β-sheets, 20 β-hairpins, 5 β-bulges, 47 strands, 105 β-turns, and 8 γ-turns. Docking of IRS1 with drug MH demonstrated interaction of Ser-70, Thr-18, and Pro-69 with C-H bonds; Gln-71, and Glu-113 with hydrogen bonds; while both Glu-114 and Glu-113 with salt-bridge connection. Permissible 1.0-1.5 Å range of RMSD fluctuation between 20 and 45 ns was obtained in simulation of IRS1 and IRS1-met complex confirmed that both complexes were stable during whole simulation process. RMSF result showed that except positions 57AA and 114AA, the binding of drug had no severe effects on the flexibility of the IRS1 and IRS1-met complex. The RoG value of compactness and rigidity showed little change in IRS1 protein. SASA value of IRS1 indicated non-significant fluctuation between IRS1 and drug MH means ligand (drug) and IRS1 receptor form stable structure. Hydrogen bond strength of IRS1 and IRS1-met was 81.2 and 76.4, respectively, which suggested stable interaction.
Collapse
Affiliation(s)
- Ritika Kumari Singh
- School of Biotechnology, Institute of Science, BHU, Varanasi, Uttar Pradesh 221005 India
| | | | - Arvind Kumar
- School of Biotechnology, Institute of Science, BHU, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
3
|
Zhu T, Sun J, Pang H, Wu B. Computational Enzyme Redesign Enhances Tolerance to Denaturants for Peptide C-Terminal Amidation. JACS AU 2024; 4:788-797. [PMID: 38425901 PMCID: PMC10900485 DOI: 10.1021/jacsau.3c00792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
The escalating demand for biocatalysts in pharmaceutical and biochemical applications underscores the critical imperative to enhance enzyme activity and durability under high denaturant concentrations. Nevertheless, the development of a practical computational redesign protocol for improving enzyme tolerance to denaturants is challenging due to the limitations of relying solely on model-driven approaches to adequately capture denaturant-enzyme interactions. In this study, we introduce an enzyme redesign strategy termed GRAPE_DA, which integrates multiple data-driven and model-driven computational methods to mitigate the sampling biases inherent in a single approach and comprehensively predict beneficial mutations on both the protein surface and backbone. To illustrate the methodology's effectiveness, we applied it to engineer a peptidylamidoglycolate lyase, resulting in a variant exhibiting up to a 24-fold increase in peptide C-terminal amidation activity under 2.5 M guanidine hydrochloride. We anticipate that this integrated engineering strategy will facilitate the development of enzymatic peptide synthesis and functionalization under denaturing conditions and highlight the role of engineering surface residues in governing protein stability.
Collapse
Affiliation(s)
- Tong Zhu
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyuan Sun
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Pang
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bian Wu
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Ogunbadejo BA, Aljahoushi KA, Alzamly A, Greish YE, Al-Zuhair S. Immobilization of Cyclodextrin glycosyltransferase onto three dimensional- hydrophobic and two dimensional- hydrophilic supports: A comparative study. Biotechnol J 2024; 19:e2300195. [PMID: 38037744 DOI: 10.1002/biot.202300195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Cyclodextrin glycosyltransferase (CGTase) degrades starch into cyclodextrin via enzymatic activity. In this study, we immobilize CGTase from Thermoanaerobacter sp. on two supports, namely graphene nanoplatelets (GNP) consisting of short stacks of graphene nanoparticles and a calcium-based two-dimensional metal organic framework (Ca-TMA). The uptakes of CGTase on GNP and Ca-TMA reached 40 and 21 mg g-1 respectively, but immobilized CGTase on Ca-TMA showed a higher specific activity (38 U mg-1 ) than that on GNP (28 U mg-1 ). Analysis of secondary structures of CGTase, shows that immobilization reduces the proportion of β-sheets in CGTase from 56% in the free to 49% and 51.3% for GNP and Ca-TMA respectively, α-helix from 38.5% to 18.1 and 37.5%, but led to increased β-turns from 5.5 to 40% and 11.2% for GNP and Ca-TMA, respectively. Lower levels of conformational changes were observed over the more hydrophilic Ca-TMA compared to hydrophobic GNP, resulting in its better activity. Increased β-turns were found to correlate with lower β-CD production, while more β-sheets and α-helix favored more β-CD. Reusability studies revealed that GNP retains up to 74% of initial CGTase activity, while Ca-TMA dropped to 33% after eight consecutive uses. The results obtained in this work provide insight on the effect of support's surface properties on CGTase performance and can assist in developing robust CGTase-based biocatalysts for industrial application.
Collapse
Affiliation(s)
- Babatunde A Ogunbadejo
- Department of Chemical and Petroleum Engineering, UAE University, Al Ain, United Arab Emirates
| | | | - Ahmed Alzamly
- Department of Chemistry, UAE University, Al Ain, United Arab Emirates
| | - Yaser E Greish
- Department of Chemistry, UAE University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Sulaiman Al-Zuhair
- Department of Chemical and Petroleum Engineering, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Pijning T, Vujičić‐Žagar A, van der Laan J, de Jong RM, Ramirez‐Palacios C, Vente A, Edens L, Dijkstra BW. Structural and time-resolved mechanistic investigations of protein hydrolysis by the acidic proline-specific endoprotease from Aspergillus niger. Protein Sci 2024; 33:e4856. [PMID: 38059672 PMCID: PMC10731622 DOI: 10.1002/pro.4856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Proline-specific endoproteases have been successfully used in, for example, the in-situ degradation of gluten, the hydrolysis of bitter peptides, the reduction of haze during beer production, and the generation of peptides for mass spectroscopy and proteomics applications. Here we present the crystal structure of the extracellular proline-specific endoprotease from Aspergillus niger (AnPEP), a member of the S28 peptidase family with rarely observed true proline-specific endoprotease activity. Family S28 proteases have a conventional Ser-Asp-His catalytic triad, but their oxyanion-stabilizing hole shows a glutamic acid, an amino acid not previously observed in this role. Since these enzymes have an acidic pH optimum, the presence of a glutamic acid in the oxyanion hole may confine their activity to an acidic pH. Yet, considering the presence of the conventional catalytic triad, it is remarkable that the A. niger enzyme remains active down to pH 1.5. The determination of the primary cleavage site of cytochrome c along with molecular dynamics-assisted docking studies indicate that the active site pocket of AnPEP can accommodate a reverse turn of approximately 12 amino acids with proline at the S1 specificity pocket. Comparison with the structures of two S28-proline-specific exopeptidases reveals not only a more spacious active site cavity but also the absence of any putative binding sites for amino- and carboxyl-terminal residues as observed in the exopeptidases, explaining AnPEP's observed endoprotease activity.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | - Andreja Vujičić‐Žagar
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | | | | | | | - Andre Vente
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Luppo Edens
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Bauke W. Dijkstra
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| |
Collapse
|
6
|
Manzoor H, Zahid H, Emerling CA, Kumar KR, Hussain HMJ, Seo GH, Wajid M, Naz S. A biallelic variant of DCAF13 implicated in a neuromuscular disorder in humans. Eur J Hum Genet 2023; 31:629-637. [PMID: 36797467 PMCID: PMC10250411 DOI: 10.1038/s41431-023-01319-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Neuromuscular disorders encompass a broad range of phenotypes and genetic causes. We investigated a consanguineous family in which multiple patients had a neuromuscular disorder characterized by a waddling gait, limb deformities, muscular weakness and facial palsy. Exome sequencing was completed on the DNA of three of the four patients. We identified a novel missense variant in DCAF13, ENST00000612750.5, NM_015420.7, c.907 G > A;p.(Asp303Asn), ENST00000616836.4, NM_015420.6, c.1363 G > A:p.(Asp455Asn) (rs1209794872) segregating with this phenotype; being homozygous in all four affected patients and heterozygous in the unaffected individuals. The variant was extremely rare in the public databases (gnomAD allele frequency 0.000007081); was absent from the DNA of 300 ethnically matched controls and affected an amino acid which has been conserved across 1-2 billion years of evolution in eukaryotes. DCAF13 contains three WD40 domains and is hypothesized to have roles in both rRNA processing and in ubiquitination of proteins. Analysis of DCAF13 with the p.(Asp455Asn) variant predicted that the amino acid change is deleterious and affects a β-hairpin turn, within a WD40 domain of the protein which may decrease protein stability. Previously, a heterozygous variant of DCAF13 NM_015420.6, c.20 G > C:p.(Trp7Ser) with or without a heterozygous missense variant in CCN3, was suggested to cause inherited cortical myoclonic tremor with epilepsy. In addition, a heterozygous DCAF13 variant has been associated with autism spectrum disorder. Our study indicates a potential role of biallelic DCAF13 variants in neuromuscular disorders. Screening of additional patients with similar phenotype may broaden the allelic and phenotypic spectrum due to DCAF13 variants.
