1
|
Cao L, Lin M, Ning J, Meng X, Pu X, Zhang R, Wu Q, Huang Z, Zhou J. Critical Roles of Acidic Residues in Loop Regions of the Structural Surface for the Salt Tolerance of a GH39 β-d-Xylosidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5805-5815. [PMID: 38451212 DOI: 10.1021/acs.jafc.3c07957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Xylan is the main component of hemicellulose. Complete hydrolysis of xylan requires synergistically acting xylanases, such as β-d-xylosidases. Salt-tolerant β-d-xylosidases have significant application benefits, but few reports have explored the critical amino acids affecting the salt tolerance of xylosidases. Herein, the site-directed mutation was used to demonstrate that negative electrostatic potentials generated by 19 acidic residues in the loop regions of the structural surface positively correlated with the improved salt tolerance of GH39 β-d-xylosidase JB13GH39P28. These mutants showed reduced negative potentials on structural surfaces as well as a 13-43% decrease in stability in 3.0-30.0% (w/v) NaCl. Six key residue sites, D201, D259, D297, D377, D395, and D474, were confirmed to influence both the stability and activity of GH39 β-d-xylosidase. The activity of the GH39 β-d-xylosidase was found promoting by SO42- and inhibiting by NO3-. Values of Km and Kcat/Km decreased aggravatedly in 30.0% (w/v) NaCl when mutation operated on residues E179 and D182 in the loop regions of the catalytic domain. Taken together, mutation on acidic residues in loop regions from catalytic and noncatalytic domains may cause the deformation of catalytic pocket and aggregation of protein particles then decrease the stability, binding affinity, and catalytic efficiency of the β-d-xylosidase.
Collapse
Affiliation(s)
- Lijuan Cao
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Mingyue Lin
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Juan Ning
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Xin Meng
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Xiong Pu
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Rui Zhang
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Qian Wu
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Zunxi Huang
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, People's Republic of China
| | - Junpei Zhou
- College of Life Sciences, Yunnan Normal University, Kunming 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming 650500, People's Republic of China
| |
Collapse
|
2
|
Guo Z, Wang L, Rao D, Liu W, Xue M, Fu Q, Lu M, Su L, Chen S, Wang B, Wu J. Conformational Switch of the 250s Loop Enables the Efficient Transglycosylation in GH Family 77. J Chem Inf Model 2023; 63:6118-6128. [PMID: 37768640 DOI: 10.1021/acs.jcim.3c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Amylomaltases (AMs) play important roles in glycogen and maltose metabolism. However, the molecular mechanism is elusive. Here, we investigated the conformational dynamics of the 250s loop and catalytic mechanism of Thermus aquaticus TaAM using path-metadynamics and QM/MM MD simulations. The results demonstrate that the transition of the 250s loop from an open to closed conformation promotes polysaccharide sliding, leading to the ideal positioning of the acid/base. Furthermore, the conformational dynamics can also modulate the selectivity of hydrolysis and transglycosylation. The closed conformation of the 250s loop enables the tight packing of the active site for transglycosylation, reducing the energy penalty and efficiently preventing the penetration of water into the active site. Conversely, the partially closed conformation for hydrolysis results in a loosely packed active site, destabilizing the transition state. These computational findings guide mutation experiments and enable the identification of mutants with an improved disproportionation/hydrolysis ratio. The present mechanism is in line with experimental data, highlighting the critical role of conformational dynamics in regulating the catalytic reactivity of GHs.
Collapse
Affiliation(s)
- Zhiyong Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Deming Rao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Weiqiong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Miaomiao Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qisheng Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Mengwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| |
Collapse
|
3
|
Llopiz A, Ramírez-Martínez MA, Olvera L, Xolalpa-Villanueva W, Pastor N, Saab-Rincon G. The Role of a Loop in the Non-catalytic Domain B on the Hydrolysis/Transglycosylation Specificity of the 4-α-Glucanotransferase from Thermotoga maritima. Protein J 2023; 42:502-518. [PMID: 37464145 PMCID: PMC10480278 DOI: 10.1007/s10930-023-10136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
The mechanism by which glycoside hydrolases control the reaction specificity through hydrolysis or transglycosylation is a key element embedded in their chemical structures. The determinants of reaction specificity seem to be complex. We looked for structural differences in domain B between the 4-α-glucanotransferase from Thermotoga maritima (TmGTase) and the α-amylase from Thermotoga petrophila (TpAmylase) and found a longer loop in the former that extends towards the active site carrying a W residue at its tip. Based on these differences we constructed the variants W131G and the partial deletion of the loop at residues 120-124/128-131, which showed a 11.6 and 11.4-fold increased hydrolysis/transglycosylation (H/T) ratio relative to WT protein, respectively. These variants had a reduction in the maximum velocity of the transglycosylation reaction, while their affinity for maltose as the acceptor was not substantially affected. Molecular dynamics simulations allow us to rationalize the increase in H/T ratio in terms of the flexibility near the active site and the conformations of the catalytic acid residues and their associated pKas.
Collapse
Affiliation(s)
- Alexey Llopiz
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62209, Cuernavaca, Morelos, Mexico
| | - Marco A Ramírez-Martínez
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, 62209, Cuernavaca, Morelos, Mexico
| | - Leticia Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62209, Cuernavaca, Morelos, Mexico
| | - Wendy Xolalpa-Villanueva
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62209, Cuernavaca, Morelos, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, 62209, Cuernavaca, Morelos, Mexico
| | - Gloria Saab-Rincon
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
4
|
Ngawiset S, Ismail A, Murakami S, Pongsawasdi P, Rungrotmongkol T, Krusong K. Identification of crucial amino acid residues involved in large ring cyclodextrin synthesis by amylomaltase from Corynebacterium glutamicum. Comput Struct Biotechnol J 2023; 21:899-909. [PMID: 36698977 PMCID: PMC9860158 DOI: 10.1016/j.csbj.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Amylomaltase can be used to synthesize large ring cyclodextrins (LR-CDs), applied as drug solubilizer, gene delivery vehicle and protein aggregation suppressor. This study aims to determine the functional amino acid positions of Corynebacterium glutamicum amylomaltase (CgAM) involved in LR-CD synthesis by site-directed mutagenesis approach and molecular dynamic simulation. Mutants named Δ167, Y23A, P228Y, E231Y, A413F and G417F were constructed, purified, and characterized. The truncated CgAM, Δ167 exhibited no starch transglycosylation activity, indicating that the N-terminal domain of CgAM is necessary for enzyme activity. The P228Y, A413F and G417F produced larger LR-CDs from CD36-CD40 as compared to CD29 by WT. A413F and G417F mutants produced significantly low LR-CD yield compared to the WT. The A413F mutation affected all tested enzyme activities (starch tranglycosylation, disproportionation and cyclization), while the G417F mutation hindered the cyclization activity. P228Y mutation significantly lowered the k cat of disproportionation activity, while E231Y mutant exhibited much higher k cat and K m values for starch transglycosylation, compared to that of the WT. In addition, Y23A mutation affected the kinetic parameters of starch transglycosylation and cyclization. Molecular dynamic simulation further confirmed these mutations' impacts on the CgAM and LR-CD interactions. Identified functional amino acids for LR-CD synthesis may serve as a model for future modification to improve the properties and yield of LR-CDs.
