1
|
Chasovskikh NY, Bobrysheva AA, Chizhik EE. Computer modeling of the peculiarities in the interaction of IL-1 with its receptors in schizophrenia. Vavilovskii Zhurnal Genet Selektsii 2024; 28:332-341. [PMID: 38988763 PMCID: PMC11233830 DOI: 10.18699/vjgb-24-38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/19/2023] [Accepted: 12/22/2023] [Indexed: 07/12/2024] Open
Abstract
One of the primary theories regarding the development of schizophrenia revolves around genetics, indicating the involvement of hereditary factors in various processes, including inflammation. Research has demonstrated that inflammatory reactions occurring in microglia can impact the progression of the disease. It has also been established that genetically determined changes in IL-1 can contribute to schizophrenia, thereby confirming the role of the IL-1 gene cluster in disease susceptibility. The aim of this study is a computer-based assessment of the structural interactions of IL-1 proteins with their receptors in schizophrenia. The study utilized the DisGeNET database, enabling the assessment of the reliability of identified IL-1 polymorphisms. Polymorphisms were also sought using NCBI PubMed. The NCBI Protein service was employed to search for and analyze the position of the identified polymorphisms on the chromosome. Structures for modeling were extracted from the Protein Data Bank database. Protein modeling was conducted using the SWISS-MODEL server, and protein interaction modeling was performed using PRISM. Notably, this study represents the first prediction of the interactions of IL-1α, IL-1β, and IL- 1RA proteins, taking into account the presence of single-nucleotide polymorphisms associated with schizophrenia in the sequence of the corresponding genes. The results indicate that the presence of SNP rs315952 in the IL-1RA protein gene, associated with schizophrenia, may lead to a weakening of the IL-1RA binding to receptors, potentially triggering the initiation of the IL-1 signaling pathway by disrupting or weakening the IL-1RA binding to receptors and facilitating the binding of IL-1 to them. Such alterations could potentially lead to a change in the immune response. The data obtained contribute theoretically to the development of ideas about the molecular mechanisms through which hereditary factors in schizophrenia influence the interactions of proteins of the IL-1 family, which play an important role in the processes of the immune system.
Collapse
Affiliation(s)
- N Yu Chasovskikh
- Siberian State Medical University of the Ministry of Healthcare of the Russian Federation, Tomsk, Russia
| | - A A Bobrysheva
- Siberian State Medical University of the Ministry of Healthcare of the Russian Federation, Tomsk, Russia
| | - E E Chizhik
- Siberian State Medical University of the Ministry of Healthcare of the Russian Federation, Tomsk, Russia
| |
Collapse
|
2
|
Meng Q, Guo F, Wang E, Tang J. ComDock: A novel approach for protein-protein docking with an efficient fusing strategy. Comput Biol Med 2023; 167:107660. [PMID: 37944303 DOI: 10.1016/j.compbiomed.2023.107660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Protein-protein interaction plays an important role in studying the mechanism of protein functions from the structural perspective. Molecular docking is a powerful approach to detect protein-protein complexes using computational tools, due to the high cost and time-consuming of the traditional experimental methods. Among existing technologies, the template-based method utilizes the structural information of known homologous 3D complexes as available and reliable templates to achieve high accuracy and low computational complexity. However, the performance of the template-based method depends on the quality and quantity of templates. When insufficient or even no templates, the ab initio docking method is necessary and largely enriches the docking conformations. Therefore, it's a feasible strategy to fuse the effectivity of the template-based model and the universality of ab initio model to improve the docking performance. In this study, we construct a new, diverse, comprehensive template library derived from PDB, containing 77,685 complexes. We propose a template-based method (named TemDock), which retrieves the evolutionary relationship between the target sequence and samples in the template library and transfers similar structural information. Then, the target structure is built by superposing on the homologous template complex with TM-align. Moreover, we develop a consensus-based method (named ComDock) to integrate our TemDock and an existing ab initio method (ZDOCK). On 105 targets with templates from Benchmark 5.0, the TemDock and ComDock achieve a success rate of 68.57 % and 71.43 % in the top 10 conformations, respectively. Compared with the HDOCK, ComDock obtains better I-RMSD of hit configurations on 9 targets and more hit models in the top 100 conformations. As an efficient method for protein-protein docking, the ComDock is expected to study protein-protein recognition and reveal the various biological passways that are critical for developing drug discovery. The final results are stored at https://github.com/guofei-tju/mqz_ComDock_docking.
Collapse
Affiliation(s)
- Qiaozhen Meng
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Ercheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Laboratory, Hangzhou, Zhejiang, China.
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology of Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Collins KW, Copeland MM, Kotthoff I, Singh A, Kundrotas PJ, Vakser IA. Dockground resource for protein recognition studies. Protein Sci 2022; 31:e4481. [PMID: 36281025 PMCID: PMC9667896 DOI: 10.1002/pro.4481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022]
Abstract
Structural information of protein-protein interactions is essential for characterization of life processes at the molecular level. While a small fraction of known protein interactions has experimentally determined structures, computational modeling of protein complexes (protein docking) has to fill the gap. The Dockground resource (http://dockground.compbio.ku.edu) provides a collection of datasets for the development and testing of protein docking techniques. Currently, Dockground contains datasets for the bound and the unbound (experimentally determined and simulated) protein structures, model-model complexes, docking decoys of experimentally determined and modeled proteins, and templates for comparative docking. The Dockground bound proteins dataset is a core set, from which other Dockground datasets are generated. It is devised as a relational PostgreSQL database containing information on experimentally determined protein-protein complexes. This report on the Dockground resource describes current status of the datasets, new automated update procedures and further development of the core datasets. We also present a new Dockground interactive web interface, which allows search by various parameters, such as release date, multimeric state, complex type, structure resolution, and so on, visualization of the search results with a number of customizable parameters, as well as downloadable datasets with predefined levels of sequence and structure redundancy.
Collapse
Affiliation(s)
| | | | - Ian Kotthoff
- Computational Biology ProgramThe University of KansasKansasUSA
| | - Amar Singh
- Computational Biology ProgramThe University of KansasKansasUSA
| | | | - Ilya A. Vakser
- Computational Biology ProgramThe University of KansasKansasUSA
- Department of Molecular BiosciencesThe University of KansasKansasUSA
| |
Collapse
|
4
|
Sen N, Madhusudhan MS. A structural database of chain–chain and domain–domain interfaces of proteins. Protein Sci 2022. [DOI: 10.1002/pro.4406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Neeladri Sen
- Indian Institute of Science Education and Research Pune India
- Institute of Structural and Molecular Biology University College London London UK
| | | |
Collapse
|
5
|
Pal A, Pal D, Mitra P. A computational framework for modeling functional protein-protein interactions. Proteins 2021; 89:1353-1364. [PMID: 34076296 DOI: 10.1002/prot.26156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/17/2021] [Accepted: 05/19/2021] [Indexed: 11/06/2022]
Abstract
Protein interactions and their assemblies assist in understanding the cellular mechanisms through the knowledge of interactome. Despite recent advances, a vast number of interacting protein complexes is not annotated by three-dimensional structures. Therefore, a computational framework is a suitable alternative to fill the large gap between identified interactions and the interactions with known structures. In this work, we develop an automated computational framework for modeling functionally related protein-complex structures utilizing GO-based semantic similarity technique and co-evolutionary information of the interaction sites. The framework can consider protein sequence and structure information as input and employ both rigid-body docking and template-based modeling exploiting the existing structural templates and sequence homology information from the PDB. Our framework combines geometric as well as physicochemical features for re-ranking the docking decoys. The proposed framework has an 83% success rate when tested on a benchmark dataset while considering Top1 models for template-based modeling and Top10 models for the docking pipeline. We believe that our computational framework can be used for any pair of proteins with higher confidence to identify the functional protein-protein interactions.