Collapse
Affiliation(s)
- Humera Manzoor
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Hafsa Zahid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | | | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Concord Clinical School Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | - Muhammad Wajid
- Department of Zoology, University of Okara, Punjab, Pakistan
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
7
|
Cao TQ, An HX, Ma RJ, Dai KY, Ji HY, Liu AJ, Zhou JP. Structural characteristics of a low molecular weight velvet antler protein and the anti-tumor activity on S180 tumor-bearing mice. Bioorg Chem 2023; 131:106304. [PMID: 36463590 DOI: 10.1016/j.bioorg.2022.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Velvet antler is a traditional Chinese medicine with various pharmacological values, which is an important raw material for traditional Chinese medicinal wine. Nevertheless, the chemical compositions and bioactivities of velvet antler residue used for making medicinal wine are rarely reported, leading to a waste of resources. In this study, a velvet antler protein (VA-pro) was extracted from velvet antler residue by simulating the gastrointestinal digestion, and its composition, structural characteristics and in vivo anti-tumor activities were determined and investigated. VA-pro possessed high purity with a relatively low molecular weight as 22.589 kDa under HPLC, one- and two-dimensional electrophoresis, and it contained high contents of Pro, Gly, Glu and Ala. Besides, the secondary structure of VA-pro was dominated by β-turn and β-sheet, and VA-pro possessed similar protein sequence, isoelectric point and amino acid compositions to hypothetical protein G4228_020061. The in vivo results substantiated that VA-pro could improve the body weights and immune organ indices, increase the expressions of sera cytokines and regulate the distributions of T and B lymphocytes subsets in peripheral blood of S180 tumor-bearing mice. Furthermore, VA-pro could effectively inhibit solid S180 tumors growth by inducing S phase cell cycle arrest mediated through mitochondria. To summarize, our study provided theoretical support that VA-pro had the potential to be used as an immunopotentiator in immunocompromised or cancer-bearing hosts.
Collapse
Affiliation(s)
- Tian-Qi Cao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hui-Xian An
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Rong-Jie Ma
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ke-Yao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai-Yu Ji
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - An-Jun Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jia-Ping Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
8
|
Kumar S, Duggineni VK, Singhania V, Misra SP, Deshpande PA. Unravelling and Quantifying the Biophysical– Biochemical Descriptors Governing Protein Thermostability by Machine Learning. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shashi Kumar
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Vinay Kumar Duggineni
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Vibhuti Singhania
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Swayam Prabha Misra
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Parag A. Deshpande
- Quantum and Molecular Engineering Laboratory Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
9
|
Structural Modification of Jackfruit Leaf Protein Concentrate by Enzymatic Hydrolysis and Their Effect on the Emulsifier Properties. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Jackfruit leaf protein concentrate (LPC) was hydrolyzed by pepsin (H–Pep) and pancreatin (H–Pan) at different hydrolysis times (30–240 min). The effect of the enzyme type and hydrolysis time of the LPC on the amino acid composition, structure, and thermal properties and its relationship with the formation of O/W emulsions were investigated. The highest release of amino acids (AA) occurred at 240 min for both enzymes. H–Pan showed the greatest content of essential and hydrophobic amino acids. Low β-sheet fractions and high β-turn contents had a greater influence on the emulsifier properties. In H–Pep, the β-sheet fraction increased, while in H–Pan it decreased as a function of hydrolysis time. The temperatures of glass transition and decomposition were highest in H–Pep due to the high content of β-sheets. The stabilized emulsions with H–Pan (180 min of hydrolysis) showed homogeneous distributions and smaller particle sizes. The changes in the secondary structure and AA composition of the protein hydrolysates by the effect of enzyme type and hydrolysis time influenced the emulsifying properties. However, further research is needed to explore the use of H–Pan as an alternative to conventional emulsifiers or ingredients in functional foods.
Collapse
|
10
|
Chen Y, Ming D, Zhu L, Huang H, Jiang L. Tailoring the Tag/Catcher System by Integrating Covalent Bonds and Noncovalent Interactions for Highly Efficient Protein Self-Assembly. Biomacromolecules 2022; 23:3936-3947. [PMID: 35998650 DOI: 10.1021/acs.biomac.2c00765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Covalent bonds and noncovalent interactions play crucial roles in enzyme self-assembly. Here, we designed a Tag/Catcher system named NGTag/NGCatcher in which the Catcher is a highly charged protein that can bind proteins with positively charged tails and rapidly form a stable isopeptide bond with NGTag. In this study, we present a multienzyme strategy based on covalent bonds and noncovalent interactions. In vitro, mCherry, YFP, and GFP can form protein-rich three-dimensional networks based on NGCatcher, NGTag, and RK (Arginine/Lysine) tails, respectively. Furthermore, this technology was applied to improve lycopene production in Escherichia coli. Three key enzymes were involved in lycopene production variants from Deinococcus wulumuqiensis R12 of NGCatcher_CrtE, NGTag_Idi, and RKIspARK, where the multienzyme complexes were clearly observed in vivo and in vitro, and the lycopene production in vivo was 17.8-fold higher than that in the control group. The NGTag/NGCatcher system will provide new opportunities for in vivo and in vitro multienzyme catalysis.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - He Huang
- College of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Thermostability engineering of industrial enzymes through structure modification. Appl Microbiol Biotechnol 2022; 106:4845-4866. [PMID: 35804158 DOI: 10.1007/s00253-022-12067-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 01/14/2023]
Abstract
Thermostability is an essential requirement of enzymes in the industrial processes to catalyze the reactions at high temperatures; thus, enzyme engineering through directed evolution, semi-rational design and rational design are commonly employed to construct desired thermostable mutants. Several strategies are implemented to fulfill enzymes' thermostability demand including decreasing the entropy of the unfolded state through substitutions Gly → Xxx or Xxx → Pro, hydrogen bond, salt bridge, introducing two different simultaneous interactions through single mutant, hydrophobic interaction, filling the hydrophobic cavity core, decreasing surface hydrophobicity, truncating loop, aromatic-aromatic interaction and introducing positively charged residues to enzyme surface. In the current review, horizons about compatibility between secondary structures and substitutions at preferable structural positions to generate the most desirable thermostability in industrial enzymes are broadened. KEY POINTS: • Protein engineering is a powerful tool for generating thermostable industrial enzymes. • Directed evolution and rational design are practical approaches in enzyme engineering. • Substitutions in preferable structural positions can increase thermostability.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
Lawler JT, Harrilal CP, DeBlase AF, Sibert EL, McLuckey SA, Zwier TS. Single-conformation spectroscopy of cold, protonated DPG-containing peptides: switching β-turn types and formation of a sequential type II/II' double β-turn. Phys Chem Chem Phys 2022; 24:2095-2109. [PMID: 35019911 DOI: 10.1039/d1cp04852j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
D-Proline (DPro, DP) is widely utilized to form β-hairpin loops in engineered peptides that would otherwise be unstructured, most often as part of a DPG sub-unit that forms a β-turn. To observe whether DPG facilitated this effect in short protonated peptides, conformation specific IR-UV double resonance photofragment spectra of the cold (∼10 K) protonated DP and LP diastereomers of the pentapeptide YAPGA was carried out in the hydride stretch (2800-3700 cm-1) and amide I/II (1400-1800 cm-1) regions. A model localized Hamiltonian was developed to better describe the 1600-1800 cm-1 region commonly associated with the amide I vibrations. The CO stretch fundamentals experience extensive mixing with the N-H bending fundamentals of the NH3+ group in these protonated peptides. The model Hamiltonian accounts for experiment in quantitative detail. In the DP diastereomer, all the population is funneled into a single conformer which presented as a type II β-turn with A and DP in the i + 1 and i + 2 positions, respectively. This structure was not the anticipated type II' β-turn across DPG that we had hypothesized based on solution-phase propensities. Analysis of the conformational energy landscape shows that both steric and charge-induced effects play a role in the preferred formation of the type II β-turn. In contrast, the LP isomer forms three conformations with very different structures, none of which were type II/II' β-turns, confirming that LPG is not a β-turn former. Finally, single-conformation spectroscopy was also carried out on the extended peptide [YAADPGAAA + H]+ to determine whether moving the protonated N-terminus further from DPG would lead to β-hairpin formation. Despite funneling its entire population into a single peptide backbone structure, the assigned structure is not a β-hairpin, but a concatenated type II/type II' double β-turn that displaces the peptide backbone laterally by about 7.5 Å, but leaves the backbone oriented in its original direction.