Collapse
Affiliation(s)
- Sirikul Ngawiset
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Abbas Ismail
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Shuichiro Murakami
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki-shi, Kanagawa 214–8571, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand,Program in Bioinformatics and Computational Chemistry, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand,Corresponding author.
| |
Collapse
|
5
|
Jung JH, Hong S, Jeon EJ, Kim MK, Seo DH, Woo EJ, Holden JF, Park CS. Acceptor dependent catalytic properties of GH57 4-α-glucanotransferase from Pyrococcus sp. ST04. Front Microbiol 2022; 13:1016675. [PMID: 36274706 PMCID: PMC9582752 DOI: 10.3389/fmicb.2022.1016675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The 4-α-glucanotransferase (4-α-GTase or amylomaltase) is an essential enzyme in maltodextrin metabolism. Generally, most bacterial 4-α-GTase is classified into glycoside hydrolase (GH) family 77. However, hyperthermophiles have unique 4-α-GTases belonging to GH family 57. These enzymes are the main amylolytic protein in hyperthermophiles, but their mode of action in maltooligosaccharide utilization is poorly understood. In the present study, we investigated the catalytic properties of 4-α-GTase from the hyperthermophile Pyrococcus sp. ST04 (PSGT) in the presence of maltooligosaccharides of various lengths. Unlike 4-α-GTases in GH family 77, GH family 57 PSGT produced maltotriose in the early stage of reaction and preferred maltose and maltotriose over glucose as the acceptor. The kinetic analysis showed that maltotriose had the lowest KM value, which increased amylose degradation activity by 18.3-fold. Structural models of PSGT based on molecular dynamic simulation revealed two aromatic amino acids interacting with the substrate at the +2 and +3 binding sites, and the mutational study demonstrated they play a critical role in maltotriose binding. These results clarify the mode of action in carbohydrate utilization and explain acceptor binding mechanism of GH57 family 4-α-GTases in hyperthermophilic archaea.
Collapse
Affiliation(s)
- Jong-Hyun Jung
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Seungpyo Hong
- Department of Molecular Biology, Jeonbuk National University, Jeonju, South Korea
| | - Eun Jung Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Min-Kyu Kim
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, South Korea
| | - Eui-Jeon Woo
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - James F. Holden
- Department of Microbiology, University of Messachusetts, Amherst, MA, United States
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, South Korea
- *Correspondence: Cheon-Seok Park,
| |
Collapse
|
6
|
Jiang Y, Li X, Pijning T, Bai Y, Dijkhuizen L. Mutations in Amino Acid Residues of Limosilactobacillus reuteri 121 GtfB 4,6-α-Glucanotransferase that Affect Reaction and Product Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1952-1961. [PMID: 35129339 DOI: 10.1021/acs.jafc.1c07618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Limosilactobacillus reuteri 121 4,6-α-glucanotransferase (Lr121 4,6-α-GTase), belonging to the glycosyl hydrolase (GH) 70 GtfB subfamily, converts starch and maltodextrins into linear isomalto/malto polysaccharides (IMMPs) with consecutive (α1 → 6) linkages. The recent elucidation of its crystal structure allowed identification and analysis of further structural features that determine its reaction and product specificity. Herein, sequence alignments between GtfB enzymes with different product linkage specificities (4,6-α-GTase and 4,3-α-GTase) identified amino acid residues in GH70 homology motifs, which may be critical for reaction and product specificity. Based on these alignments, four Lr121 GtfB-ΔN mutants (I1020M, S1057P, H1056G, and Q1126I) were constructed. Compared to wild-type Lr121 GtfB-ΔN, mutants S1057P and Q1126I had considerably improved catalytic efficiencies. Mutants H1056G and Q1126I showed a 9% decrease and an 11% increase, respectively, in the ratio of (α1 → 6) over (α1 → 4) linkages in maltodextrin-derived products. A change in linkage type (e.g., (α1 → 6) linkages to (α1 → 3) linkages) was not observed. The possible functional roles of these Lr121 GtfB-ΔN residues located around the acceptor substrate-binding subsites are discussed. The results provide new insights into structural determinants of the reaction and product specificity of Lr121 GtfB 4,6-α-GTase.
Collapse
Affiliation(s)
- Yawen Jiang
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Xiaoxiao Li
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Tjaard Pijning
- Biomolecular X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Yuxiang Bai
- State Key laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
- CarbExplore Research B.V., 9747 AA Groningen, The Netherlands
| |
Collapse
|
7
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Identification of an Amylomaltase from the Halophilic Archaeon Haloquadratum walsbyi by Functional Metagenomics: Structural and Functional Insights. Life (Basel) 2022; 12:life12010085. [PMID: 35054477 PMCID: PMC8781629 DOI: 10.3390/life12010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
Amylomaltases are prokaryotic 4-α-glucanotransferases of the GH77 family. Thanks to the ability to modify starch, they constitute a group of enzymes of great interest for biotechnological applications. In this work we report the identification, by means of a functional metagenomics screening of the crystallization waters of the saltern of Margherita di Savoia (Italy), of an amylomaltase gene from the halophilic archaeon Haloquadratum walsbyi, and its expression in Escherichia coli cells. Sequence analysis indicated that the gene has specific insertions yet unknown in homologous genes in prokaryotes, and present only in amylomaltase genes identified in the genomes of other H. walsbyi strains. The gene is not part of any operon involved in the metabolism of maltooligosaccharides or glycogen, as it has been found in bacteria, making it impossible currently to assign a precise role to the encoded enzyme. Sequence analysis of the H. walsbyi amylomaltase and 3D modelling showed a common structure with homologous enzymes characterized in mesophilic and thermophilic bacteria. The recombinant H. walsbyi enzyme showed starch transglycosylation activity over a wide range of NaCl concentrations, with maltotriose as the best acceptor substrate compared to other maltooligosaccharides. This is the first study of an amylomaltase from a halophilic microorganism.
Collapse
|
9
|
Leoni C, Gattulli BAR, Pesole G, Ceci LR, Volpicella M. Amylomaltases in Extremophilic Microorganisms. Biomolecules 2021; 11:biom11091335. [PMID: 34572549 PMCID: PMC8465469 DOI: 10.3390/biom11091335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Amylomaltases (4-α-glucanotransferases, E.C. 2.4.1.25) are enzymes which can perform a double-step catalytic process, resulting in a transglycosylation reaction. They hydrolyse glucosidic bonds of α-1,4'-d-glucans and transfer the glucan portion with the newly available anomeric carbon to the 4'-position of an α-1,4'-d-glucan acceptor. The intramolecular reaction produces a cyclic α-1,4'-glucan. Amylomaltases can be found only in prokaryotes, where they are involved in glycogen degradation and maltose metabolism. These enzymes are being studied for possible biotechnological applications, such as the production of (i) sugar substitutes; (ii) cycloamyloses (molecules larger than cyclodextrins), which could potentially be useful as carriers and encapsulating agents for hydrophobic molecules and also as effective protein chaperons; and (iii) thermoreversible starch gels, which could be used as non-animal gelatin substitutes. Extremophilic prokaryotes have been investigated for the identification of amylomaltases to be used in the starch modifying processes, which require high temperatures or extreme conditions. The aim of this article is to present an updated overview of studies on amylomaltases from extremophilic Bacteria and Archaea, including data about their distribution, activity, potential industrial application and structure.