Collapse
Affiliation(s)
- Abantika Pal
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science Bangalore, Bangalore, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
6
|
Chakravarty D, McElfresh GW, Kundrotas PJ, Vakser IA. How to choose templates for modeling of protein complexes: Insights from benchmarking template-based docking. Proteins 2020; 88:1070-1081. [PMID: 31994759 DOI: 10.1002/prot.25875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 01/01/2023]
Abstract
Comparative docking is based on experimentally determined structures of protein-protein complexes (templates), following the paradigm that proteins with similar sequences and/or structures form similar complexes. Modeling utilizing structure similarity of target monomers to template complexes significantly expands structural coverage of the interactome. Template-based docking by structure alignment can be performed for the entire structures or by aligning targets to the bound interfaces of the experimentally determined complexes. Systematic benchmarking of docking protocols based on full and interface structure alignment showed that both protocols perform similarly, with top 1 docking success rate 26%. However, in terms of the models' quality, the interface-based docking performed marginally better. The interface-based docking is preferable when one would suspect a significant conformational change in the full protein structure upon binding, for example, a rearrangement of the domains in multidomain proteins. Importantly, if the same structure is selected as the top template by both full and interface alignment, the docking success rate increases 2-fold for both top 1 and top 10 predictions. Matching structural annotations of the target and template proteins for template detection, as a computationally less expensive alternative to structural alignment, did not improve the docking performance. Sophisticated remote sequence homology detection added templates to the pool of those identified by structure-based alignment, suggesting that for practical docking, the combination of the structure alignment protocols and the remote sequence homology detection may be useful in order to avoid potential flaws in generation of the structural templates library.
Collapse
Affiliation(s)
| | - G W McElfresh
- Computational Biology Program, The University of Kansas, Lawrence, Kansas
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas.,Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| |
Collapse
|
7
|
Vreven T, Vangaveti S, Borrman TM, Gaines JC, Weng Z. Performance of ZDOCK and IRAD in CAPRI rounds 39-45. Proteins 2020; 88:1050-1054. [PMID: 31994784 DOI: 10.1002/prot.25873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/15/2019] [Accepted: 01/22/2020] [Indexed: 12/23/2022]
Abstract
We report docking performance on the six targets of Critical Assessment of PRedicted Interactions (CAPRI) rounds 39-45 that involved heteromeric protein-protein interactions and had the solved structures released since the rounds were held. Our general strategy involved protein-protein docking using ZDOCK, reranking using IRAD, and structural refinement using Rosetta. In addition, we made extensive use of experimental data to guide our docking runs. All the experimental information at the amino-acid level proved correct. However, for two targets, we also used protein-complex structures as templates for modeling interfaces. These resulted in incorrect predictions, presumably due to the low sequence identity between the targets and templates. Albeit a small number of targets, the performance described here compared somewhat less favorably with our previous CAPRI reports, which may be due to the CAPRI targets being increasingly challenging.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sweta Vangaveti
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tyler M Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jennifer C Gaines
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
8
|
Mirabello C, Wallner B. Topology independent structural matching discovers novel templates for protein interfaces. Bioinformatics 2019; 34:i787-i794. [PMID: 30423106 DOI: 10.1093/bioinformatics/bty587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Motivation Protein-protein interactions (PPI) are essential for the function of the cellular machinery. The rapid growth of protein-protein complexes with known 3D structures offers a unique opportunity to study PPI to gain crucial insights into protein function and the causes of many diseases. In particular, it would be extremely useful to compare interaction surfaces of monomers, as this would enable the pinpointing of potential interaction surfaces based solely on the monomer structure, without the need to predict the complete complex structure. While there are many structural alignment algorithms for individual proteins, very few have been developed for protein interfaces, and none that can align only the interface residues to other interfaces or surfaces of interacting monomer subunits in a topology independent (non-sequential) manner. Results We present InterComp, a method for topology and sequence-order independent structural comparisons. The method is general and can be applied to various structural comparison applications. By representing residues as independent points in space rather than as a sequence of residues, InterComp can be applied to a wide range of problems including interface-surface comparisons and interface-interface comparisons. We demonstrate a use-case by applying InterComp to find similar protein interfaces on the surface of proteins. We show that InterComp pinpoints the correct interface for almost half of the targets (283 of 586) when considering the top 10 hits, and for 24% of the top 1, even when no templates can be found with regular sequence-order dependent structural alignment methods. Availability and implementation The source code and the datasets are available at: http://wallnerlab.org/InterComp. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Claudio Mirabello
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping SE, Sweden
| | - Björn Wallner
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping SE, Sweden
| |
Collapse
|
9
|
Engin HB, Carlin D, Pratt D, Carter H. Modeling of RAS complexes supports roles in cancer for less studied partners. BMC BIOPHYSICS 2017; 10:5. [PMID: 28815022 PMCID: PMC5558186 DOI: 10.1186/s13628-017-0037-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background RAS protein interactions have predominantly been studied in the context of the RAF and PI3kinase oncogenic pathways. Structural modeling and X-ray crystallography have demonstrated that RAS isoforms bind to canonical downstream effector proteins in these pathways using the highly conserved switch I and II regions. Other non-canonical RAS protein interactions have been experimentally identified, however it is not clear whether these proteins also interact with RAS via the switch regions. Results To address this question we constructed a RAS isoform-specific protein-protein interaction network and predicted 3D complexes involving RAS isoforms and interaction partners to identify the most probable interaction interfaces. The resulting models correctly captured the binding interfaces for well-studied effectors, and additionally implicated residues in the allosteric and hyper-variable regions of RAS proteins as the predominant binding site for non-canonical effectors. Several partners binding to this new interface (SRC, LGALS1, RABGEF1, CALM and RARRES3) have been implicated as important regulators of oncogenic RAS signaling. We further used these models to investigate competitive binding and multi-protein complexes compatible with RAS surface occupancy and the putative effects of somatic mutations on RAS protein interactions. Conclusions We discuss our findings in the context of RAS localization to the plasma membrane versus within the cytoplasm and provide a list of RAS protein interactions with possible cancer-related consequences, which could help guide future therapeutic strategies to target RAS proteins. Electronic supplementary material The online version of this article (doi:10.1186/s13628-017-0037-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Billur Engin
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Daniel Carlin
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Dexter Pratt
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| |
Collapse
|
10
|
Maheshwari S, Brylinski M. Across-proteome modeling of dimer structures for the bottom-up assembly of protein-protein interaction networks. BMC Bioinformatics 2017; 18:257. [PMID: 28499419 PMCID: PMC5427563 DOI: 10.1186/s12859-017-1675-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deciphering complete networks of interactions between proteins is the key to comprehend cellular regulatory mechanisms. A significant effort has been devoted to expanding the coverage of the proteome-wide interaction space at molecular level. Although a growing body of research shows that protein docking can, in principle, be used to predict biologically relevant interactions, the accuracy of the across-proteome identification of interacting partners and the selection of near-native complex structures still need to be improved. RESULTS In this study, we developed a new method to discover and model protein interactions employing an exhaustive all-to-all docking strategy. This approach integrates molecular modeling, structural bioinformatics, machine learning, and functional annotation filters in order to provide interaction data for the bottom-up assembly of protein interaction networks. Encouragingly, the success rates for dimer modeling is 57.5 and 48.7% when experimental and computer-generated monomer structures are employed, respectively. Further, our protocol correctly identifies 81% of protein-protein interactions at the expense of only 19% false positive rate. As a proof of concept, 61,913 protein-protein interactions were confidently predicted and modeled for the proteome of E. coli. Finally, we validated our method against the human immune disease pathway. CONCLUSIONS Protein docking supported by evolutionary restraints and machine learning can be used to reliably identify and model biologically relevant protein assemblies at the proteome scale. Moreover, the accuracy of the identification of protein-protein interactions is improved by considering only those protein pairs co-localized in the same cellular compartment and involved in the same biological process. The modeling protocol described in this communication can be applied to detect protein-protein interactions in other organisms and pathways as well as to construct dimer structures and estimate the confidence of protein interactions experimentally identified with high-throughput techniques.