Collapse
Affiliation(s)
- John T Lawler
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | | | - Andrew F DeBlase
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Edwin L Sibert
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Timothy S Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA. .,Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, CA 94550, USA
| |
Collapse
|
13
|
Kavitha K, Palaniappan L. FTIR study of synthesized ovalbumin nanoparticles. Anal Biochem 2022; 636:114456. [PMID: 34774535 DOI: 10.1016/j.ab.2021.114456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Ovalbumin particles are reduced to nano size using heat treatment techniques. Their structural patterns in their native state and in their pH denatured state were attempted. Denaturation is also a part of conformation and hence conformations due to pH and glucose were analyzed using FTIR spectroscopy. The interactions behind these conformations are unraveled and the role of glucose as cosolvent in restricting the denaturation is also revealed from the observed secondary structures of ovalbumin. Further, the characterization of these synthesized nano particles reveals the extent of their applications. The obtained results indicate that consideration of ovalbumin nanoparticles seems to favor a very clear trend of protein denaturation and the observed structural modifications are the result of development of non-covalent interactions by the cosolvent molecules.
Collapse
Affiliation(s)
- K Kavitha
- Department of Physics, Annamalai University, Chidambaram, 608 002, TN, India
| | - L Palaniappan
- Department of Physics, Annamalai University, Chidambaram, 608 002, TN, India.
| |
Collapse
|
14
|
Keeble AH, Yadav VK, Ferla MP, Bauer CC, Chuntharpursat-Bon E, Huang J, Bon RS, Howarth M. DogCatcher allows loop-friendly protein-protein ligation. Cell Chem Biol 2021; 29:339-350.e10. [PMID: 34324879 PMCID: PMC8878318 DOI: 10.1016/j.chembiol.2021.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide. DogTag/DogCatcher was generated initially by splitting a Streptococcus pneumoniae adhesin. We optimized DogTag/DogCatcher through rational design and evolution, increasing reaction rate by 250-fold and establishing millimolar solubility of DogCatcher. When fused to a protein terminus, DogTag/DogCatcher reacts slower than SpyTag003/SpyCatcher003. However, inserted in loops of a fluorescent protein or enzyme, DogTag reacts much faster than SpyTag003. Like many membrane proteins, the ion channel TRPC5 has no surface-exposed termini. DogTag in a TRPC5 extracellular loop allowed normal calcium flux and specific covalent labeling on cells in 1 min. DogTag/DogCatcher reacts under diverse conditions, at nanomolar concentrations, and to 98% conversion. Loop-friendly ligation should expand the toolbox for creating protein architectures. Spontaneous transamidation at internal sites harnessing a DogTag/DogCatcher pair DogCatcher is designed and bred for high solubility and rapid reaction Within protein loops DogTag can clamp on its partner faster than SpyTag003 Fast and faithful fluorescent labeling of an ion channel at the cell surface via DogTag
Collapse
Affiliation(s)
- Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Vikash K Yadav
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matteo P Ferla
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Claudia C Bauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Eulashini Chuntharpursat-Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Jin Huang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
15
|
Anastasiadis K, Verdelis K, Eliades G. The effect of universal adhesives on dentine collagen. Dent Mater 2021; 37:1316-1324. [PMID: 34144794 DOI: 10.1016/j.dental.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The purpose of the study was to evaluate the integrity of dentine type I collagen after self-etching (SE) treatments with strong and mild universal adhesives. METHODS Coronal dentine specimens (n=10/product) were imaged by optical microscopy and analyzed by ATR-FTIR spectroscopy before and after treatment with 32% phosphoric acid gel (PA-negative control), 17% neutral EDTA (ED-positive control) conditioners and Adhese Universal (AD), Clearfil Universal Bond Quick (CQ), G-Premio Bond (GP), Prelude One (PR) and Scotchbond Universal (SB) adhesives. From the spectroscopic analysis the following parameters were determined: a) Extent of dentine demineralization (DM%) and b) percentage area of the Amide I curve-fitted components of β-turns, 310-helix/β-turns, α-helix, random coils, β-sheets and collagen maturation (R) index. Statistical analysis was performed by one-way ANOVA (DM%), paired t-test/Wilcoxon test (Amide I components) and Spearman correlation coefficient (DM% vs Amide I components) at an a=0.05 level. RESULTS PA, ED and GP removed the smear-layer and opened tubule orifices, whereas all other treatments removed only the intratubular smear-layer fraction. The ranking of the statistically significant differences in DM% was PA>GP>ED>AD, SB, CQ, PR, with AD being significantly different from PR. Regarding the Amide I components, PA demonstrated a significant reduction in β-turns, α-helices and an increase in β-sheets, GP a reduction in β-turns, AD an increase in β-turns and random coils, and CQ an increase in β-turns. PR, SB and ED showed insignificant differences in all the Amide I components. Significant correlations were found between DM%-random coils and DM%-R. SIGNIFICANCE The universal adhesives used in the SE mode induced none to minimal changes in dentine collagen structure, without evidence of the destabilization pattern observed after conventional phosphoric acid treatments.
Collapse
Affiliation(s)
- Konstantinos Anastasiadis
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Greece
| | - Konstantinos Verdelis
- Department of Endodontics, School of Dental Medicine, University of Pittsburgh, PA, USA
| | - George Eliades
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
16
|
Kubyshkin V, Davis R, Budisa N. Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement. Beilstein J Org Chem 2021; 17:439-460. [PMID: 33727970 PMCID: PMC7934785 DOI: 10.3762/bjoc.17.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the heterocyclic structure and distinct conformational profile, proline is unique in the repertoire of the 20 amino acids coded into proteins. Here, we summarize the biochemical work on the replacement of proline with (4R)- and (4S)-fluoroproline as well as 4,4-difluoroproline in proteins done mainly in the last two decades. We first recapitulate the complex position and biochemical fate of proline in the biochemistry of a cell, discuss the physicochemical properties of fluoroprolines, and overview the attempts to use these amino acids as proline replacements in studies of protein production and folding. Fluorinated proline replacements are able to elevate the protein expression speed and yields and improve the thermodynamic and kinetic folding profiles of individual proteins. In this context, fluoroprolines can be viewed as useful tools in the biotechnological toolbox. As a prospect, we envision that proteome-wide proline-to-fluoroproline substitutions could be possible. We suggest a hypothetical scenario for the use of laboratory evolutionary methods with fluoroprolines as a suitable vehicle to introduce fluorine into living cells. This approach may enable creation of synthetic cells endowed with artificial biodiversity, containing fluorine as a bioelement.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
| | - Rebecca Davis
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| |
Collapse
|
17
|
Zhang Y, Yan X, Cao J, Weng P, Miao D, Li Z, Jiang YB. Turn Conformation of β-Amino Acid-Based Short Peptides Promoted by an Amidothiourea Moiety at C-Terminus. J Org Chem 2020; 85:9844-9849. [PMID: 32584574 DOI: 10.1021/acs.joc.0c01139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A C-terminal amidothiourea motif is shown to promote a β-turn-like folded conformation in a series of β-amino acid-based short peptides in both the solid state and solution phase by an intramolecular 11-membered ring hydrogen bond.
Collapse
Affiliation(s)
- Yanhan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Jinlian Cao
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Peimin Weng
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Daiyu Miao
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Zhao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Khatri B, Majumder P, Nagesh J, Penmatsa A, Chatterjee J. Increasing protein stability by engineering the n → π* interaction at the β-turn. Chem Sci 2020; 11:9480-9487. [PMID: 34094214 PMCID: PMC8161691 DOI: 10.1039/d0sc03060k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abundant n → π* interactions between adjacent backbone carbonyl groups, identified by statistical analysis of protein structures, are predicted to play an important role in dictating the structure of proteins. However, experimentally testing the prediction in proteins has been challenging due to the weak nature of this interaction. By amplifying the strength of the n → π* interaction via amino acid substitution and thioamide incorporation at a solvent exposed β-turn within the GB1 proteins and Pin 1 WW domain, we demonstrate that an n → π* interaction increases the structural stability of proteins by restricting the ϕ torsion angle. Our results also suggest that amino acid side-chain identity and its rotameric conformation play an important and decisive role in dictating the strength of an n → π* interaction. Amino acid residues adopt a right-handed α-helical conformation with increasing strength of the n → π* interaction. We also demonstrate a direct consequence of n → π* interactions on enhancing the structural stability of proteins.![]()
Collapse
Affiliation(s)
- Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560012 India
| | - Puja Majumder
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560012 India
| | - Jayashree Nagesh
- Solid State and Structural Chemistry Unit, Indian Institute of Science Bangalore India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560012 India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
19
|
Fujiwara H, Shiga S, Makabe K. Cooperative unfolding of a single-layer β-sheet protein, CPAP G-box. Biochem Biophys Res Commun 2020; 526:105-109. [PMID: 32197835 DOI: 10.1016/j.bbrc.2020.03.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 11/25/2022]
Abstract
CPAP is a centriolar protein and its C-terminal domain, G-box or TCP, has a very unique structure that comprises a single-layer β-sheet without hydrophobic core packing. Here we characterized its biophysical properties, including its stability against chemical denaturation. Interestingly, upon urea-induced equilibrium unfolding, the CPAP G-box showed cooperative unfolding behavior that is the hallmark of globular proteins. We analyzed the m-value, a measure of the cooperative transition, from the urea-induced unfolding and found that the estimated m-value from surface burial upon folding is consistent with the experimental value, supporting the two-state unfolding. Next, we constructed deletion mutants of the terminal β-strands and found that the mutants showed reduced stability. The unique structure and characteristics of CPAP G-box provides an interesting opportunity to observe how the core-less flat β-sheet protein can be folded in solution.