Collapse
Affiliation(s)
- Claudia Leoni
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
| | - Bruno A. R. Gattulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Luigi R. Ceci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Correspondence: (L.R.C.); (M.V.); Tel.: +39-080-544-3311 (L.R.C. & M.V.)
| | - Mariateresa Volpicella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Via Amendola, 70126 Bari, Italy; (C.L.); (B.A.R.G.); (G.P.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (L.R.C.); (M.V.); Tel.: +39-080-544-3311 (L.R.C. & M.V.)
| |
Collapse
|
10
|
A putative novel starch-binding domain revealed by in silico analysis of the N-terminal domain in bacterial amylomaltases from the family GH77. 3 Biotech 2021; 11:229. [PMID: 33968573 DOI: 10.1007/s13205-021-02787-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
The family GH77 contains 4-α-glucanotransferase acting on α-1,4-glucans, known as amylomaltase in prokaryotes and disproportionating enzyme in plants. A group of bacterial GH77 members, represented by amylomaltases from Escherichia coli and Corynebacterium glutamicum, possesses an N-terminal extension that forms a distinct immunoglobulin-like fold domain, of which no function has been identified. Here, in silico analysis of 100 selected sequences of N-terminal domain homologues disclosed several well-conserved residues, among which Tyr108 (E. coli amylomaltase numbering) may be involved in α-glucan binding. These N-terminal domains, therefore, may represent a new type of starch-binding domain and define a new CBM family. This hypothesis is supported by docking of maltooligosaccharides to the N-terminal domain in amylomaltases, representing the four clusters of the phylogenetic tree. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02787-8.
Collapse
|
11
|
Tumhom S, Nimpiboon P, Wangkanont K, Pongsawasdi P. Streptococcus agalactiae amylomaltase offers insight into the transglycosylation mechanism and the molecular basis of thermostability among amylomaltases. Sci Rep 2021; 11:6740. [PMID: 33762620 PMCID: PMC7990933 DOI: 10.1038/s41598-021-85769-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/04/2021] [Indexed: 11/09/2022] Open
Abstract
Amylomaltase (AM) catalyzes transglycosylation of starch to form linear or cyclic oligosaccharides with potential applications in biotechnology and industry. In the present work, a novel AM from the mesophilic bacterium Streptococcus agalactiae (SaAM), with 18–49% sequence identity to previously reported AMs, was characterized. Cyclization and disproportionation activities were observed with the optimum temperature of 30 °C and 40 °C, respectively. Structural determination of SaAM, the first crystal structure of small AMs from the mesophiles, revealed a glycosyl-enzyme intermediate derived from acarbose and a second acarbose molecule attacking the intermediate. This pre-transglycosylation conformation has never been before observed in AMs. Structural analysis suggests that thermostability in AMs might be mainly caused by an increase in salt bridges since SaAM has a lower number of salt bridges compared with AMs from the thermophiles. Increase in thermostability by mutation was performed. C446 was substituted with A/S/P. C446A showed higher activities and higher kcat/Km values for starch in comparison to the WT enzyme. C446S exhibited a 5 °C increase in optimum temperature and the threefold increase in half-life time at 45 °C, most likely resulting from H-bonding interactions. For all enzymes, the main large-ring cyclodextrin (LR-CD) products were CD24-CD26 with CD22 as the smallest. C446S produced more CD35-CD42, especially at a longer incubation time.
Collapse
Affiliation(s)
- Suthipapun Tumhom
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pitchanan Nimpiboon
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Gene cloning, expression enhancement in Escherichia coli and biochemical characterization of a highly thermostable amylomaltase from Pyrobaculum calidifontis. Int J Biol Macromol 2020; 165:645-653. [DOI: 10.1016/j.ijbiomac.2020.09.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/18/2022]
|
13
|
An 1,4-α-Glucosyltransferase Defines a New Maltodextrin Catabolism Scheme in Lactobacillus acidophilus. Appl Environ Microbiol 2020; 86:AEM.00661-20. [PMID: 32444471 DOI: 10.1128/aem.00661-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
The maltooligosaccharide (MOS) utilization locus in Lactobacillus acidophilus NCFM, a model for human small-intestine lactobacilli, encodes three glycoside hydrolases (GHs): a putative maltogenic α-amylase of family 13, subfamily 20 (LaGH13_20), a maltose phosphorylase of GH65 (LaGH65), and a family 13, subfamily 31, member (LaGH13_31B), annotated as a 1,6-α-glucosidase. Here, we reveal that LaGH13_31B is a 1,4-α-glucosyltransferase that disproportionates MOS with a degree of polymerization of ≥2, with a preference for maltotriose. Kinetic analyses of the three GHs encoded by the MOS locus revealed that the substrate preference of LaGH13_31B toward maltotriose complements the ~40-fold lower k cat of LaGH13_20 toward this substrate, thereby enhancing the conversion of odd-numbered MOS to maltose. The concerted action of LaGH13_20 and LaGH13_31B confers the efficient conversion of MOS to maltose that is phosphorolyzed by LaGH65. Structural analyses revealed the presence of a flexible elongated loop that is unique for a previously unexplored clade of GH13_31, represented by LaGH13_31B. The identified loop insertion harbors a conserved aromatic residue that modulates the activity and substrate affinity of the enzyme, thereby offering a functional signature of this clade, which segregates from 1,6-α-glucosidases and sucrose isomerases previously described within GH13_31. Genomic analyses revealed that the LaGH13_31B gene is conserved in the MOS utilization loci of lactobacilli, including acidophilus cluster members that dominate the human small intestine.IMPORTANCE The degradation of starch in the small intestine generates short linear and branched α-glucans. The latter are poorly digestible by humans, rendering them available to the gut microbiota, e.g., lactobacilli adapted to the small intestine and considered beneficial to health. This study unveils a previously unknown scheme of maltooligosaccharide (MOS) catabolism via the concerted activity of an 1,4-α-glucosyltransferase together with a classical hydrolase and a phosphorylase. The intriguing involvement of a glucosyltransferase likely allows the fine-tuning of the regulation of MOS catabolism for optimal harnessing of this key metabolic resource in the human small intestine. The study extends the suite of specificities that have been identified in GH13_31 and highlights amino acid signatures underpinning the evolution of 1,4-α-glucosyl transferases that have been recruited in the MOS catabolism pathway in lactobacilli.