Collapse
Affiliation(s)
- Surabhi Maheshwari
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA. .,Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
11
|
Mirabello C, Wallner B. InterPred: A pipeline to identify and model protein-protein interactions. Proteins 2017; 85:1159-1170. [DOI: 10.1002/prot.25280] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Claudio Mirabello
- Division of Bioinformatics, Department of Physics, Chemistry and Biology; Linköping University; Linköping 581 83 Sweden
| | - Björn Wallner
- Division of Bioinformatics, Department of Physics, Chemistry and Biology; Linköping University; Linköping 581 83 Sweden
| |
Collapse
|
12
|
Lensink MF, Velankar S, Kryshtafovych A, Huang SY, Schneidman-Duhovny D, Sali A, Segura J, Fernandez-Fuentes N, Viswanath S, Elber R, Grudinin S, Popov P, Neveu E, Lee H, Baek M, Park S, Heo L, Rie Lee G, Seok C, Qin S, Zhou HX, Ritchie DW, Maigret B, Devignes MD, Ghoorah A, Torchala M, Chaleil RAG, Bates PA, Ben-Zeev E, Eisenstein M, Negi SS, Weng Z, Vreven T, Pierce BG, Borrman TM, Yu J, Ochsenbein F, Guerois R, Vangone A, Rodrigues JPGLM, van Zundert G, Nellen M, Xue L, Karaca E, Melquiond ASJ, Visscher K, Kastritis PL, Bonvin AMJJ, Xu X, Qiu L, Yan C, Li J, Ma Z, Cheng J, Zou X, Shen Y, Peterson LX, Kim HR, Roy A, Han X, Esquivel-Rodriguez J, Kihara D, Yu X, Bruce NJ, Fuller JC, Wade RC, Anishchenko I, Kundrotas PJ, Vakser IA, Imai K, Yamada K, Oda T, Nakamura T, Tomii K, Pallara C, Romero-Durana M, Jiménez-García B, Moal IH, Férnandez-Recio J, Joung JY, Kim JY, Joo K, Lee J, Kozakov D, Vajda S, Mottarella S, Hall DR, Beglov D, Mamonov A, Xia B, Bohnuud T, Del Carpio CA, Ichiishi E, Marze N, Kuroda D, Roy Burman SS, Gray JJ, Chermak E, Cavallo L, Oliva R, Tovchigrechko A, Wodak SJ. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment. Proteins 2016; 84 Suppl 1:323-48. [PMID: 27122118 PMCID: PMC5030136 DOI: 10.1002/prot.25007] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 12/30/2015] [Accepted: 02/02/2016] [Indexed: 12/26/2022]
Abstract
We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323-348. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marc F Lensink
- University Lille, CNRS UMR8576 UGSF, Lille, F-59000, France.
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | | | - Shen-You Huang
- Research Support Computing, University of Missouri Bioinformatics Consortium, and Department of Computer Science, University of Missouri, Columbia, Missouri, 65211
| | - Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158
- California Institute for Quantitative Biosciences (QB3), University of California San Francisco, San Francisco, California, 94158
| | - Joan Segura
- GN7 of the National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC), Madrid, 28049, Spain
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY233FG, United Kingdom
| | - Shruthi Viswanath
- Department of Computer Science, University of Texas at Austin, Austin, Texas, 78712
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, 78712
| | - Ron Elber
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, 78712
- Department of Chemistry, University of Texas at Austin, Austin, Texas, 78712
| | - Sergei Grudinin
- LJK, University Grenoble Alpes, CNRS, Grenoble, 38000, France
- INRIA, Grenoble, 38000, France
| | - Petr Popov
- LJK, University Grenoble Alpes, CNRS, Grenoble, 38000, France
- INRIA, Grenoble, 38000, France
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Emilie Neveu
- LJK, University Grenoble Alpes, CNRS, Grenoble, 38000, France
- INRIA, Grenoble, 38000, France
| | - Hasup Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Sangwoo Park
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Lim Heo
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Gyu Rie Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, 32306, USA
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, 32306, USA
| | | | - Bernard Maigret
- CNRS, LORIA, Campus Scientifique, BP 239, Vandœuvre-lès-Nancy, 54506, France
| | | | - Anisah Ghoorah
- Department of Computer Science and Engineering, University of Mauritius, Reduit, Mauritius
| | - Mieczyslaw Torchala
- Biomolecular Modelling Laboratory, the Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, WC2A 3LY, United Kingdom
| | - Raphaël A G Chaleil
- Biomolecular Modelling Laboratory, the Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, WC2A 3LY, United Kingdom
| | - Paul A Bates
- Biomolecular Modelling Laboratory, the Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, WC2A 3LY, United Kingdom
| | - Efrat Ben-Zeev
- G-INCPM, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Miriam Eisenstein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Surendra S Negi
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-0857
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Brian G Pierce
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Tyler M Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette, 91191, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette, 91191, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette, 91191, France
| | - Anna Vangone
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - João P G L M Rodrigues
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Gydo van Zundert
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Mehdi Nellen
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Li Xue
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Ezgi Karaca
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Adrien S J Melquiond
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Koen Visscher
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Panagiotis L Kastritis
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211
| | - Chengfei Yan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211
| | - Jilong Li
- Department of Computer Science, University of Missouri, Columbia, Missouri, 65211
| | - Zhiwei Ma
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, Missouri, 65211
- Informatics Institute, University of Missouri, Columbia, Missouri, 65211
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, 65211
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, 65211
- Informatics Institute, University of Missouri, Columbia, Missouri, 65211
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211
| | - Yang Shen
- Toyota Technological Institute at Chicago, 6045 S Kenwood Avenue, Chicago, Illinois, 60637
| | - Lenna X Peterson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Hyung-Rae Kim
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Amit Roy
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montano 59840
| | - Xusi Han
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | | | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
- Department of Computer Science, Purdue University, West Lafayette, IN, USA, 47907
| | - Xiaofeng Yu
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Neil J Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Jonathan C Fuller
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Ivan Anishchenko
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66047
| | - Petras J Kundrotas
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66047
| | - Ilya A Vakser
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66047
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, 66047
| | - Kenichiro Imai
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Japan
| | - Kazunori Yamada
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Japan
| | - Toshiyuki Oda
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Japan
| | - Tsukasa Nakamura
- Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Japan
| | - Kentaro Tomii
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Koto-Ku, Japan
- Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Japan
| | - Chiara Pallara
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, 08034, Spain
| | - Miguel Romero-Durana
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, 08034, Spain