Collapse
Affiliation(s)
- Hideki Fujiwara
- Graduate School of Science and Engineering, Yamagata University, Jyonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Shota Shiga
- Graduate School of Science and Engineering, Yamagata University, Jyonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, Jyonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
20
|
Cobb J, Zai-Rose V, Correia JJ, Janorkar AV. FT-IR Spectroscopic Analysis of the Secondary Structures Present during the Desiccation Induced Aggregation of Elastin-Like Polypeptide on Silica. ACS OMEGA 2020; 5:8403-8413. [PMID: 32309751 PMCID: PMC7161207 DOI: 10.1021/acsomega.0c00271] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/06/2020] [Indexed: 05/25/2023]
Abstract
Previously, we found that elastin-like polypeptide (ELP), when dried above the lower critical solution temperature on top of a hydrophilic fused silica disk, exhibited a dynamic coalescence behavior. The ELP initially wet the silica, but over the next 12 h, dewett the surface and formed aggregates of precise sizes and shapes. Using Fourier-transform infrared (FT-IR) spectroscopy, the present study explores the role of secondary structures present in ELP during this progressive desiccation and their effect on aggregate size. The amide I peak (1600-1700 cm-1) in the ELP's FT-IR spectrum was deconvoluted using the second derivative method into eight subpeaks (1616, 1624, 1635, 1647, 1657, 1666, 1680, 1695 cm-1). These peaks were identified to represent extended strands, β-turns, 3(10)-helix, polyproline I, and polyproline II using previous studies on ELP and molecules similar in peptide composition. Positive correlations were established between the various subpeaks, water content, and aggregate size to understand the contributions of the secondary structures in particle formation. The positive correlations suggest that type II β-turns, independent of the water content, contributed to the growth of the aggregates at earlier time points (1-3.5 h). At later time points (6-12 h), the aggregate growth was attributed to the formation of 3(10)-helices that relied on a decrease in water content. Understanding these relationships gives greater control in creating precisely sized aggregates and surface coatings with varying roughness.
Collapse
Affiliation(s)
- Jared
S. Cobb
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Valeria Zai-Rose
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - John J. Correia
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| | - Amol V. Janorkar
- Department
of Biomedical Materials Science, School of Dentistry and Department of
Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, United States
| |
Collapse
|
21
|
D TK, Jain N, Kumar S U, Jena PP, Ramamoorthy S, Priya Doss C G, Zayed H. Molecular dynamics simulations to decipher the structural and functional consequences of pathogenic missense mutations in the galactosylceramidase (GALC) protein causing Krabbe’s disease. J Biomol Struct Dyn 2020; 39:1795-1810. [DOI: 10.1080/07391102.2020.1742790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Thirumal Kumar D
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nikita Jain
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Prangya Paramita Jena
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Siva Ramamoorthy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - George Priya Doss C
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
22
|
Collier AM, Nemtsova Y, Kuber N, Banach-Petrosky W, Modak A, Sleat DE, Nanda V, Lobel P. Lysosomal protein thermal stability does not correlate with cellular half-life: global observations and a case study of tripeptidyl-peptidase 1. Biochem J 2020; 477:727-745. [PMID: 31957806 PMCID: PMC8442665 DOI: 10.1042/bcj20190874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Late-infantile neuronal ceroid lipofuscinosis (LINCL) is a neurodegenerative lysosomal storage disorder caused by mutations in the gene encoding the protease tripeptidyl-peptidase 1 (TPP1). Progression of LINCL can be slowed or halted by enzyme replacement therapy, where recombinant human TPP1 is administered to patients. In this study, we utilized protein engineering techniques to increase the stability of recombinant TPP1 with the rationale that this may lengthen its lysosomal half-life, potentially increasing the potency of the therapeutic protein. Utilizing multiple structure-based methods that have been shown to increase the stability of other proteins, we have generated and evaluated over 70 TPP1 variants. The most effective mutation, R465G, increased the melting temperature of TPP1 from 55.6°C to 64.4°C and increased its enzymatic half-life at 60°C from 5.4 min to 21.9 min. However, the intracellular half-life of R465G and all other variants tested in cultured LINCL patient-derived lymphoblasts was similar to that of WT TPP1. These results provide structure/function insights into TPP1 and indicate that improving in vitro thermal stability alone is insufficient to generate TPP1 variants with improved physiological stability. This conclusion is supported by a proteome-wide analysis that indicates that lysosomal proteins have higher melting temperatures but also higher turnover rates than proteins of other organelles. These results have implications for similar efforts where protein engineering approaches, which are frequently evaluated in vitro, may be considered for improving the physiological properties of proteins, particularly those that function in the lysosomal environment.
Collapse
Affiliation(s)
- Aaron M. Collier
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
| | - Yuliya Nemtsova
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
| | - Narendra Kuber
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
| | | | - Anurag Modak
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
| | - David E. Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
- Department of Biochemistry and Molecular Biology, Rutgers
University, Piscataway, NJ 08854
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
- Department of Biochemistry and Molecular Biology, Rutgers
University, Piscataway, NJ 08854
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Rutgers
University, Piscataway, NJ 08854
- Department of Biochemistry and Molecular Biology, Rutgers
University, Piscataway, NJ 08854
| |
Collapse
|
23
|
Abstract
Interactions between proteins normally depend on a range of noncovalent contacts. Under challenging conditions, such as with mechanical force or over long time periods, noncovalent interactions break. Unbreakable protein–protein interactions, linked by covalent bonding, provide many opportunities for robust connection of molecular building blocks, including for biomaterials, enzymes, and vaccines. When evaluating unbreakable interactions, it is important to consider whether reaction happens quickly even at low concentrations. Here we establish a genetically encoded peptide that reacts with its genetically encoded protein partner with a speed close to the limit set by diffusion. We apply a range of biophysical methods to understand the dynamics required for this interaction, demonstrating applicability to rapid and specific detection in a range of species. Much of life’s complexity depends upon contacts between proteins with precise affinity and specificity. The successful application of engineered proteins often depends on high-stability binding to their target. In recent years, various approaches have enabled proteins to form irreversible covalent interactions with protein targets. However, the rate of such reactions is a major limitation to their use. Infinite affinity refers to the ideal where such covalent interaction occurs at the diffusion limit. Prototypes of infinite affinity pairs have been achieved using nonnatural reactive groups. After library-based evolution and rational design, here we establish a peptide–protein pair composed of the regular 20 amino acids that link together through an amide bond at a rate approaching the diffusion limit. Reaction occurs in a few minutes with both partners at low nanomolar concentration. Stopped flow fluorimetry illuminated the conformational dynamics involved in docking and reaction. Hydrogen–deuterium exchange mass spectrometry gave insight into the conformational flexibility of this split protein and the process of enhancing its reaction rate. We applied this reactive pair for specific labeling of a plasma membrane target in 1 min on live mammalian cells. Sensitive and specific detection was also confirmed by Western blot in a range of model organisms. The peptide–protein pair allowed reconstitution of a critical mechanotransmitter in the cytosol of mammalian cells, restoring cell adhesion and migration. This simple genetic encoding for rapid irreversible reaction should provide diverse opportunities to enhance protein function by rapid detection, stable anchoring, and multiplexing of protein functionality.