Collapse
|
14
|
Wang Y, Li X, Ji H, Zheng D, Jin Z, Bai Y, Svensson B. Thermophilic 4-α-Glucanotransferase from Thermoproteus Uzoniensis Retards the Long-Term Retrogradation but Maintains the Short-Term Gelation Strength of Tapioca Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5658-5667. [PMID: 32352781 DOI: 10.1021/acs.jafc.0c00927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gelation of starch is a process during short-term retrogradation. However, long-term retrogradation always leads to the quality deterioration of starch-based food. In this work, a new type of modified tapioca starch (MTS) gel with maintained short-term gelation strength and retarded long-term retrogradation was prepared using a novel recombinantly produced and characterized 4-α-glucanotransferase (TuαGT). In the resulting MTS, the exterior chains of the amylopectin part were elongated and the content of amylose was reduced because of the disproportionation activity of TuαGT. The retrogradation analysis demonstrated that the MTS possessed highly weakened long-term retrogradation characteristics as compared to the native starch. Most importantly, the strength of the gel formed by regelatinized MTS is very close to that of gelatinized native tapioca starch when storing below 30 °C. These findings provide a starting point for developing a novel method for the enzymatic modification of the starch-based gels.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Danni Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Seo DH, Jung JH, Park CS. Improved polymerization activity of Deinococcus geothermalis amylosucrase by semi-rational design: Effect of loop flexibility on the polymerization reaction. Int J Biol Macromol 2019; 130:177-185. [DOI: 10.1016/j.ijbiomac.2019.02.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 12/17/2022]
|
16
|
Miao M, Jiang B, Jin Z, BeMiller JN. Microbial Starch-Converting Enzymes: Recent Insights and Perspectives. Compr Rev Food Sci Food Saf 2018; 17:1238-1260. [PMID: 33350152 DOI: 10.1111/1541-4337.12381] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Miao
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Bo Jiang
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Zhengyu Jin
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - James N. BeMiller
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
- Dept. of Food Science; Whistler Center for Carbohydrate Research, Purdue Univ.; 745 Agriculture Mall Drive West Lafayette IN 47907-2009 U.S.A
| |
Collapse
|
17
|
Tumhom S, Krusong K, Kidokoro SI, Katoh E, Pongsawasdi P. Significance of H461 at subsite +1 in substrate binding and transglucosylation activity of amylomaltase from Corynebacterium glutamicum. Arch Biochem Biophys 2018; 652:3-8. [PMID: 29885290 DOI: 10.1016/j.abb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Amylomaltase (AM) catalyzes inter- and intra-molecular transglycosylation reactions of glucan to yield linear and cyclic oligosaccharide products. The functional roles of the conserved histidine at position 461 in the active site of AM from Corynebacterium glutamicum (CgAM) was investigated. H461 A/S/D/R/W were constructed, their catalytic properties were compared to the wild-type (WT). A significant decrease in transglucosylation activities was observed, especially in H461A mutant, while hydrolysis activity was barely affected. The transglucosylation factor of the H461A-CgAM was decreased by 8.6 folds. WT preferred maltotriose (G3) as substrate for disproportionation reaction, but all H461 mutants showed higher preference for maltose (G2). Using G3 substrate, kcat/Km values of H461 mutated CgAMs were 40-64 folds lower, while the Km values were twice higher than those of WT. All mutants could not produce large-ring cyclodextrin (LR-CD) product. The heat capacity profile indicated that WT had higher thermal stability than H461A. The X-ray structure of WT showed two H-bonds between H461 and heptasaccharide analog at subsite +1, while no such bonding was observed from the model structure of H461A. The importance of H461 on substrate binding with CgAM was evidenced. We are the first to mutate an active site histidine in AM to explore its function.
Collapse
Affiliation(s)
- Suthipapun Tumhom
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Structural and Computational Biology Research Group, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Shun-Ichi Kidokoro
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Etsuko Katoh
- Structural Biology Research Unit, Advanced Analysis Center, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, 305-8617, Ibaraki, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
18
|
Sorndech W, Tongta S, Blennow A. Slowly Digestible‐ and Non‐Digestible α‐Glucans: An Enzymatic Approach to Starch Modification and Nutritional Effects. STARCH-STARKE 2017. [DOI: 10.1002/star.201700145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Waraporn Sorndech
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Sunanta Tongta
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Andreas Blennow
- Faculty of Sciences Department of Plant and Environmental Sciences University of CopenhagenFrederiksberg C 1871Denmark
| |
Collapse
|
19
|
Tumhom S, Krusong K, Pongsawasdi P. Y418 in 410s loop is required for high transglucosylation activity and large-ring cyclodextrin production of amylomaltase from Corynebacterium glutamicum. Biochem Biophys Res Commun 2017; 488:516-521. [PMID: 28522291 DOI: 10.1016/j.bbrc.2017.05.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 01/10/2023]
Abstract
Amylomaltase catalyzes α-1,4 glucosyl transfer reaction to yield linear or cyclic oligosaccharide products. The aim of this work is to investigate functional roles of 410s loop unique to amylomaltase from Corynebacterium glutamicum (CgAM). Site-directed mutagenesis of Y418, the residue at the loop tip, was performed. Y418A/S/D/R/W/F - CgAMs were characterized and compared to the wild-type (WT). A significant decrease in starch transglucosylation, disproportionation and cyclization activities was observed. Specificity for G3 substrate in disproportionation reaction was not changed; however, Y418F showed an increase in preference for longer oligosaccharides G5 to G7. The catalytic efficiency of Y418 mutated CgAMs, except for Y418F, was significantly lower (up to 8- and 12- fold for the W and R mutants, respectively) than that of WT. The change was in the kcat, not the Km values which were around 16-20 mM. The profile of large-ring cyclodextrin (LR-CD) product was different; the principal product of Y418A/D/S was shifted to the larger size (CD36-CD40) while that of the WT and Y418F peaked at CD29-CD33. The product yield was reduced especially in W and R mutants. Hence Y418 in 410s loop of CgAM not only contributes to transglucosylation activities but also controls the amount and size of LR-CD products through the proposed hydrophobic stacking interaction and the suitable distance of loop channel for substrate entering. This is the first report to show the effect of the loop tip residue on LR-CD product formation.