| | - Brian Jiménez-García
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, 08034, Spain
| | - Iain H Moal
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, 08034, Spain
| | - Juan Férnandez-Recio
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, 08034, Spain
| | - Jong Young Joung
- Center for in-Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Jong Yun Kim
- Center for in-Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Keehyoung Joo
- Center for in-Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
- Center for Advanced Computation, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Jooyoung Lee
- Center for in-Silico Protein Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
- School of Computational Science, Korea Institute for Advanced Study, Seoul, 130-722, Korea
| | - Dima Kozakov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - Scott Mottarella
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - David R Hall
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Artem Mamonov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Bing Xia
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Tanggis Bohnuud
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Carlos A Del Carpio
- Institute of Biological Diversity, International Pacific Institute of Indiana, Bloomington, Indiana, 47401
- Drosophila Genetic Resource Center, Kyoto Institute of Technology, Ukyo-Ku, 616-8354, Japan
| | - Eichiro Ichiishi
- International University of Health and Welfare Hospital (IUHW Hospital), Asushiobara-City, Tochigi Prefecture, 329-2763, Japan
| | - Nicholas Marze
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Daisuke Kuroda
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Shourya S Roy Burman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Edrisse Chermak
- King Abdullah University of Science and Technology, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology, Saudi Arabia
| | - Romina Oliva
- University of Naples "Parthenope", Napoli, Italy
| | - Andrey Tovchigrechko
- J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland, 20850
| | - Shoshana J Wodak
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- VIB Structural Biology Research Center, VUB Pleinlaan 2, Brussels, 1050, Belgium.
| |
Collapse
|
13
|
Dourado DFAR, Flores SC. Modeling and fitting protein-protein complexes to predict change of binding energy. Sci Rep 2016; 6:25406. [PMID: 27173910 PMCID: PMC4865953 DOI: 10.1038/srep25406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/18/2016] [Indexed: 01/18/2023] Open
Abstract
It is possible to accurately and economically predict change in protein-protein interaction energy upon mutation (ΔΔG), when a high-resolution structure of the complex is available. This is of growing usefulness for design of high-affinity or otherwise modified binding proteins for therapeutic, diagnostic, industrial, and basic science applications. Recently the field has begun to pursue ΔΔG prediction for homology modeled complexes, but so far this has worked mostly for cases of high sequence identity. If the interacting proteins have been crystallized in free (uncomplexed) form, in a majority of cases it is possible to find a structurally similar complex which can be used as the basis for template-based modeling. We describe how to use MMB to create such models, and then use them to predict ΔΔG, using a dataset consisting of free target structures, co-crystallized template complexes with sequence identify with respect to the targets as low as 44%, and experimental ΔΔG measurements. We obtain similar results by fitting to a low-resolution Cryo-EM density map. Results suggest that other structural constraints may lead to a similar outcome, making the method even more broadly applicable.
Collapse
Affiliation(s)
- Daniel F A R Dourado
- Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University, Biomedical Center Box 596, 751 24, Uppsala, Sweden
| | - Samuel Coulbourn Flores
- Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University, Biomedical Center Box 596, 751 24, Uppsala, Sweden
| |
Collapse
|
14
|
Keskin O, Tuncbag N, Gursoy A. Predicting Protein–Protein Interactions from the Molecular to the Proteome Level. Chem Rev 2016; 116:4884-909. [PMID: 27074302 DOI: 10.1021/acs.chemrev.5b00683] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Nurcan Tuncbag
- Graduate
School of Informatics, Department of Health Informatics, Middle East Technical University, 06800 Ankara, Turkey
| | | |
Collapse
|
15
|
Maheshwari S, Brylinski M. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures. BMC STRUCTURAL BIOLOGY 2015; 15:23. [PMID: 26597230 PMCID: PMC4657198 DOI: 10.1186/s12900-015-0050-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/30/2015] [Indexed: 01/10/2023]
Abstract
Background Protein-protein interactions (PPIs) mediate the vast majority of biological processes, therefore, significant efforts have been directed to investigate PPIs to fully comprehend cellular functions. Predicting complex structures is critical to reveal molecular mechanisms by which proteins operate. Despite recent advances in the development of new methods to model macromolecular assemblies, most current methodologies are designed to work with experimentally determined protein structures. However, because only computer-generated models are available for a large number of proteins in a given genome, computational tools should tolerate structural inaccuracies in order to perform the genome-wide modeling of PPIs. Results To address this problem, we developed eRankPPI, an algorithm for the identification of near-native conformations generated by protein docking using experimental structures as well as protein models. The scoring function implemented in eRankPPI employs multiple features including interface probability estimates calculated by eFindSitePPI and a novel contact-based symmetry score. In comparative benchmarks using representative datasets of homo- and hetero-complexes, we show that eRankPPI consistently outperforms state-of-the-art algorithms improving the success rate by ~10 %. Conclusions eRankPPI was designed to bridge the gap between the volume of sequence data, the evidence of binary interactions, and the atomic details of pharmacologically relevant protein complexes. Tolerating structure imperfections in computer-generated models opens up a possibility to conduct the exhaustive structure-based reconstruction of PPI networks across proteomes. The methods and datasets used in this study are available at www.brylinski.org/erankppi.
Collapse
Affiliation(s)
- Surabhi Maheshwari
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA. .,Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
16
|
Muratcioglu S, Guven-Maiorov E, Keskin Ö, Gursoy A. Advances in template-based protein docking by utilizing interfaces towards completing structural interactome. Curr Opin Struct Biol 2015; 35:87-92. [PMID: 26539658 DOI: 10.1016/j.sbi.2015.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 11/27/2022]
Abstract
The increase in the number of structurally determined protein complexes strengthens template-based docking (TBD) methods for modelling protein-protein interactions (PPIs). These methods utilize the known structures of protein complexes as templates to predict the quaternary structure of the target proteins. The templates may be partial or complete structures. Interface based (partial) methods have recently gained interest due in part to the observation that the interface regions are reusable. We describe how available template interfaces can be used to obtain the structural models of protein interactions. Despite the agreement that a majority of the protein complexes can be modelled using the available Protein Data Bank (PDB) structures, a handful of studies argue that we need more template proteins to increase the structural coverage of PPIs. We also discuss the performance of the interface TBD methods at large scale, and the significance of capturing multiple conformations for improving accuracy.