Collapse
|
24
|
Pongpamorn P, Watthaisong P, Pimviriyakul P, Jaruwat A, Lawan N, Chitnumsub P, Chaiyen P. Identification of a Hotspot Residue for Improving the Thermostability of a Flavin‐Dependent Monooxygenase. Chembiochem 2019; 20:3020-3031. [DOI: 10.1002/cbic.201900413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Pornkanok Pongpamorn
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Pratchaya Watthaisong
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Panu Pimviriyakul
- Department of BiotechnologyFaculty of Engineering and Industrial TechnologySilpakorn University 6 Rajamankha Nai Road Nakornpathom 73000 Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park Paholyothin Road Klong 1 Klong Luang Pathumthani 12120 Thailand
| | - Narin Lawan
- Department of ChemistryFaculty of ScienceChiang Mai University Chiang Mai 50200 Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park Paholyothin Road Klong 1 Klong Luang Pathumthani 12120 Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
25
|
Torres MD, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide Design Principles for Antimicrobial Applications. J Mol Biol 2019; 431:3547-3567. [DOI: 10.1016/j.jmb.2018.12.015] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 02/08/2023]
|
26
|
Ebrahimipour M, Afgar A, Barati M, Mohammadi MA, Harandi MF. Evaluation of the antigenic epitopes of EgAgB/1 and EgAgB/4 subunit antigens in G1 and G6 genotypes of Echinococcus granulosus using bioinformatics. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Khairil Anuar INA, Banerjee A, Keeble AH, Carella A, Nikov GI, Howarth M. Spy&Go purification of SpyTag-proteins using pseudo-SpyCatcher to access an oligomerization toolbox. Nat Commun 2019; 10:1734. [PMID: 30988307 PMCID: PMC6465384 DOI: 10.1038/s41467-019-09678-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Peptide tags are a key resource, introducing minimal change while enabling a consistent process to purify diverse proteins. However, peptide tags often provide minimal benefit post-purification. We previously designed SpyTag, forming an irreversible bond with its protein partner SpyCatcher. SpyTag provides an easy route to anchor, bridge or multimerize proteins. Here we establish Spy&Go, enabling protein purification using SpyTag. Through rational engineering we generated SpyDock, which captures SpyTag-fusions and allows efficient elution. Spy&Go enabled sensitive purification of SpyTag-fusions from Escherichia coli, giving superior purity than His-tag/nickel-nitrilotriacetic acid. Spy&Go allowed purification of mammalian-expressed, N-terminal, C-terminal or internal SpyTag. As an oligomerization toolbox, we established a panel of SpyCatcher-linked coiled coils, so SpyTag-fusions can be dimerized, trimerized, tetramerized, pentamerized, hexamerized or heptamerized. Assembling oligomers for Death Receptor 5 stimulation, we probed multivalency effects on cancer cell death. Spy&Go, combined with simple oligomerization, should have broad application for exploring multivalency in signaling.
Collapse
Affiliation(s)
| | - Anusuya Banerjee
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Alberto Carella
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Georgi I Nikov
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
28
|
Byrne C, Belnou M, Baulieu E, Lequin O, Jacquot Y. Electronic circular dichroism and nuclear magnetic resonance studies of peptides derived from the FKBP52‐interacting β‐turn of the hERα ligand‐binding domain. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cillian Byrne
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
- Institut Baulieu, Université Paris‐SaclayINSERM UMR 1195, Neuroprotection and Neuroregeneration Le Kremlin Bicêtre France
| | - Mathilde Belnou
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
| | - Etienne‐Emile Baulieu
- Institut Baulieu, Université Paris‐SaclayINSERM UMR 1195, Neuroprotection and Neuroregeneration Le Kremlin Bicêtre France
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
| | - Yves Jacquot
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
| |
Collapse
|
29
|
Gupta S, Sasidhar YU. Conformational dynamics of Ribonuclease Sa and its S48P mutant: Implications for the stability of the mutant protein. J Mol Graph Model 2019; 88:71-80. [PMID: 30660985 DOI: 10.1016/j.jmgm.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 11/30/2022]
Abstract
The optimization of β-turns has been used as a strategy to increase protein thermal stability. One example is the S48P mutation in Ribonuclease Sa, introduced to optimize a β-turn, which increases the stability of the protein as determined experimentally. Here, we have studied 48SYGY51 β-turn and its S48P mutant from RNase Sa, as a peptide and as part of the protein, using molecular dynamics simulations. The turn propensity of the region 48SYGY51 shows an increase in both the peptide and protein models on S48P mutation. The mutant protein shows an overall decrease in conformational dynamics and a decrease in conformational heterogeneity as compared to the wildtype protein. A comparatively restricted sampling of the φ-ψ region of GLN47, a pre PRO48 residue, in the mutant protein and some local changes in hydrogen bonding patterns involving residues 20-24 might be contributing to the mutant protein stability. In addition, some long-range hydrogen bonding interactions involving the 60s loop and the salt-bridge interaction involving ASP17-ARG63 could also be contributing to the increase in rigidity and stability of the mutant protein.
Collapse
Affiliation(s)
- Shubhangi Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Yellamraju U Sasidhar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.
| |
Collapse
|
30
|
Do TD, Checco JW, Tro M, Shea JE, Bowers MT, Sweedler JV. Conformational investigation of the structure-activity relationship of GdFFD and its analogues on an achatin-like neuropeptide receptor of Aplysia californica involved in the feeding circuit. Phys Chem Chem Phys 2018; 20:22047-22057. [PMID: 30112548 DOI: 10.1039/c8cp03661f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins and peptides in nature are almost exclusively made from l-amino acids, and this is even more absolute in the metazoan. With the advent of modern bioanalytical techniques, however, previously unappreciated roles for d-amino acids in biological processes have been revealed. Over 30 d-amino acid containing peptides (DAACPs) have been discovered in animals where at least one l-residue has been isomerized to the d-form via an enzyme-catalyzed process. In Aplysia californica, GdFFD and GdYFD (the lower-case letter "d" indicates a d-amino acid residue) modulate the feeding behavior by activating the Aplysia achatin-like neuropeptide receptor (apALNR). However, little is known about how the three-dimensional conformation of DAACPs influences activity at the receptor, and the role that d-residues play in these peptide conformations. Here, we use a combination of computational modeling, drift-tube ion-mobility mass spectrometry, and receptor activation assays to create a simple model that predicts bioactivities for a series of GdFFD analogs. Our results suggest that the active conformations of GdFFD and GdYFD are similar to their lowest energy conformations in solution. Our model helps connect the predicted structures of GdFFD analogs to their activities, and highlights a steric effect on peptide activity at position 1 on the GdFFD receptor apALNR. Overall, these methods allow us to understand ligand-receptor interactions in the absence of high-resolution structural data.
Collapse
Affiliation(s)
- Thanh D Do
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A. Review: Engineering of thermostable enzymes for industrial applications. APL Bioeng 2018; 2:011501. [PMID: 31069285 PMCID: PMC6481699 DOI: 10.1063/1.4997367] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2017] [Indexed: 01/19/2023] Open
Abstract
The catalytic properties of some selected enzymes have long been exploited to carry out efficient and cost-effective bioconversions in a multitude of research and industrial sectors, such as food, health, cosmetics, agriculture, chemistry, energy, and others. Nonetheless, for several applications, naturally occurring enzymes are not considered to be viable options owing to their limited stability in the required working conditions. Over the years, the quest for novel enzymes with actual potential for biotechnological applications has involved various complementary approaches such as mining enzyme variants from organisms living in extreme conditions (extremophiles), mimicking evolution in the laboratory to develop more stable enzyme variants, and more recently, using rational, computer-assisted enzyme engineering strategies. In this review, we provide an overview of the most relevant enzymes that are used for industrial applications and we discuss the strategies that are adopted to enhance enzyme stability and/or activity, along with some of the most relevant achievements. In all living species, many different enzymes catalyze fundamental chemical reactions with high substrate specificity and rate enhancements. Besides specificity, enzymes also possess many other favorable properties, such as, for instance, cost-effectiveness, good stability under mild pH and temperature conditions, generally low toxicity levels, and ease of termination of activity. As efficient natural biocatalysts, enzymes provide great opportunities to carry out important chemical reactions in several research and industrial settings, ranging from food to pharmaceutical, cosmetic, agricultural, and other crucial economic sectors.
Collapse
Affiliation(s)
- Federica Rigoldi
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Donini
- Center for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via G. Pascoli 70/3, 20133 Milano, Italy
| | - Alberto Redaelli
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via G. Pascoli 70/3, 20133 Milano, Italy
| | - Alfonso Gautieri
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
32
|
Wang L, Jiang L, Wu C, Lou B. Molecular characterization and expression analysis of large yellow croaker (Larimichthys crocea) interleukin-12A, 16 and 34 after poly I:C and Vibrio anguillarum challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 74:84-93. [PMID: 29292198 DOI: 10.1016/j.fsi.2017.12.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/11/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Interleukin-12, 16 and 34 are important pro-inflammatory cytokines, some of the most important components of the innate immunity system. Herein, we identified interleukin-12A (lcIL12A), 16 (lcIL16) and 34 (lcIL34) in large yellow croaker (Larimichthys crocea), and determined their expression profile in unchallenged and challenged tissues. The coding sequence (CDS) of lcIL12A comprised 600 bp long encoding a protein of 199 amino acids (aa), the CDS of lcIL16 was 2454 bp encoding a protein of 817 aa, and the CDS of lcIL34 was 657 bp encoding a protein of 267 aa. Phylogenetic analysis revealed similar results to homology comparison that lcIL12A was closest to IL12A of Dicentrarchus labrax (73%) and Serola dumerili (73%), while lcIL16 had the closest relation to Lates calcarofer (72.6%), and lcIL34 to Sparus aurata (88.9%). Multiple sequence alignment showed these interleukins were highly conserved with other vertebrate interleukins in their functional domains. Further, quantitative real time PCR (qPCR) analysis revealed that lcIL12A, lcIL16 and lcIL34 were constitutively expressed in all examined tissues, with significantly higher expression in spleen, liver and kidney. This was especially true for lcIL34 gene. Importantly, when challenged with polyinosinic:polycytidylic acid (poly I:C) and Vibrio anguillarum (V. anguillarum), the mRNA expressions of these interleukins were up-regulated in liver, spleen and kidney. Their top values got over 4 folds at least relative to their expression at time 0, and even lcIL12 reached 13.37 fold at 12-h point in spleen. These suggested their anti-viral and anti-bacterial roles and their involvement in the innate immune response of Larimichthys crocea. These results would have major implications in improving our understanding of the functions of interleukins to defend against pathogen infections in teleost species.