Collapse
Affiliation(s)
- Suthipapun Tumhom
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
20
|
Structural basis for the roles of starch and sucrose in homo-exopolysaccharide formation by Lactobacillus reuteri 35-5. Carbohydr Polym 2016; 151:29-39. [DOI: 10.1016/j.carbpol.2016.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 12/22/2022]
|
21
|
Nimpiboon P, Krusong K, Kaulpiboon J, Kidokoro SI, Pongsawasdi P. Roles of N287 in catalysis and product formation of amylomaltase from Corynebacterium glutamicum. Biochem Biophys Res Commun 2016; 478:759-64. [PMID: 27507216 DOI: 10.1016/j.bbrc.2016.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/03/2016] [Indexed: 02/02/2023]
Abstract
Amylomaltase catalyzes intermolecular and intramolecular transglucosylation reactions to form linear and cyclic oligosaccharides, respectively. The aim of this work is to investigate the structure-function relationship of amylomaltase from a mesophilic Corynebacterium glutamicum (CgAM). Site-directed mutagenesis was performed to substitute Tyr for Asn287 (N287Y) to determine its role in controlling amylomaltase activity and product formation. Expression of the wild-type (WT) and N287Y was achieved by cultivating recombinant cells in the medium containing lactose at 16 °C for 14 h. The purified mutated enzyme showed a significant decrease in all transglucosylation activities while hydrolysis activity was not changed. Optimum temperature and pH for disproportionation reaction were slightly changed upon mutation while those for cyclization reaction were not changed. Interestingly, N287Y showed a change in large-ring cyclodextrin (LR-CD) product profile in which the larger size was observed together with an increase in thermostability and substrate preference for G5 in addition to G3. The secondary structure of the mutated enzyme was slightly changed in related to the WT as evidenced from circular dichroism analysis. This work thus demonstrates that N287 is required for transglucosylation activities of CgAM. Having an aromatic residue in this position increased thermostability, changed product profile and substrate preference but demolished most enzyme activities.
Collapse
Affiliation(s)
- Pitchanan Nimpiboon
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Department of Pre-clinical Science (Biochemistry), Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Shun-Ichi Kidokoro
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
22
|
Joo S, Kim S, Seo H, Kim KJ. Crystal Structure of Amylomaltase from Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5662-5670. [PMID: 27366969 DOI: 10.1021/acs.jafc.6b02296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amylomaltase is an essential enzyme in maltose utilization and maltodextrin metabolism, and it has been industrially used for the production of cyclodextrin and modification of starch. We determined the crystal structure of amylomaltase from Corynebacterium glutamicum (CgAM) at a resolution of 1.7 Å. Although CgAM forms a dimer without NaCl, it exists as a monomer in physiological concentration of NaCl. CgAM is composed of N- and C-terminal domains, which can be further divided into two and four subdomains, respectively. It exhibits a unique structural feature at the functionally unknown N-domain and also shows two striking differences at the C-domain compared to other amylomaltases. These differences at extended edge of the substrate-binding site might affect substrate specificity for large cyclodextrin formation. The bis-tris methane and sulfate molecules bound at the substrate-binding site of our current structure mimic the binding of the hydroxyl groups of glucose bound at subsites -1 and -2, respectively.
Collapse
Affiliation(s)
- Seongjoon Joo
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Sangwoo Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, 689-798, Republic of Korea
| | - Hogyun Seo
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University , Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| |
Collapse
|
23
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
24
|
Nimpiboon P, Kaulpiboon J, Krusong K, Nakamura S, Kidokoro SI, Pongsawasdi P. Mutagenesis for improvement of activity and thermostability of amylomaltase from Corynebacterium glutamicum. Int J Biol Macromol 2016; 86:820-8. [PMID: 26875536 DOI: 10.1016/j.ijbiomac.2016.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/25/2022]
Abstract
This work aims to improve thermostability of amylomaltase from a mesophilic Corynebacterium glutamicum (CgAM) by random and site-directed mutagenesis. From error prone PCR, a mutated CgAM with higher thermostability at 50 °C compared to the wild-type was selected and sequenced. The result showed that the mutant contains a single mutation of A406V. Site-directed mutagenesis was then performed to construct A406V and A406L. Both mutated CgAMs showed higher intermolecular transglucosylation activity with an upward shift in the optimum temperature and a slight increase in the optimum pH for disproportionation and cyclization reactions. Thermostability of both mutated CgAMs at 35-40 °C was significantly increased with a higher peak temperature from DSC spectra when compared to the wild-type. A406V had a greater effect on activity and thermostability than A406L. The catalytic efficiency values kcat/Km of A406V- and A406L-CgAMs were 2.9 and 1.4 times higher than that of the wild-type, respectively, mainly due to a significant increase in kcat. LR-CD product analysis demonstrated that A406V gave higher product yield, especially at longer incubation time and higher temperature, in comparison to the wild-type enzyme.
Collapse
Affiliation(s)
- Pitchanan Nimpiboon
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jarunee Kaulpiboon
- Department of Pre-Clinical Science, Biochemistry, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Shigeyoshi Nakamura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Shun-ichi Kidokoro
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
25
|
Ahmad N, Mehboob S, Rashid N. Starch-processing enzymes — emphasis on thermostable 4-α-glucanotransferases. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Characterization of amylomaltase from Thermus filiformis and the increase in alkaline and thermo-stability by E27R substitution. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
O'Neill EC, Stevenson CEM, Tantanarat K, Latousakis D, Donaldson MI, Rejzek M, Nepogodiev SA, Limpaseni T, Field RA, Lawson DM. Structural Dissection of the Maltodextrin Disproportionation Cycle of the Arabidopsis Plastidial Disproportionating Enzyme 1 (DPE1). J Biol Chem 2015; 290:29834-53. [PMID: 26504082 PMCID: PMC4705983 DOI: 10.1074/jbc.m115.682245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The degradation of transitory starch in the chloroplast to provide fuel for the plant during the night requires a suite of enzymes that generate a series of short chain linear glucans. However, glucans of less than four glucose units are no longer substrates for these enzymes, whereas export from the plastid is only possible in the form of either maltose or glucose. In order to make use of maltotriose, which would otherwise accumulate, disproportionating enzyme 1 (DPE1; a 4-α-glucanotransferase) converts two molecules of maltotriose to a molecule of maltopentaose, which can now be acted on by the degradative enzymes, and one molecule of glucose that can be exported. We have determined the structure of the Arabidopsis plastidial DPE1 (AtDPE1), and, through ligand soaking experiments, we have trapped the enzyme in a variety of conformational states. AtDPE1 forms a homodimer with a deep, long, and open-ended active site canyon contained within each subunit. The canyon is divided into donor and acceptor sites with the catalytic residues at their junction; a number of loops around the active site adopt different conformations dependent on the occupancy of these sites. The "gate" is the most dynamic loop and appears to play a role in substrate capture, in particular in the binding of the acceptor molecule. Subtle changes in the configuration of the active site residues may prevent undesirable reactions or abortive hydrolysis of the covalently bound enzyme-substrate intermediate. Together, these observations allow us to delineate the complete AtDPE1 disproportionation cycle in structural terms.
Collapse
Affiliation(s)
- Ellis C O'Neill
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Clare E M Stevenson
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Krit Tantanarat
- the Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dimitrios Latousakis
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Matthew I Donaldson
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Martin Rejzek
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Sergey A Nepogodiev
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - Tipaporn Limpaseni
- the Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Robert A Field
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| | - David M Lawson
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom and
| |
Collapse
|
28
|
Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers. Appl Environ Microbiol 2015; 81:7223-32. [PMID: 26253678 DOI: 10.1128/aem.01860-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/31/2015] [Indexed: 11/20/2022] Open
Abstract
4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have significant potential for industrial applications. Here we report that an N-terminal truncation (amino acids 1 to 733) strongly enhances the soluble expression level of fully active GTFB-ΔN (approximately 75-fold compared to full-length wild type GTFB) in Escherichia coli. In addition, quantitative assays based on amylose V as the substrate are described; these assays allow accurate determination of both hydrolysis (minor) activity (glucose release, reducing power) and total activity (iodine staining) and calculation of the transferase (major) activity of these 4,6-α-GTase enzymes. The data show that GTFB-ΔN is clearly less hydrolytic than GTFW, which is also supported by nuclear magnetic resonance (NMR) analysis of their final products. From these assays, the biochemical properties of GTFB-ΔN were characterized in detail, including determination of kinetic parameters and acceptor substrate specificity. The GTFB enzyme displayed high conversion yields at relatively high substrate concentrations, a promising feature for industrial application.