Collapse
Affiliation(s)
- Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey
| | - Emine Guven-Maiorov
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey
| | - Özlem Keskin
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey.
| |
Collapse
|
17
|
Guven-Maiorov E, Keskin O, Gursoy A, Nussinov R. A Structural View of Negative Regulation of the Toll-like Receptor-Mediated Inflammatory Pathway. Biophys J 2015; 109:1214-26. [PMID: 26276688 PMCID: PMC4576153 DOI: 10.1016/j.bpj.2015.06.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 02/07/2023] Open
Abstract
Even though the Toll-like receptor (TLR) pathway is integral to inflammatory defense mechanisms, its excessive signaling may be devastating. Cells have acquired a cascade of strategies to regulate TLR signaling by targeting protein-protein interactions, or ubiquitin chains, but the details of the inhibition mechanisms are still unclear. Here, we provide the structural basis for the regulation of TLR signaling by constructing architectures of protein-protein interactions. Structural data suggest that 1) Toll/IL-1R (TIR) domain-containing regulators (BCAP, SIGIRR, and ST2) interfere with TIR domain signalosome formation; 2) major deubiquitinases such as A20, CYLD, and DUBA prevent association of TRAF6 and TRAF3 with their partners, in addition to removing K63-linked ubiquitin chains that serve as a docking platform for downstream effectors; 3) alternative downstream pathways of TLRs also restrict signaling by competing to bind common partners through shared binding sites. We also performed in silico mutagenesis analysis to characterize the effects of oncogenic mutations on the negative regulators and to observe the cellular outcome (whether there is/is not inflammation). Missense mutations that fall on interfaces and nonsense/frameshift mutations that result in truncated negative regulators disrupt the interactions with the targets, thereby enabling constitutive activation of the nuclear factor-kappa B, and contributing to chronic inflammation, autoimmune diseases, and oncogenesis.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey.
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey; Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Dai Y, Zhen J, Zhang X, Zhong Y, Liu S, Sun Z, Guo Y, Wu Q. Analysis of the complex formation, interaction and electron transfer pathway between the "open" conformation of NADPH-cytochrome P450 reductase and aromatase. Steroids 2015; 101:116-24. [PMID: 26087061 DOI: 10.1016/j.steroids.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/24/2015] [Accepted: 06/09/2015] [Indexed: 11/27/2022]
Abstract
The complex structure of human aromatase (CYP19) and the open form of ΔTGEE mutant NADPH-cytochrome P450 reductase (mCPR) was constructed using template-based protein alignment method. Dynamic simulation of formed complex was performed on NAMD 2.9, in which CHARMm all 27_prot_lipid_na force field and an explicit TIP3P water solvent model were applied. The result showed mCPR in its open conformation could steadily combine with aromatase from the proximal face. Data analysis indicates hydrogen bonds and four salt bridges on the binding surface enhance the interaction between the two protein molecules. Amino acid, Lys108 plays a key role in aromatase activity through the formation of a salt bridge with Asp147 and two hydrogen bonds with Asp147 and Gln150 in mCPR. The optimal pathway for the first electron transfer from CPR to aromatase was revealed and calculated using HARLEM software. The rates for solvent mediated and non-solvent mediated electron transfer from FMNH2 to heme were determined as 1.04×10(6)s(-)(1) and 4.86×10(5)s(-)(1) respectively, which indicates the solvent water can facilitate the electron transfer from FMNH2 to heme. This study presents a novel strategy for the study of the protein-protein interactions based on the template-based protein alignment, which may help new aromtase development targeting the electron transfer between mCPR and aromatase.
Collapse
Affiliation(s)
- Yuejie Dai
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jing Zhen
- Department of Medicinal Chemistry, School of Environmental and Biological Sciences, Rutgers University, NJ 08901, USA
| | - Xiuli Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yonghui Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shaodan Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ziyue Sun
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yue Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, School of Environmental and Biological Sciences, Rutgers University, NJ 08901, USA
| | - Qingli Wu
- Department of Medicinal Chemistry, School of Environmental and Biological Sciences, Rutgers University, NJ 08901, USA; Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, NJ 08901, USA
| |
Collapse
|
19
|
Vakser IA. Protein-protein docking: from interaction to interactome. Biophys J 2015; 107:1785-1793. [PMID: 25418159 DOI: 10.1016/j.bpj.2014.08.033] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/17/2014] [Accepted: 08/27/2014] [Indexed: 12/29/2022] Open
Abstract
The protein-protein docking problem is one of the focal points of activity in computational biophysics and structural biology. The three-dimensional structure of a protein-protein complex, generally, is more difficult to determine experimentally than the structure of an individual protein. Adequate computational techniques to model protein interactions are important because of the growing number of known protein structures, particularly in the context of structural genomics. Docking offers tools for fundamental studies of protein interactions and provides a structural basis for drug design. Protein-protein docking is the prediction of the structure of the complex, given the structures of the individual proteins. In the heart of the docking methodology is the notion of steric and physicochemical complementarity at the protein-protein interface. Originally, mostly high-resolution, experimentally determined (primarily by x-ray crystallography) protein structures were considered for docking. However, more recently, the focus has been shifting toward lower-resolution modeled structures. Docking approaches have to deal with the conformational changes between unbound and bound structures, as well as the inaccuracies of the interacting modeled structures, often in a high-throughput mode needed for modeling of large networks of protein interactions. The growing number of docking developers is engaged in the community-wide assessments of predictive methodologies. The development of more powerful and adequate docking approaches is facilitated by rapidly expanding information and data resources, growing computational capabilities, and a deeper understanding of the fundamental principles of protein interactions.
Collapse
Affiliation(s)
- Ilya A Vakser
- Center for Bioinformatics and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
20
|
Muratcioglu S, Chavan TS, Freed BC, Jang H, Khavrutskii L, Freed RN, Dyba MA, Stefanisko K, Tarasov SG, Gursoy A, Keskin O, Tarasova NI, Gaponenko V, Nussinov R. GTP-Dependent K-Ras Dimerization. Structure 2015; 23:1325-35. [PMID: 26051715 PMCID: PMC4497850 DOI: 10.1016/j.str.2015.04.019] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022]
Abstract
Ras proteins recruit and activate effectors, including Raf, that transmit receptor-initiated signals. Monomeric Ras can bind Raf; however, activation of Raf requires its dimerization. It has been suspected that dimeric Ras may promote dimerization and activation of Raf. Here, we show that the GTP-bound catalytic domain of K-Ras4B, a highly oncogenic splice variant of the K-Ras isoform, forms stable homodimers. We observe two major dimer interfaces. The first, highly populated β-sheet dimer interface is at the Switch I and effector binding regions, overlapping the binding surfaces of Raf, PI3K, RalGDS, and additional effectors. This interface has to be inhibitory to such effectors. The second, helical interface also overlaps the binding sites of some effectors. This interface may promote activation of Raf. Our data reveal how Ras self-association can regulate effector binding and activity, and suggest that disruption of the helical dimer interface by drugs may abate Raf signaling in cancer.