Collapse
Affiliation(s)
- Luping Wang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China
| | - Lihua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China.
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China
| | - Bao Lou
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province 316022, China
| |
Collapse
|
33
|
Buldun CM, Jean JX, Bedford MR, Howarth M. SnoopLigase Catalyzes Peptide–Peptide Locking and Enables Solid-Phase Conjugate Isolation. J Am Chem Soc 2018; 140:3008-3018. [DOI: 10.1021/jacs.7b13237] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Can M. Buldun
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Jisoo X. Jean
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | | | - Mark Howarth
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| |
Collapse
|
34
|
Yu CP, Gerlei KZ, Rágyanszki A, Jensen SJK, Viskolcz B, Csizmadia IG. Reactivity of Ala-Gly dipeptide with β-turn secondary structure. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.12.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Abstract
The dynamic native, functional folded forms of proteins are unstable mainly because they readily unfold into flexible unstructured forms.
Collapse
Affiliation(s)
- Romas Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics
- University of Minnesota
- St Paul
- USA
| |
Collapse
|
36
|
Khare H, Dey D, Madhu C, Senapati D, Raghothama S, Govindaraju T, Ramakumar S. Conformational heterogeneity in tails of DNA-binding proteins is augmented by proline containing repeats. MOLECULAR BIOSYSTEMS 2017; 13:2531-2544. [PMID: 29104984 DOI: 10.1039/c7mb00412e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cationic terminal extension or tail is a common feature of many DNA-binding proteins. We show that a particular type of tail rich in proline, alanine and lysine belongs to the class of 'flexible disorder' and consists of characteristic pentapeptide repeats. Our designed peptides, (AAKKA)1-4 and (PAKKA)1-4, represent the tails of several bacterial DNA-binding proteins. Enhanced conformational sampling of these representative peptides using accelerated molecular dynamic simulations supported by circular dichroism spectroscopy and nuclear magnetic resonance studies demonstrates the role of frequent and interspersed prolines in augmenting conformational heterogeneity of the peptide backbone. Analysis of circular variance of backbone dihedral angles indicates alternating regions of relative rigidity and flexibility along the peptide sequence due to prolines. Preferred placement of lysines in the regions of higher backbone flexibility might improve DNA-binding by conformational selection. Our results could be relevant for rational de novo design of disordered peptides.
Collapse
Affiliation(s)
- Harshavardhan Khare
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | | | | | | | | | | | | |
Collapse
|
37
|
Effect of Specific Mutations in Cd300 Complexes Formation; Potential Implication of Cd300f in Multiple Sclerosis. Sci Rep 2017; 7:13544. [PMID: 29051512 PMCID: PMC5648872 DOI: 10.1038/s41598-017-12881-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Herein, we have used bioinformatics tools to predict five clusters defining ligand-binding sites on the extracellular domain of human CD300b receptor, presumably involved in the formation of both homodimers and heterodimers with other CD300 family members. Site-directed mutagenesis revealed residues glutamic acid 28 and glutamine 29 in cluster 5 to be necessary for the formation of CD300b complexes. Surprisingly, the disruption of cluster 2 and 4 reconstituted the binding capability lost by the mutation of residues glutamic acid 28 to alanine, glutamine 29 to alanine (E28A-Q29G). We identified a missense mutation arginine 33 to glutamine (R33Q) in CD300f by direct sequencing of exon 2 in peripheral blood samples from 50 patients with multiple sclerosis (MS). Levels of expression of CD300f were almost undetectable on monocytes from the patient bearing the R33Q mutation compared with healthy individuals. Whereas R33Q mutation had no effect in the formation of CD300f complexes, the inhibition of protein synthesis with cycloheximide indicated that CD300f R33Q is less stable than native CD300f. Finally, we report that the levels of expression of CD300f on the surface of classical and intermediate monocytes from MS patients are significantly lower when compared to the same cell populations in healthy individuals.
Collapse
|
38
|
Lobner E, Humm AS, Mlynek G, Kubinger K, Kitzmüller M, Traxlmayr MW, Djinović-Carugo K, Obinger C. Two-faced Fcab prevents polymerization with VEGF and reveals thermodynamics and the 2.15 Å crystal structure of the complex. MAbs 2017; 9:1088-1104. [PMID: 28816592 PMCID: PMC5627596 DOI: 10.1080/19420862.2017.1364825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fcabs (Fc domain with antigen-binding sites) are promising novel therapeutics. By engineering of the C-terminal loops of the CH3 domains, 2 antigen binding sites can be inserted in close proximity. To elucidate the binding mode(s) between homodimeric Fcabs and small homodimeric antigens, the interaction between the Fcabs 448 and CT6 (having the AB, CD and EF loops and the C-termini engineered) with homodimeric VEGF was investigated. The crystal structures of these Fcabs, which form polymers with the antigen VEGF in solution, were determined. However, construction of heterodimeric Fcabs (JanusFcabs: one chain Fc-wt, one chain VEGF-binding) results in formation of distinct JanusFcab–VEGF complexes (2:1), which allowed elucidation of the crystal structure of the JanusCT6–VEGF complex at 2.15 Å resolution. VEGF binding to Janus448 and JanusCT6 is shown to be entropically unfavorable, but enthalpically favorable. Structure-function relationships are discussed with respect to Fcab design and engineering strategies.
Collapse
Affiliation(s)
- Elisabeth Lobner
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Anne-Sophie Humm
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria
| | - Georg Mlynek
- c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria
| | - Konstantin Kubinger
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Michael Kitzmüller
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Michael W Traxlmayr
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Kristina Djinović-Carugo
- c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria.,d Department of Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113, Ljubljana , Slovenia
| | - Christian Obinger
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| |
Collapse
|
39
|
Chittoor B, Krishnarjuna B, Morales RAV, MacRaild CA, Sadek M, Leung EWW, Robinson SD, Pennington MW, Norton RS. The Single Disulfide-Directed β-Hairpin Fold. Dynamics, Stability, and Engineering. Biochemistry 2017; 56:2455-2466. [PMID: 28437072 DOI: 10.1021/acs.biochem.7b00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Grafting bioactive peptide sequences onto small cysteine-rich scaffolds is a promising strategy for enhancing their stability and value as novel peptide-based therapeutics. However, correctly folded disulfide-rich peptides can be challenging to produce by either recombinant or synthetic means. The single disulfide-directed β-hairpin (SDH) fold, first observed in contryphan-Vc1, provides a potential alternative to complex disulfide-rich scaffolds. We have undertaken recombinant production of full-length contryphan-Vc1 (rCon-Vc1[Z1Q]) and a truncated analogue (rCon-Vc11-22[Z1Q]), analyzed the backbone dynamics of rCon-Vc1[Z1Q], and probed the conformational and proteolytic stability of these peptides to evaluate the potential of contryphan-Vc1 as a molecular scaffold. Backbone 15N relaxation measurements for rCon-Vc1[Z1Q] indicate that the N-terminal domain of the peptide is ordered up to Thr19, whereas the remainder of the C-terminal region is highly flexible. The solution structure of truncated rCon-Vc11-22[Z1Q] was similar to that of the full-length peptide, indicating that the flexible C-terminus does not have any effect on the structured domain of the peptide. Contryphan-Vc1 exhibited excellent proteolytic stability against trypsin and chymotrypsin but was susceptible to pepsin digestion. We have investigated whether contryphan-Vc1 can accept a bioactive epitope while maintaining the structure of the peptide by introducing peptide sequences based on the DINNN motif of inducible nitric oxide synthase. We show that sCon-Vc11-22[NNN12-14] binds to the iNOS-binding protein SPSB2 with an affinity of 1.3 μM while maintaining the SDH fold. This study serves as a starting point in utilizing the SDH fold as a peptide scaffold.