Collapse
|
29
|
Weiss SC, Skerra A, Schiefner A. Structural Basis for the Interconversion of Maltodextrins by MalQ, the Amylomaltase of Escherichia coli. J Biol Chem 2015; 290:21352-64. [PMID: 26139606 DOI: 10.1074/jbc.m115.667337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
Amylomaltase MalQ is essential for the metabolism of maltose and maltodextrins in Escherichia coli. It catalyzes transglycosylation/disproportionation reactions in which glycosyl or dextrinyl units are transferred among linear maltodextrins of various lengths. To elucidate the molecular basis of transglycosylation by MalQ, we have determined three crystal structures of this enzyme, i.e. the apo-form, its complex with maltose, and an inhibitor complex with the transition state analog acarviosine-glucose-acarbose, at resolutions down to 2.1 Å. MalQ represents the first example of a mesophilic bacterial amylomaltase with known structure and exhibits an N-terminal extension of about 140 residues, in contrast with previously described thermophilic enzymes. This moiety seems unique to amylomaltases from Enterobacteriaceae and folds into two distinct subdomains that associate with different parts of the catalytic core. Intriguingly, the three MalQ crystal structures appear to correspond to distinct states of this enzyme, revealing considerable conformational changes during the catalytic cycle. In particular, the inhibitor complex highlights the requirement of both a 3-OH group and a 4-OH group (or α1-4-glycosidic bond) at the acceptor subsite +1 for the catalytically competent orientation of the acid/base catalyst Glu-496. Using an HPLC-based MalQ enzyme assay, we could demonstrate that the equilibrium concentration of maltodextrin products depends on the length of the initial substrate; with increasing numbers of glycosidic bonds, less glucose is formed. Thus, both structural and enzymatic data are consistent with the extremely low hydrolysis rates observed for amylomaltases and underline the importance of MalQ for the metabolism of maltodextrins in E. coli.
Collapse
Affiliation(s)
- Simon C Weiss
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| | - Arne Skerra
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| | - André Schiefner
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
30
|
In silico analysis of family GH77 with focus on amylomaltases from borreliae and disproportionating enzymes DPE2 from plants and bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1260-8. [PMID: 26006747 DOI: 10.1016/j.bbapap.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 11/21/2022]
Abstract
The CAZy glycoside hydrolase (GH) family GH77 is a monospecific family containing 4-α-glucanotransferases that if from prokaryotes are known as amylomaltases and if from plants including algae are known as disproportionating enzymes (DPE). The family GH77 is a member of the α-amylase clan GH-H. The main difference discriminating a GH77 4-α-glucanotransferase from the main GH13 α-amylase family members is the lack of domain C succeeding the catalytic (β/α)8-barrel. Of more than 2400 GH77 members, bacterial amylomaltases clearly dominate with more than 2300 sequences; the rest being approximately equally represented by Archaea and Eucarya. The main goal of the present study was to deliver a detailed bioinformatics study of family GH77 (416 collected sequences) focused on amylomaltases from borreliae (containing unique sequence substitutions in functionally important positions) and plant DPE2 representatives (possessing an insert of ~140 residues between catalytic nucleophile and proton donor). The in silico analysis reveals that within the genus of Borrelia a gradual evolutionary transition from typical bacterial Thermus-like amylomaltases may exist to family-GH77 amylomaltase versions that currently possess progressively mutated the most important and otherwise invariantly conserved positions. With regard to plant DPE2, a large group of bacterial amylomaltases represented by the amylomaltase from Escherichia coli with a longer N-terminus was identified as a probable intermediary connection between Thermus-like and DPE2-like (existing also among bacteria) family GH77 members. The presented results concerning both groups, i.e. amylomaltases from borreliae and plant DPE2 representatives (with their bacterial counterpart), may thus indicate the direction for future experimental studies.
Collapse
|
31
|
Rachadech W, Nimpiboon P, Naumthong W, Nakapong S, Krusong K, Pongsawasdi P. Identification of essential tryptophan in amylomaltase from Corynebacterium glutamicum. Int J Biol Macromol 2015; 76:230-5. [PMID: 25748841 DOI: 10.1016/j.ijbiomac.2015.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 11/29/2022]
Abstract
This work aims to identify essential tryptophan residue(s) of amylomaltase from Corynebacterium glutamicum (CgAM) through chemical modification and site-directed mutagenesis techniques. The recombinant enzyme expressed by Escherichia coli was purified and treated with N-bromosuccinimide (NBS), a modifying agent for tryptophan. A significant decrease in enzyme activity was observed indicating that tryptophan is important for catalysis. Inactivation kinetics with NBS resulted in pseudo first-order rate constant (kinact) of 2.31 min(-1). Substrate protection experiment confirmed the active site localization of the NBS-modified tryptophan residue(s) in CgAM. Site-directed mutagenesis was performed on W330, W425 and W673 to localize essential tryptophan residues. Substitution by alanine resulted in the loss of intra- and intermolecular transglucosylation activities for all mutated CgAMs. Analysis of circular dichroism spectra showed no change in the secondary structure of W425A but a significant change for W330A and W673A from that of the WT. From these results in combination with X-ray structural data and interpretation from the binding interactions in the active site region, W425 was confirmed to be essential for catalytic activity of CgAM. The hydrophobicity of this tryptophan was thought to be critical for substrate binding and supporting catalytic action of the three carboxylate residues at the active site.