Collapse
Affiliation(s)
- Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Tanmay S Chavan
- Department of Medicinal Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benjamin C Freed
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Lyuba Khavrutskii
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - R Natasha Freed
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Marzena A Dyba
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Karen Stefanisko
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Sergey G Tarasov
- Structural Biophysics Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Ruth Nussinov
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
21
|
Laraia L, McKenzie G, Spring DR, Venkitaraman AR, Huggins DJ. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions. CHEMISTRY & BIOLOGY 2015; 22:689-703. [PMID: 26091166 PMCID: PMC4518475 DOI: 10.1016/j.chembiol.2015.04.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 01/19/2023]
Abstract
Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs.
Collapse
Affiliation(s)
- Luca Laraia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Grahame McKenzie
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - David J Huggins
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
22
|
Assessing the applicability of template-based protein docking in the twilight zone. Structure 2014; 22:1356-1362. [PMID: 25156427 DOI: 10.1016/j.str.2014.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/24/2014] [Accepted: 07/31/2014] [Indexed: 11/20/2022]
Abstract
The structural modeling of protein interactions in the absence of close homologous templates is a challenging task. Recently, template-based docking methods have emerged to exploit local structural similarities to help ab-initio protocols provide reliable 3D models for protein interactions. In this work, we critically assess the performance of template-based docking in the twilight zone. Our results show that, while it is possible to find templates for nearly all known interactions, the quality of the obtained models is rather limited. We can increase the precision of the models at expenses of coverage, but it drastically reduces the potential applicability of the method, as illustrated by the whole-interactome modeling of nine organisms. Template-based docking is likely to play an important role in the structural characterization of the interaction space, but we still need to improve the repertoire of structural templates onto which we can reliably model protein complexes.
Collapse
|
23
|
Konc J, Janežič D. ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites. Nucleic Acids Res 2014; 42:W215-20. [PMID: 24861616 PMCID: PMC4086080 DOI: 10.1093/nar/gku460] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands.
Collapse
Affiliation(s)
- Janez Konc
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Dušanka Janežič
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, 6000 Koper, Slovenia
| |
Collapse
|
24
|
Acuner-Ozbabacan ES, Engin BH, Guven-Maiorov E, Kuzu G, Muratcioglu S, Baspinar A, Chen Z, Van Waes C, Gursoy A, Keskin O, Nussinov R. The structural network of Interleukin-10 and its implications in inflammation and cancer. BMC Genomics 2014; 15 Suppl 4:S2. [PMID: 25056661 PMCID: PMC4083408 DOI: 10.1186/1471-2164-15-s4-s2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Inflammation has significant roles in all phases of tumor development, including initiation, progression and metastasis. Interleukin-10 (IL-10) is a well-known immuno-modulatory cytokine with an anti-inflammatory activity. Lack of IL-10 allows induction of pro-inflammatory cytokines and hinders anti-tumor immunity, thereby favoring tumor growth. The IL-10 network is among the most important paths linking cancer and inflammation. The simple node-and-edge network representation is useful, but limited, hampering the understanding of the mechanistic details of signaling pathways. Structural networks complete the missing parts, and provide details. The IL-10 structural network may shed light on the mechanisms through which disease-related mutations work and the pathogenesis of malignancies. Results Using PRISM (a PRotein Interactions by Structural Matching tool), we constructed the structural network of IL-10, which includes its first and second degree protein neighbor interactions. We predicted the structures of complexes involved in these interactions, thereby enriching the available structural data. In order to reveal the significance of the interactions, we exploited mutations identified in cancer patients, mapping them onto key proteins of this network. We analyzed the effect of these mutations on the interactions, and demonstrated a relation between these and inflammation and cancer. Our results suggest that mutations that disrupt the interactions of IL-10 with its receptors (IL-10RA and IL-10RB) and α2-macroglobulin (A2M) may enhance inflammation and modulate anti-tumor immunity. Likewise, mutations that weaken the A2M-APP (amyloid precursor protein) association may increase the proliferative effect of APP through preventing β-amyloid degradation by the A2M receptor, and mutations that abolish the A2M-Kallikrein-13 (KLK13) interaction may lead to cell proliferation and metastasis through the destructive effect of KLK13 on the extracellular matrix. Conclusions Prediction of protein-protein interactions through structural matching can enrich the available cellular pathways. In addition, the structural data of protein complexes suggest how oncogenic mutations influence the interactions and explain their potential impact on IL-10 signaling in cancer and inflammation.
Collapse
|
25
|
Baspinar A, Cukuroglu E, Nussinov R, Keskin O, Gursoy A. PRISM: a web server and repository for prediction of protein-protein interactions and modeling their 3D complexes. Nucleic Acids Res 2014; 42:W285-9. [PMID: 24829450 PMCID: PMC4086120 DOI: 10.1093/nar/gku397] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The PRISM web server enables fast and accurate prediction of protein-protein interactions (PPIs). The prediction algorithm is knowledge-based. It combines structural similarity and accounts for evolutionary conservation in the template interfaces. The predicted models are stored in its repository. Given two protein structures, PRISM will provide a structural model of their complex if a matching template interface is available. Users can download the complex structure, retrieve the interface residues and visualize the complex model. The PRISM web server is user friendly, free and open to all users at http://cosbi.ku.edu.tr/prism.
Collapse
Affiliation(s)
- Alper Baspinar
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Engin Cukuroglu
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Ruth Nussinov
- National Cancer Institute, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, MD 21702, USA Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
26
|
Kuzu G, Keskin O, Nussinov R, Gursoy A. Modeling protein assemblies in the proteome. Mol Cell Proteomics 2014; 13:887-96. [PMID: 24445405 PMCID: PMC3945916 DOI: 10.1074/mcp.m113.031294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 12/13/2013] [Indexed: 11/06/2022] Open
Abstract
Most (if not all) proteins function when associated in multimolecular assemblies. Attaining the structures of protein assemblies at the atomic scale is an important aim of structural biology. Experimentally, structures are increasingly available, and computations can help bridge the resolution gap between high- and low-resolution scales. Existing computational methods have made substantial progress toward this aim; however, current approaches are still limited. Some involve manual adjustment of experimental data; some are automated docking methods, which are computationally expensive and not applicable to large-scale proteome studies; and still others exploit the symmetry of the complexes and thus are not applicable to nonsymmetrical complexes. Our study aims to take steps toward overcoming these limitations. We have developed a strategy for the construction of protein assemblies computationally based on binary interactions predicted by a motif-based protein interaction prediction tool, PRISM (Protein Interactions by Structural Matching). Previously, we have shown its power in predicting pairwise interactions. Here we take a step toward multimolecular assemblies, reflecting the more prevalent cellular scenarios. With this method we are able to construct homo-/hetero-complexes and symmetric/asymmetric complexes without a limitation on the number of components. The method considers conformational changes and is applicable to large-scale studies. We also exploit electron microscopy density maps to select a solution from among the predictions. Here we present the method, illustrate its results, and highlight its current limitations.