Collapse
Affiliation(s)
- Balasubramanyam Chittoor
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Maiada Sadek
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Eleanor W W Leung
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Samuel D Robinson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | | | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| |
Collapse
|
40
|
Kadumuri RV, Vadrevu R. LoopX: A Graphical User Interface-Based Database for Comprehensive Analysis and Comparative Evaluation of Loops from Protein Structures. J Comput Biol 2017; 24:1043-1049. [PMID: 28375654 DOI: 10.1089/cmb.2016.0197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Due to their crucial role in function, folding, and stability, protein loops are being targeted for grafting/designing to create novel or alter existing functionality and improve stability and foldability. With a view to facilitate a thorough analysis and effectual search options for extracting and comparing loops for sequence and structural compatibility, we developed, LoopX a comprehensively compiled library of sequence and conformational features of ∼700,000 loops from protein structures. The database equipped with a graphical user interface is empowered with diverse query tools and search algorithms, with various rendering options to visualize the sequence- and structural-level information along with hydrogen bonding patterns, backbone φ, ψ dihedral angles of both the target and candidate loops. Two new features (i) conservation of the polar/nonpolar environment and (ii) conservation of sequence and conformation of specific residues within the loops have also been incorporated in the search and retrieval of compatible loops for a chosen target loop. Thus, the LoopX server not only serves as a database and visualization tool for sequence and structural analysis of protein loops but also aids in extracting and comparing candidate loops for a given target loop based on user-defined search options.
Collapse
Affiliation(s)
- Rajashekar Varma Kadumuri
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani , Hyderabad, India
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani , Hyderabad, India
| |
Collapse
|
41
|
Molecular dynamic simulation studies of bacterial thermostable mannanase unwinding the enzymatic catalysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Structural Stability, Transitions, and Interactions within SoxYZCD-Thiosulphate from Sulfurimonas denitrificans: An In Silico Molecular Outlook for Maintaining Environmental Sulphur Cycle. JOURNAL OF BIOPHYSICS 2016; 2016:8683713. [PMID: 27777586 PMCID: PMC5061964 DOI: 10.1155/2016/8683713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/01/2016] [Indexed: 11/17/2022]
Abstract
Thiosulphate oxidation (an essential mechanism) serves to maintain the global sulphur cycle. Earlier experimental and computational studies dealt with environmental thiosulphate oxidation but none dealt with thiosulphate oxidation from deep ocean belts. Wet-laboratory experimental research shows that epsilon-proteobacteria Sulfurimonas denitrificans possess sox (sulphur-oxidizing) operon and perform thiosulphate oxidation efficiently underneath the oceans. From this specific sox operon, SoxCD complex recycles the thiosulphate-bound SoxY from SoxYZ complex to balance the environmental sulphur cycle. So, four chief proteins were variedly modeled and relevant simulated interactive structures were obtained. The final simulated tetraprotein complex (SoxYZCD) from docked SoxYZ and SoxCD complexes was disclosed to be a highly interactive one with predominant ionic residues. Free energy of folding, solvent accessibility, and conformational shifts (coil-like conformation to helices and sheets) were observed in SoxYZ complex after interacting with SoxCD. The stability of the complex (SoxYZCD) after simulation was also observed through the electrostatic surface potential values. These evaluations were rationalized via biostatistics. This aids SoxCD for recycling SoxY along with thiosulphate, which remains interconnected by four H-bonds with SoxY. Therefore, this novel exploration is endowed with the detailed molecular viewpoint for maintaining the sulphur cycle (globally) including the ocean belts.
Collapse
|
43
|
Berger N, Li F, Mallick B, Brüggemann JT, Sander W, Merten C. Solution and solid state conformational preferences of a family of cyclic disulphide bridged tetrapeptides. Biopolymers 2016; 107:28-34. [DOI: 10.1002/bip.22986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Nadja Berger
- Fakultät für Chemie und Biochemie, Lehrstuhl für Organische Chemie II; Ruhr-Universität Bochum; Bochum 44801 Germany
| | - Fee Li
- Fakultät für Chemie und Biochemie, Lehrstuhl für Organische Chemie II; Ruhr-Universität Bochum; Bochum 44801 Germany
| | - Bert Mallick
- Fakultät für Chemie und Biochemie, Lehrstuhl für Anorganische Chemie; Ruhr-Universität Bochum; Bochum 44801 Germany
| | - J. Thomas Brüggemann
- Fakultät für Chemie und Biochemie, Lehrstuhl für Anorganische Chemie; Ruhr-Universität Bochum; Bochum 44801 Germany
| | - Wolfram Sander
- Fakultät für Chemie und Biochemie, Lehrstuhl für Organische Chemie II; Ruhr-Universität Bochum; Bochum 44801 Germany
| | - Christian Merten
- Fakultät für Chemie und Biochemie, Lehrstuhl für Organische Chemie II; Ruhr-Universität Bochum; Bochum 44801 Germany
| |
Collapse
|
44
|
Morales JF, Yu B, Perez G, Mesa KA, Alexander DL, Berman PW. Fragments of the V1/V2 domain of HIV-1 glycoprotein 120 engineered for improved binding to the broadly neutralizing PG9 antibody. Mol Immunol 2016; 77:14-25. [PMID: 27449907 DOI: 10.1016/j.molimm.2016.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/16/2022]
Abstract
The V1/V2 domain of the HIV-1 envelope protein gp120 possesses two important epitopes: a glycan-dependent epitope recognized by the prototypic broadly neutralizing monoclonal antibody (bN-mAb), PG9, as well as an epitope recognized by non-neutralizing antibodies that has been associated with protection from HIV infection in the RV144 HIV vaccine trial. Because both of these epitopes are poorly immunogenic in the context of full length envelope proteins, immunization with properly folded and glycosylated fragments (scaffolds) represents a potential way to enhance the immune response to these specific epitopes. Previous studies showed that V1/V2 domain scaffolds could be produced from a few selected isolates, but not from many of the isolates that would be advantageous in a multivalent vaccine. In this paper, we used a protein engineering approach to improve the conformational stability and antibody binding activity of V1/V2 domain scaffolds from multiple diverse isolates, including several that were initially unable to bind the prototypic PG9 bN-mAb. Significantly, this effort required replicating both the correct glycan structure as well as the β-sheet structure required for PG9 binding. Although scaffolds incorporating the glycans required for PG9 binding (e.g., mannose-5) can be produced using glycosylation inhibitors (e.g., swainsonine), or mutant cell lines (e.g. GnTI(-) 293 HEK), these are not practical for biopharmaceutical production of proteins intended for clinical trials. In this report, we describe engineered glycopeptide scaffolds from three different clades of HIV-1 that bind PG9 with high affinity when expressed in a wildtype cell line suitable for biopharmaceutical production. The mutations that improved PG9 binding to scaffolds produced in normal cells included amino acid positions outside of the antibody contact region designed to stabilize the β-sheet and turn structures. The scaffolds produced address three major problems in HIV vaccine development: (1) improving antibody responses to poorly immunogenic epitopes in the V1/V2 domain; (2) eliminating antibody responses to highly immunogenic (decoy) epitopes outside the V1/V2 domain; and (3) enabling the production of V1/V2 scaffolds in a cell line suitable for biopharmaceutical production.
Collapse
Affiliation(s)
- Javier F Morales
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, 1156 High Street, MS-SOE2, Santa Cruz, CA 95064, United States
| | - Bin Yu
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, 1156 High Street, MS-SOE2, Santa Cruz, CA 95064, United States
| | - Gerardo Perez
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, 1156 High Street, MS-SOE2, Santa Cruz, CA 95064, United States
| | - Kathryn A Mesa
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, 1156 High Street, MS-SOE2, Santa Cruz, CA 95064, United States
| | - David L Alexander
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, 1156 High Street, MS-SOE2, Santa Cruz, CA 95064, United States
| | - Phillip W Berman
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, 1156 High Street, MS-SOE2, Santa Cruz, CA 95064, United States.
| |
Collapse
|
45
|
Bagheri M, Arasteh S, Haney EF, Hancock REW. Tryptic Stability of Synthetic Bactenecin Derivatives Is Determined by the Side Chain Length of Cationic Residues and the Peptide Conformation. J Med Chem 2016; 59:3079-86. [PMID: 26958984 DOI: 10.1021/acs.jmedchem.5b01740] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synthetic bactenecins 1 (HHC-10) and 10 (HHC-36), with excellent activities against bacterial superbugs, display low tryptic stability. To investigate factors influencing this stability, a series of 1/10 derived peptides bearing arginine and lysine analogues with varied methylene chains as well as all-d-isomers were synthesized. Whereas incorporation of d-/l-nonproteinogenic amino acids into the turn-forming peptides did not dramatically affect the antimicrobial activities, the degree of peptide cleavage decreased significantly in peptides with the shortest length of cationic side chain and was influenced by the relative conformational stabilities of the turn structure and the stereoselectivity of tryptic digestion. The site of enzymatic cleavage was located at the less conformationally hindered position distant from the turn motif. Isothermal titration calorimetry showed strong and weak constant increments in the generated heat of enzymatic reaction of unstable and slowly degradable peptides with trypsin, respectively, and suggested a one-site binding model for the enthalpy-driven all-d-peptide-trypsin interactions.