Collapse
Affiliation(s)
- Wanitcha Rachadech
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pitchanan Nimpiboon
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wachiraporn Naumthong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Santhana Nakapong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
32
|
Janeček Š, Svensson B, MacGregor EA. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 2014; 71:1149-70. [PMID: 23807207 PMCID: PMC11114072 DOI: 10.1007/s00018-013-1388-z] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
α-Amylase (EC 3.2.1.1) represents the best known amylolytic enzyme. It catalyzes the hydrolysis of α-1,4-glucosidic bonds in starch and related α-glucans. In general, the α-amylase is an enzyme with a broad substrate preference and product specificity. In the sequence-based classification system of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α-amylase family, forms clan GH-H together with families GH70 and GH77 that, however, contain no α-amylase. Within the family GH13, the α-amylase specificity is currently present in several subfamilies, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, and, possibly in a few more that are not yet defined. The α-amylases classified in family GH13 employ a reaction mechanism giving retention of configuration, share 4-7 conserved sequence regions (CSRs) and catalytic machinery, and adopt the (β/α)8-barrel catalytic domain. Although the family GH57 α-amylases also employ the retaining reaction mechanism, they possess their own five CSRs and catalytic machinery, and adopt a (β/α)7-barrel fold. These family GH57 attributes are likely to be characteristic of α-amylases from the family GH119, too. With regard to family GH126, confirmation of the unambiguous presence of the α-amylase specificity may need more biochemical investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia,
| | | | | |
Collapse
|
33
|
Suzuki N, Fujimoto Z, Kim YM, Momma M, Kishine N, Suzuki R, Suzuki S, Kitamura S, Kobayashi M, Kimura A, Funane K. Structural elucidation of the cyclization mechanism of α-1,6-glucan by Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase. J Biol Chem 2014; 289:12040-12051. [PMID: 24616103 DOI: 10.1074/jbc.m114.547992] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase belongs to the glycoside hydrolase family 66 and catalyzes an intramolecular transglucosylation reaction that produces cycloisomaltooligosaccharides from dextran. The crystal structure of the core fragment from Ser-39 to Met-738 of B. circulans T-3040 cycloisomaltooligosaccharide glucanotransferase, devoid of its N-terminal signal peptide and C-terminal nonconserved regions, was determined. The structural model contained one catalytic (β/α)8-barrel domain and three β-domains. Domain N with an immunoglobulin-like β-sandwich fold was attached to the N terminus; domain C with a Greek key β-sandwich fold was located at the C terminus, and a carbohydrate-binding module family 35 (CBM35) β-jellyroll domain B was inserted between the 7th β-strand and the 7th α-helix of the catalytic domain A. The structures of the inactive catalytic nucleophile mutant enzyme complexed with isomaltohexaose, isomaltoheptaose, isomaltooctaose, and cycloisomaltooctaose revealed that the ligands bound in the catalytic cleft and the sugar-binding site of CBM35. Of these, isomaltooctaose bound in the catalytic site extended to the second sugar-binding site of CBM35, which acted as subsite -8, representing the enzyme·substrate complex when the enzyme produces cycloisomaltooctaose. The isomaltoheptaose and cycloisomaltooctaose bound in the catalytic cleft with a circular structure around Met-310, representing the enzyme·product complex. These structures collectively indicated that CBM35 functions in determining the size of the product, causing the predominant production of cycloisomaltooctaose by the enzyme. The canonical sugar-binding site of CBM35 bound the mid-part of isomaltooligosaccharides, indicating that the original function involved substrate binding required for efficient catalysis.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602
| | - Zui Fujimoto
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602.
| | - Young-Min Kim
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602; Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589
| | - Mitsuru Momma
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602
| | - Naomi Kishine
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602
| | - Ryuichiro Suzuki
- Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642
| | - Shiho Suzuki
- College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai 599-8531
| | - Shinichi Kitamura
- College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai 599-8531
| | - Mikihiko Kobayashi
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602; Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642; Department of Food and Health Science, Jissen Women's University, Hino 191-8510, Japan
| | - Atsuo Kimura
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589
| | - Kazumi Funane
- Applied Microbiology Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642.
| |
Collapse
|
34
|
Expression and characterization of 4-α-glucanotransferase genes from Manihot esculenta Crantz and Arabidopsis thaliana and their use for the production of cycloamyloses. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Srisimarat W, Murakami S, Pongsawasdi P, Krusong K. Crystallization and preliminary X-ray crystallographic analysis of the amylomaltase from Corynebacterium glutamicum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1004-6. [PMID: 23989149 PMCID: PMC3758149 DOI: 10.1107/s1744309113020319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/22/2013] [Indexed: 11/10/2022]
Abstract
Amylomaltase (AM; EC 2.4.1.25) belongs to the 4-α-glucanotransferase group of the α-amylase family. The enzyme can produce cycloamylose or large-ring cyclodextrin through intramolecular transglycosylation or cyclization reactions of α-1,4-glucan. Amylomaltase from the mesophilic bacterium Corynebacterium glutamicum (CgAM) contains extra residues at the N-terminus for which the three-dimensional structure is not yet known. In this study, CgAM was overexpressed and purified to homogeneity using DEAE FF and Phenyl FF columns. The purified CgAM was crystallized by the vapour-diffusion method. Preliminary X-ray data showed that the CgAM crystal diffracted to 1.7 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 73.28, b = 82.61, c = 118.64 Å. To obtain the initial phases, crystals of selenomethionyl-substituted amylomaltase were produced, and multiple-wavelength anomalous dispersion phasing and structure refinement are now in progress.
Collapse
Affiliation(s)
- Wiraya Srisimarat
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Shuichiro Murakami
- Department of Agricultural Chemistry, Faculty of Agriculture, Meiji University, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| | - Kuakarun Krusong
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand
| |
Collapse
|
36
|
Maltose-forming α-amylase from the hyperthermophilic archaeon Pyrococcus sp. ST04. Appl Microbiol Biotechnol 2013; 98:2121-31. [PMID: 23884203 DOI: 10.1007/s00253-013-5068-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/28/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
The deduced amino acid sequence from a gene of the hyperthermophilic archaeon Pyrococcus sp. ST04 (Py04_0872) contained a conserved glycoside hydrolase family 57 (GH57) motif, but showed <13% sequence identity with other known Pyrococcus GH57 enzymes, such as 4-α-glucanotransferase (EC 2.4.1.25), amylopullulanase (EC 3.2.1.41), and branching enzyme (EC 2.4.1.18). This gene was cloned and expressed in Escherichia coli, and the recombinant product (Pyrococcus sp. ST04 maltose-forming α-amylase, PSMA) was a novel 70-kDa maltose-forming α-amylase. PSMA only recognized maltose (G2) units with α-1,4 and α-1,6 linkages in polysaccharides (e.g., starch, amylopectin, and glycogen) and hydrolyzed pullulan very poorly. G2 was the primary end product of hydrolysis. Branched cyclodextrin (CD) was only hydrolyzed along its branched maltooligosaccharides. 6-O-glucosyl-β-cyclodextrin (G1-β-CD) and β-cyclodextrin (β-CD) were resistant to PSMA suggesting that PSMA is an exo-type glucan hydrolase with α-1,4- and α-1,6-glucan hydrolytic activities. The half-saturation value (Km) for the α-1,4 linkage of maltotriose (G3) was 8.4 mM while that of the α-1,6 linkage of 6-O-maltosyl-β-cyclodextrin (G2-β-CD) was 0.3 mM. The kcat values were 381.0 min(-1) for G3 and 1,545.0 min(-1) for G2-β-CD. The enzyme was inhibited competitively by the reaction product G2, and the Ki constant was 0.7 mM. PSMA bridges the gap between amylases that hydrolyze larger maltodextrins and α-glucosidase that feeds G2 into glycolysis by hydrolyzing smaller glucans into G2 units.