Collapse
Affiliation(s)
- Guray Kuzu
- From the ‡Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ozlem Keskin
- From the ‡Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ruth Nussinov
- §Cancer and Inflammation Program, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
- ¶Sackler Institute of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Attila Gursoy
- From the ‡Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| |
Collapse
|
27
|
Cukuroglu E, Gursoy A, Nussinov R, Keskin O. Non-redundant unique interface structures as templates for modeling protein interactions. PLoS One 2014; 9:e86738. [PMID: 24475173 PMCID: PMC3903793 DOI: 10.1371/journal.pone.0086738] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/18/2013] [Indexed: 01/16/2023] Open
Abstract
Improvements in experimental techniques increasingly provide structural data relating to protein-protein interactions. Classification of structural details of protein-protein interactions can provide valuable insights for modeling and abstracting design principles. Here, we aim to cluster protein-protein interactions by their interface structures, and to exploit these clusters to obtain and study shared and distinct protein binding sites. We find that there are 22604 unique interface structures in the PDB. These unique interfaces, which provide a rich resource of structural data of protein-protein interactions, can be used for template-based docking. We test the specificity of these non-redundant unique interface structures by finding protein pairs which have multiple binding sites. We suggest that residues with more than 40% relative accessible surface area should be considered as surface residues in template-based docking studies. This comprehensive study of protein interface structures can serve as a resource for the community. The dataset can be accessed at http://prism.ccbb.ku.edu.tr/piface.
Collapse
Affiliation(s)
- Engin Cukuroglu
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey
| | - Ruth Nussinov
- National Cancer Institute, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
28
|
Engin HB, Guney E, Keskin O, Oliva B, Gursoy A. Integrating structure to protein-protein interaction networks that drive metastasis to brain and lung in breast cancer. PLoS One 2013; 8:e81035. [PMID: 24278371 PMCID: PMC3838352 DOI: 10.1371/journal.pone.0081035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 10/05/2013] [Indexed: 11/18/2022] Open
Abstract
Blocking specific protein interactions can lead to human diseases. Accordingly, protein interactions and the structural knowledge on interacting surfaces of proteins (interfaces) have an important role in predicting the genotype-phenotype relationship. We have built the phenotype specific sub-networks of protein-protein interactions (PPIs) involving the relevant genes responsible for lung and brain metastasis from primary tumor in breast cancer. First, we selected the PPIs most relevant to metastasis causing genes (seed genes), by using the "guilt-by-association" principle. Then, we modeled structures of the interactions whose complex forms are not available in Protein Databank (PDB). Finally, we mapped mutations to interface structures (real and modeled), in order to spot the interactions that might be manipulated by these mutations. Functional analyses performed on these sub-networks revealed the potential relationship between immune system-infectious diseases and lung metastasis progression, but this connection was not observed significantly in the brain metastasis. Besides, structural analyses showed that some PPI interfaces in both metastasis sub-networks are originating from microbial proteins, which in turn were mostly related with cell adhesion. Cell adhesion is a key mechanism in metastasis, therefore these PPIs may be involved in similar molecular pathways that are shared by infectious disease and metastasis. Finally, by mapping the mutations and amino acid variations on the interface regions of the proteins in the metastasis sub-networks we found evidence for some mutations to be involved in the mechanisms differentiating the type of the metastasis.
Collapse
Affiliation(s)
- H. Billur Engin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey
| | - Emre Guney
- Structural Bioinformatics Group (GRIB), Universitat Pompeu Fabra
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey
| | - Baldo Oliva
- Structural Bioinformatics Group (GRIB), Universitat Pompeu Fabra
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
29
|
Vreven T, Hwang H, Pierce BG, Weng Z. Evaluating template-based and template-free protein-protein complex structure prediction. Brief Bioinform 2013; 15:169-76. [PMID: 23818491 DOI: 10.1093/bib/bbt047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We compared the performance of template-free (docking) and template-based methods for the prediction of protein-protein complex structures. We found similar performance for a template-based method based on threading (COTH) and another template-based method based on structural alignment (PRISM). The template-based methods showed similar performance to a docking method (ZDOCK) when the latter was allowed one prediction for each complex, but when the same number of predictions was allowed for each method, the docking approach outperformed template-based approaches. We identified strengths and weaknesses in each method. Template-based approaches were better able to handle complexes that involved conformational changes upon binding. Furthermore, the threading-based and docking methods were better than the structural-alignment-based method for enzyme-inhibitor complex prediction. Finally, we show that the near-native (correct) predictions were generally not shared by the various approaches, suggesting that integrating their results could be the superior strategy.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, ASC-5th floor room 1069, 368 Plantation St., Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
30
|
Kuzu G, Gursoy A, Nussinov R, Keskin O. Exploiting conformational ensembles in modeling protein-protein interactions on the proteome scale. J Proteome Res 2013; 12:2641-53. [PMID: 23590674 PMCID: PMC3685852 DOI: 10.1021/pr400006k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular functions are performed through protein-protein interactions; therefore, identification of these interactions is crucial for understanding biological processes. Recent studies suggest that knowledge-based approaches are more useful than "blind" docking for modeling at large scales. However, a caveat of knowledge-based approaches is that they treat molecules as rigid structures. The Protein Data Bank (PDB) offers a wealth of conformations. Here, we exploited an ensemble of the conformations in predictions by a knowledge-based method, PRISM. We tested "difficult" cases in a docking-benchmark data set, where the unbound and bound protein forms are structurally different. Considering alternative conformations for each protein, the percentage of successfully predicted interactions increased from ~26 to 66%, and 57% of the interactions were successfully predicted in an "unbiased" scenario, in which data related to the bound forms were not utilized. If the appropriate conformation, or relevant template interface, is unavailable in the PDB, PRISM could not predict the interaction successfully. The pace of the growth of the PDB promises a rapid increase of ensemble conformations emphasizing the merit of such knowledge-based ensemble strategies for higher success rates in protein-protein interaction predictions on an interactome scale. We constructed the structural network of ERK interacting proteins as a case study.