Collapse
Affiliation(s)
- Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran , 16 Azar Street, 14176-14335 Tehran, Iran
| | - Shima Arasteh
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran , 16 Azar Street, 14176-14335 Tehran, Iran
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia , 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia , 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
46
|
Suzuki N, Kishine N, Fujimoto Z, Sakurai M, Momma M, Ko JA, Nam SH, Kimura A, Kim YM. Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus. J Biochem 2015; 159:331-9. [PMID: 26494689 DOI: 10.1093/jb/mvv104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/12/2015] [Indexed: 11/12/2022] Open
Abstract
The crystal structures of the wild type and catalytic mutant Asp-312→Gly in complex with isomaltohexaose of endo-1,6-dextranase from the thermophilic bacterium Thermoanaerobacter pseudethanolicus (TpDex), belonging to the glycoside hydrolase family 66, were determined. TpDex consists of three structural domains, a catalytic domain comprising an (β/α)8-barrel and two β-domains located at both N- and C-terminal ends. The isomaltohexaose-complex structure demonstrated that the isomaltohexaose molecule was bound across the catalytic site, showing that TpDex had six subsites (-4 to +2) in the catalytic cleft. Marked movement of the Trp-376 side-chain along with loop 6, which was the side wall component of the cleft at subsite +1, was observed to occupy subsite +1, indicating that it might expel the cleaved aglycone subsite after the hydrolysis reaction. Structural comparison with other mesophilic enzymes indicated that several structural features of TpDex, loop deletion, salt bridge and surface-exposed charged residue, may contribute to thermostability.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan;
| | - Naomi Kishine
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan;
| | - Zui Fujimoto
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan;
| | - Mutsumi Sakurai
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Mitsuru Momma
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | - Jin-A Ko
- Eco-Friendly Bio-material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185, Korea
| | - Seung-Hee Nam
- Department of Food Science and Technology and Functional Food Research Center, Chonnam National University, Gwangju 500-757, Korea
| | - Atsuo Kimura
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Kita-9 Nisi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Young-Min Kim
- Department of Food Science and Technology and Functional Food Research Center, Chonnam National University, Gwangju 500-757, Korea; Bioenergy Research Center, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
47
|
Panigrahi P, Sule M, Ghanate A, Ramasamy S, Suresh CG. Engineering Proteins for Thermostability with iRDP Web Server. PLoS One 2015; 10:e0139486. [PMID: 26436543 PMCID: PMC4593602 DOI: 10.1371/journal.pone.0139486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/13/2015] [Indexed: 11/18/2022] Open
Abstract
Engineering protein molecules with desired structure and biological functions has been an elusive goal. Development of industrially viable proteins with improved properties such as stability, catalytic activity and altered specificity by modifying the structure of an existing protein has widely been targeted through rational protein engineering. Although a range of factors contributing to thermal stability have been identified and widely researched, the in silico implementation of these as strategies directed towards enhancement of protein stability has not yet been explored extensively. A wide range of structural analysis tools is currently available for in silico protein engineering. However these tools concentrate on only a limited number of factors or individual protein structures, resulting in cumbersome and time-consuming analysis. The iRDP web server presented here provides a unified platform comprising of iCAPS, iStability and iMutants modules. Each module addresses different facets of effective rational engineering of proteins aiming towards enhanced stability. While iCAPS aids in selection of target protein based on factors contributing to structural stability, iStability uniquely offers in silico implementation of known thermostabilization strategies in proteins for identification and stability prediction of potential stabilizing mutation sites. iMutants aims to assess mutants based on changes in local interaction network and degree of residue conservation at the mutation sites. Each module was validated using an extensively diverse dataset. The server is freely accessible at http://irdp.ncl.res.in and has no login requirements.
Collapse
Affiliation(s)
- Priyabrata Panigrahi
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Manas Sule
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Avinash Ghanate
- Division of Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - C. G. Suresh
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| |
Collapse
|
48
|
Rashad AA, Kalyana Sundaram RV, Aneja R, Duffy C, Chaiken I. Macrocyclic Envelope Glycoprotein Antagonists that Irreversibly Inactivate HIV-1 before Host Cell Encounter. J Med Chem 2015; 58:7603-8. [PMID: 26331669 DOI: 10.1021/acs.jmedchem.5b00935] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We derived macrocyclic HIV-1 antagonists as a new class of peptidomimetic drug leads. Cyclic peptide triazoles (cPTs) retained the gp120 inhibitory and virus-inactivating signature of parent PTs, arguing that cyclization locked an active conformation. The six-residue cPT 9 (AAR029b) exhibited submicromolar antiviral potencies in inhibiting cell infection and triggering gp120 shedding that causes irreversible virion inactivation. Importantly, cPTs were stable to trypsin and chymotrypsin compared to substantial susceptibility of corresponding linear PTs.
Collapse
Affiliation(s)
- Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , 245 North 15th Street, Philadelphia, Pennsylvania 19102 United States
| | - Ramalingam Venkat Kalyana Sundaram
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , 245 North 15th Street, Philadelphia, Pennsylvania 19102 United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104 United States
| | - Rachna Aneja
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , 245 North 15th Street, Philadelphia, Pennsylvania 19102 United States
| | - Caitlin Duffy
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , 245 North 15th Street, Philadelphia, Pennsylvania 19102 United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , 245 North 15th Street, Philadelphia, Pennsylvania 19102 United States
| |
Collapse
|
49
|
Huang J, Jones BJ, Kazlauskas RJ. Stabilization of an α/β-Hydrolase by Introducing Proline Residues: Salicylic Acid Binding Protein 2 from Tobacco. Biochemistry 2015; 54:4330-41. [PMID: 26110207 PMCID: PMC4557962 DOI: 10.1021/acs.biochem.5b00333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α/β-Hydrolases are important enzymes for biocatalysis, but their stability often limits their application. We investigated a plant esterase, salicylic acid binding protein 2 (SABP2), as a model α/β-hydrolase. SABP2 shows typical stability to urea (unfolding free energy 6.9 ± 1.5 kcal/mol) and to heat inactivation (T1/2 15min 49.2 ± 0.5 °C). Denaturation in urea occurs in two steps, but heat inactivation occurs in a single step. The first unfolding step in urea eliminates catalytic activity. Surprisingly, we found that the first unfolding likely corresponds to the unfolding of the larger catalytic domain. Replacing selected amino acid residues with proline stabilized SABP2. Proline restricts the flexibility of the unfolded protein, thereby shifting the equilibrium toward the folded conformation. Seven locations for proline substitution were chosen either by amino acid sequence alignment with a more stable homologue or by targeting flexible regions in SABP2. Introducing proline in the catalytic domain stabilized SABP2 to the first unfolding in urea for three of five cases: L46P (+0.2 M urea), S70P (+0.1), and E215P (+0.9). Introducing proline in the cap domain did not stabilize SABP2 (two of two cases), supporting the assignment that the first unfolding corresponds to the catalytic domain. Proline substitutions in both domains stabilized SABP2 to heat inactivation: L46P (ΔT1/2 15min = +6.4 °C), S70P (+5.4), S115P (+1.8), S141P (+4.9), and E215P (+4.2). Combining substitutions did not further increase the stability to urea denaturation, but dramatically increased resistance to heat inactivation: L46P−S70P ΔT1/2 15min = +25.7 °C. This straightforward proline substitution approach may also stabilize other α/β-hydrolases.
Collapse
Affiliation(s)
- Jun Huang
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul MN 55108 USA
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Bryan J. Jones
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul MN 55108 USA
| | - Romas J. Kazlauskas
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul MN 55108 USA
| |
Collapse
|
50
|
Petukh M, Kucukkal TG, Alexov E. On human disease-causing amino acid variants: statistical study of sequence and structural patterns. Hum Mutat 2015; 36:524-534. [PMID: 25689729 DOI: 10.1002/humu.22770] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 12/28/2022]
Abstract
Statistical analysis was carried out on large set of naturally occurring human amino acid variations, and it was demonstrated that there is a preference for some amino acid substitutions to be associated with diseases. At an amino acid sequence level, it was shown that the disease-causing variants frequently involve drastic changes in amino acid physicochemical properties of proteins such as charge, hydrophobicity, and geometry. Structural analysis of variants involved in diseases and being frequently observed in human population showed similar trends: disease-causing variants tend to cause more changes in hydrogen bond network and salt bridges as compared with harmless amino acid mutations. Analysis of thermodynamics data reported in the literature, both experimental and computational, indicated that disease-causing variants tend to destabilize proteins and their interactions, which prompted us to investigate the effects of amino acid mutations on large databases of experimentally measured energy changes in unrelated proteins. Although the experimental datasets were linked neither to diseases nor exclusory to human proteins, the observed trends were the same: amino acid mutations tend to destabilize proteins and their interactions. Having in mind that structural and thermodynamics properties are interrelated, it is pointed out that any large change in any of them is anticipated to cause a disease.
Collapse
Affiliation(s)
- Marharyta Petukh
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| | - Tugba G Kucukkal
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| | - Emil Alexov
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| |
Collapse
|