Collapse
|
37
|
Hwang S, Choi KH, Kim J, Cha J. Biochemical characterization of 4-α-glucanotransferase from Saccharophagus degradans 2-40 and its potential role in glycogen degradation. FEMS Microbiol Lett 2013; 344:145-51. [PMID: 23627584 DOI: 10.1111/1574-6968.12167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/29/2022] Open
Abstract
4-α-Glucanotransferase, an enzyme encoded by malQ, transfers 1,4-α-glucan to an acceptor carbohydrate to produce long linear maltodextrins of varying lengths. To investigate the biochemical characteristics of the malQ gene (Sde0986) from Saccharophagus degradans 2-40 and to understand its physiological role in vivo, the malQ gene was cloned and expressed in Escherichia coli. The amino acid sequence of MalQ was found to be 36-47% identical to that of amylomaltases from gammaproteobacteria. MalQ is a monomeric enzyme that belongs to a family of 77 glycoside hydrolases, with a molecular mass of 104 kDa. The optimal pH and temperature for MalQ toward maltotriose were determined to be 8.5 and 35 °C, respectively. Furthermore, the enzyme displayed glycosyl transfer activity on maltodextrins of various sizes to yield glucose and long linear maltodextrins. MalQ, however, could be distinguished from other bacterial and archaeal amylomaltases in that it did not produce maltose and cyclic glucan. Reverse transcription PCR results showed that malQ was not induced by maltose and was highly expressed in the stationary phase. These data suggest that the main physiological role of malQ in S. degradans is in the degradation of glycogen, although the gene is commonly known to be involved in maltose metabolism in E. coli.
Collapse
Affiliation(s)
- Sungmin Hwang
- The Microbiological Resource Research Institute, Pusan National University, Busan, Korea
| | | | | | | |
Collapse
|
38
|
Larsbrink J, Izumi A, Hemsworth GR, Davies GJ, Brumer H. Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. J Biol Chem 2012; 287:43288-99. [PMID: 23132856 PMCID: PMC3527916 DOI: 10.1074/jbc.m112.416511] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/05/2012] [Indexed: 01/06/2023] Open
Abstract
The metabolism of the storage polysaccharides glycogen and starch is of vital importance to organisms from all domains of life. In bacteria, utilization of these α-glucans requires the concerted action of a variety of enzymes, including glycoside hydrolases, glycoside phosphorylases, and transglycosylases. In particular, transglycosylases from glycoside hydrolase family 13 (GH13) and GH77 play well established roles in α-glucan side chain (de)branching, regulation of oligo- and polysaccharide chain length, and formation of cyclic dextrans. Here, we present the biochemical and tertiary structural characterization of a new type of bacterial 1,4-α-glucan 4-α-glucosyltransferase from GH31. Distinct from 1,4-α-glucan 6-α-glucosyltransferases (EC 2.4.1.24) and 4-α-glucanotransferases (EC 2.4.1.25), this enzyme strictly transferred one glucosyl residue from α(1→4)-glucans in disproportionation reactions. Substrate hydrolysis was undetectable for a series of malto-oligosaccharides except maltose for which transglycosylation nonetheless dominated across a range of substrate concentrations. Crystallographic analysis of the enzyme in free, acarbose-complexed, and trapped 5-fluoro-β-glucosyl-enzyme intermediate forms revealed extended substrate interactions across one negative and up to three positive subsites, thus providing structural rationalization for the unique, single monosaccharide transferase activity of the enzyme.
Collapse
Affiliation(s)
- Johan Larsbrink
- From the Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Atsushi Izumi
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Glyn R. Hemsworth
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom, and
| | - Harry Brumer
- From the Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
39
|
Arab-Jaziri F, Bissaro B, Barbe S, Saurel O, Débat H, Dumon C, Gervais V, Milon A, André I, Fauré R, O’Donohue MJ. Functional roles of H98 and W99 and β2α2 loop dynamics in the α-l
-arabinofuranosidase from Thermobacillus xylanilyticus. FEBS J 2012; 279:3598-3611. [DOI: 10.1111/j.1742-4658.2012.08720.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Altered large-ring cyclodextrin product profile due to a mutation at Tyr-172 in the amylomaltase of Corynebacterium glutamicum. Appl Environ Microbiol 2012; 78:7223-8. [PMID: 22865069 DOI: 10.1128/aem.01366-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum amylomaltase (CgAM) catalyzes the formation of large-ring cyclodextrins (LR-CDs) with a degree of polymerization of 19 and higher. The cloned CgAM gene was ligated into the pET-17b vector and used to transform Escherichia coli BL21(DE3). Site-directed mutagenesis of Tyr-172 in CgAM to alanine (Y172A) was performed to determine its role in the control of LR-CD production. Both the recombinant wild-type (WT) and Y172A enzymes were purified to apparent homogeneity and characterized. The Y172A enzyme exhibited lower disproportionation, cyclization, and hydrolysis activities than the WT. The k(cat)/K(m) of the disproportionation reaction of the Y172A enzyme was 2.8-fold lower than that of the WT enzyme. The LR-CD product profile from enzyme catalysis depended on the incubation time and the enzyme concentration. Interestingly, the Y172A enzyme showed a product pattern different from that of the WT CgAM at a long incubation time. The principal LR-CD products of the Y172A mutated enzyme were a cycloamylose mixture with a degree of polymerization of 28 or 29 (CD28 or CD29), while the principal LR-CD product of the WT enzyme was CD25 at 0.05 U of amylomaltase. These results suggest that Tyr-172 plays an important role in determining the LR-CD product profile of this novel CgAM.
Collapse
|
41
|
4,6-α-Glucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily. Appl Microbiol Biotechnol 2012; 97:181-93. [PMID: 22361861 PMCID: PMC3536977 DOI: 10.1007/s00253-012-3943-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 10/29/2022]
Abstract
Family 70 glycoside hydrolase glucansucrase enzymes exclusively occur in lactic acid bacteria and synthesize a wide range of α-D-glucan (abbreviated as α-glucan) oligo- and polysaccharides. Of the 47 characterized GH70 enzymes, 46 use sucrose as glucose donor. A single GH70 enzyme was recently found to be inactive with sucrose and to utilize maltooligosaccharides [(1→4)-α-D-glucooligosaccharides] as glucose donor substrates for α-glucan synthesis, acting as a 4,6-α-glucanotransferase (4,6-αGT) enzyme. Here, we report the characterization of two further GH70 4,6-αGT enzymes, i.e., from Lactobacillus reuteri strains DSM 20016 and ML1, which use maltooligosaccharides as glucose donor. Both enzymes cleave α1→4 glycosidic linkages and add the released glucose moieties one by one to the non-reducing end of growing linear α-glucan chains via α1→6 glycosidic linkages (α1→4 to α1→6 transfer activity). In this way, they convert pure maltooligosaccharide substrates into linear α-glucan product mixtures with about 50% α1→6 glycosidic bonds (isomalto/maltooligosaccharides). These new α-glucan products may provide an exciting type of carbohydrate for the food industry. The results show that 4,6-αGTs occur more widespread in family GH70 and can be considered as a GH70 subfamily. Sequence analysis allowed identification of amino acid residues in acceptor substrate binding subsites +1 and +2, differing between GH70 GTF and 4,6-αGT enzymes.
Collapse
|