Collapse
Affiliation(s)
- Guray Kuzu
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc. National Cancer Institute, Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| |
Collapse
|
31
|
Tsai CJ, Nussinov R. The molecular basis of targeting protein kinases in cancer therapeutics. Semin Cancer Biol 2013; 23:235-42. [PMID: 23651790 DOI: 10.1016/j.semcancer.2013.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
In this paper, we provide an overview of targeted anticancer therapies with small molecule kinase inhibitors. First, we discuss why a single constitutively active kinase emanating from a variety of aberrant genetic alterations is capable of transforming a normal cell, leading it to acquire the hallmarks of a cancer cell. To draw attention to the fact that kinase inhibition in targeted cancer therapeutics differs from conventional cytotoxic chemotherapy, we exploit a conceptual framework explaining why suppressed kinase activity will selectively kill only the so-called oncogene 'addicted' cancer cell, while sparing the healthy cell. Second, we introduce the protein kinase superfamily in light of its common active conformation with precisely positioned structural elements, and the diversified auto-inhibitory conformations among the kinase families. Understanding the detailed activation mechanism of individual kinases is essential to relate the observed oncogenic alterations to the elevated constitutively active state, to identify the mechanism of consequent drug resistance, and to guide the development of the next-generation inhibitors. To clarify the vital importance of structural guidelines in studies of oncogenesis, we explain how somatic mutations in EGFR result in kinase constitutive activation. Third, in addition to the common theme of secondary (acquired) mutations that prevent drug binding from blocking a signaling pathway which is hijacked by the aberrant activated kinase, we discuss scenarios of drug resistance and relapse by compensating lesions that bypass the inactivated pathway in a vertical or horizontal fashion. Collectively, these suggest that the future challenge of cancer therapy with small molecule kinase inhibitors will rely on the discovery of distinct combinations of optimized drugs to target individual subtypes of different cancers.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute, Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | |
Collapse
|
32
|
Low-resolution structural modeling of protein interactome. Curr Opin Struct Biol 2013; 23:198-205. [PMID: 23294579 DOI: 10.1016/j.sbi.2012.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/03/2012] [Indexed: 11/23/2022]
Abstract
Structural characterization of protein-protein interactions across the broad spectrum of scales is key to our understanding of life at the molecular level. Low-resolution approach to protein interactions is needed for modeling large interaction networks, given the significant level of uncertainties in large biomolecular systems and the high-throughput nature of the task. Since only a fraction of protein structures in interactome are determined experimentally, protein docking approaches are increasingly focusing on modeled proteins. Current rapid advancement of template-based modeling of protein-protein complexes is following a long standing trend in structure prediction of individual proteins. Protein-protein templates are already available for almost all interactions of structurally characterized proteins, and about one third of such templates are likely correct.
Collapse
|
33
|
Acuner Ozbabacan SE, Keskin O, Nussinov R, Gursoy A. Enriching the human apoptosis pathway by predicting the structures of protein-protein complexes. J Struct Biol 2012; 179:338-46. [PMID: 22349545 PMCID: PMC3378801 DOI: 10.1016/j.jsb.2012.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/23/2011] [Accepted: 02/04/2012] [Indexed: 10/14/2022]
Abstract
Apoptosis is a matter of life and death for cells and both inhibited and enhanced apoptosis may be involved in the pathogenesis of human diseases. The structures of protein-protein complexes in the apoptosis signaling pathway are important as the structural pathway helps in understanding the mechanism of the regulation and information transfer, and in identifying targets for drug design. Here, we aim to predict the structures toward a more informative pathway than currently available. Based on the 3D structures of complexes in the target pathway and a protein-protein interaction modeling tool which allows accurate and proteome-scale applications, we modeled the structures of 29 interactions, 21 of which were previously unknown. Next, 27 interactions which were not listed in the KEGG apoptosis pathway were predicted and subsequently validated by the experimental data in the literature. Additional interactions are also predicted. The multi-partner hub proteins are analyzed and interactions that can and cannot co-exist are identified. Overall, our results enrich the understanding of the pathway with interactions and provide structural details for the human apoptosis pathway. They also illustrate that computational modeling of protein-protein interactions on a large scale can help validate experimental data and provide accurate, structural atom-level detail of signaling pathways in the human cell.
Collapse
Affiliation(s)
- Saliha Ece Acuner Ozbabacan
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program NCI-Frederick, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| |
Collapse
|
34
|
Engin HB, Keskin O, Nussinov R, Gursoy A. A strategy based on protein-protein interface motifs may help in identifying drug off-targets. J Chem Inf Model 2012; 52:2273-86. [PMID: 22817115 PMCID: PMC3979525 DOI: 10.1021/ci300072q] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Networks are increasingly used to study the impact of drugs at the systems level. From the algorithmic standpoint, a drug can "attack" nodes or edges of a protein-protein interaction network. In this work, we propose a new network strategy, "The Interface Attack", based on protein-protein interfaces. Similar interface architectures can occur between unrelated proteins. Consequently, in principle, a drug that binds to one has a certain probability of binding to others. The interface attack strategy simultaneously removes from the network all interactions that consist of similar interface motifs. This strategy is inspired by network pharmacology and allows inferring potential off-targets. We introduce a network model that we call "Protein Interface and Interaction Network (P2IN)", which is the integration of protein-protein interface structures and protein interaction networks. This interface-based network organization clarifies which protein pairs have structurally similar interfaces and which proteins may compete to bind the same surface region. We built the P2IN with the p53 signaling network and performed network robustness analysis. We show that (1) "hitting" frequent interfaces (a set of edges distributed around the network) might be as destructive as eleminating high degree proteins (hub nodes), (2) frequent interfaces are not always topologically critical elements in the network, and (3) interface attack may reveal functional changes in the system better than the attack of single proteins. In the off-target detection case study, we found that drugs blocking the interface between CDK6 and CDKN2D may also affect the interaction between CDK4 and CDKN2D.
Collapse
Affiliation(s)
- H. Billur Engin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
- Sackler Inst. Of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| |
Collapse
|
35
|
Schneidman-Duhovny D, Kim SJ, Sali A. Integrative structural modeling with small angle X-ray scattering profiles. BMC STRUCTURAL BIOLOGY 2012; 12:17. [PMID: 22800408 PMCID: PMC3427135 DOI: 10.1186/1472-6807-12-17] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/16/2012] [Indexed: 01/24/2023]
Abstract
Recent technological advances enabled high-throughput collection of Small Angle X-ray Scattering (SAXS) profiles of biological macromolecules. Thus, computational methods for integrating SAXS profiles into structural modeling are needed more than ever. Here, we review specifically the use of SAXS profiles for the structural modeling of proteins, nucleic acids, and their complexes. First, the approaches for computing theoretical SAXS profiles from structures are presented. Second, computational methods for predicting protein structures, dynamics of proteins in solution, and assembly structures are covered. Third, we discuss the use of SAXS profiles in integrative structure modeling approaches that depend simultaneously on several data types.
Collapse
Affiliation(s)
- Dina Schneidman-Duhovny
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, USA.
| | | | | |
Collapse
|
36
|
Kuzu G, Keskin O, Gursoy A, Nussinov R. Constructing structural networks of signaling pathways on the proteome scale. Curr Opin Struct Biol 2012; 22:367-77. [PMID: 22575757 DOI: 10.1016/j.sbi.2012.04.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/20/2012] [Accepted: 04/18/2012] [Indexed: 11/30/2022]
Abstract
Proteins function through their interactions, and the availability of protein interaction networks could help in understanding cellular processes. However, the known structural data are limited and the classical network node-and-edge representation, where proteins are nodes and interactions are edges, shows only which proteins interact; not how they interact. Structural networks provide this information. Protein-protein interface structures can also indicate which binding partners can interact simultaneously and which are competitive, and can help forecasting potentially harmful drug side effects. Here, we use a powerful protein-protein interactions prediction tool which is able to carry out accurate predictions on the proteome scale to construct the structural network of the extracellular signal-regulated kinases (ERK) in the mitogen-activated protein kinase (MAPK) signaling pathway. This knowledge-based method, PRISM, is motif-based, and is combined with flexible refinement and energy scoring. PRISM predicts protein interactions based on structural and evolutionary similarity to known protein interfaces.
Collapse
Affiliation(s)
- Guray Kuzu
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | | | | | | |
Collapse
|