1
|
Dias ER, Durans AM, Succar BB, Pinto LALT, Lechuga GC, Miguez MG, Figueira-Mansur J, Argondizzo APC, Bernardo AR, Diniz RL, Esteves GS, Silva ED, Morel CM, Borges-Pereira J, De-Simone SG, Junqueira ACV, Provance DW. A Multi-Epitope Protein for High-Performance Serodiagnosis of Chronic Chagas Disease in ELISA and Lateral Flow Platforms. Int J Mol Sci 2024; 25:9811. [PMID: 39337297 PMCID: PMC11432030 DOI: 10.3390/ijms25189811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
We developed a protein to rapidly and accurately diagnose Chagas disease, a life-threatening illness identified by the WHO as a critical worldwide public health risk. Limitations in present day serological tests are complicating the current health situation and contributing to most infected persons being unaware of their condition and therefore untreated. To improve diagnostic testing, we developed an immunological mimic of the etiological agent, Trypanosoma cruzi, by combining ten pathogen-specific epitopes within the beta-barrel protein structure of Thermal Green Protein. The resulting multi-epitope protein, DxCruziV3, displayed high specificity and sensitivity as the antibody capture reagent in an ELISA platform with an analytical sensitivity that exceeds WHO recommendations. Within an immunochromatographic platform, DxCruziV3 showed excellent performance for the point of application diagnosis in a region endemic for multiple diseases, the municipality of Barcelos in the state of Amazonas, Brazil. In total, 167 individuals were rapidly tested using whole blood from a finger stick. As recommended by the Brazilian Ministry of Health, venous blood samples were laboratory tested by conventional assays for comparison. Test results suggest utilizing DxCruziV3 in different assay platforms can confidently diagnose chronic infections by T. cruzi. Rapid and more accurate results will benefit everyone but will have the most noticeable impact in resource-limited rural areas where the disease is endemic.
Collapse
Affiliation(s)
- Evandro R Dias
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
- Tropical Medicine Graduate Program (Stricto Sensu), Oswaldo Cruz Institute, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
- Laboratório de Epidemiologia e Sistemática Molecular, Oswaldo Cruz Institute, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
- Laboratório de Doenças Parasitarias, Oswaldo Cruz Institute, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - Andressa M Durans
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
- Laboratório de Epidemiologia e Sistemática Molecular, Oswaldo Cruz Institute, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - Barbara B Succar
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
- Laboratório de Epidemiologia e Sistemática Molecular, Oswaldo Cruz Institute, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - Luiz André L T Pinto
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - Guilherme C Lechuga
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
- Laboratório de Epidemiologia e Sistemática Molecular, Oswaldo Cruz Institute, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - Mariana G Miguez
- Laboratório de Tecnologia Recombinante, Institute of Technology in Immunobiology, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - Janaina Figueira-Mansur
- Laboratório de Tecnologia Recombinante, Institute of Technology in Immunobiology, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - Ana P C Argondizzo
- Laboratório de Tecnologia Recombinante, Institute of Technology in Immunobiology, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - Aline R Bernardo
- Laboratório de Reativos em Diagnóstico, Institute of Technology in Immunobiology, Rio de Janeiro 21040-361, RJ, Brazil
| | - Rafaela L Diniz
- Laboratório de Reativos em Diagnóstico, Institute of Technology in Immunobiology, Rio de Janeiro 21040-361, RJ, Brazil
| | - Gabriela S Esteves
- Laboratório de Tecnologia Recombinante, Institute of Technology in Immunobiology, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - Edimilson D Silva
- Laboratório de Reativos em Diagnóstico, Institute of Technology in Immunobiology, Rio de Janeiro 21040-361, RJ, Brazil
| | - Carlos M Morel
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - José Borges-Pereira
- Laboratório de Doenças Parasitarias, Oswaldo Cruz Institute, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - Salvatore G De-Simone
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
- Laboratório de Epidemiologia e Sistemática Molecular, Oswaldo Cruz Institute, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
- Science and Biotechnology Graduate Program, Department of Molecular and Cellular Biology, Biology Institute, Fluminense Federal University, Niterói 24020-141, RJ, Brazil
| | - Angela C V Junqueira
- Tropical Medicine Graduate Program (Stricto Sensu), Oswaldo Cruz Institute, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
- Laboratório de Doenças Parasitarias, Oswaldo Cruz Institute, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| | - David William Provance
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
- Laboratório de Epidemiologia e Sistemática Molecular, Oswaldo Cruz Institute, Oswald Cruz Foundation, Rio de Janeiro 21040-361, RJ, Brazil
| |
Collapse
|
2
|
Recalde A, Abdul-Nabi J, Junker P, van der Does C, Elsässer J, van Wolferen M, Albers SV. The use of thermostable fluorescent proteins for live imaging in Sulfolobus acidocaldarius. Front Microbiol 2024; 15:1445186. [PMID: 39314874 PMCID: PMC11416942 DOI: 10.3389/fmicb.2024.1445186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Among hyperthermophilic organisms, in vivo protein localization is challenging due to the high growth temperatures that can disrupt proper folding and function of mostly mesophilic-derived fluorescent proteins. While protein localization in the thermophilic model archaeon S. acidocaldarius has been achieved using antibodies with fluorescent probes in fixed cells, the use of thermostable fluorescent proteins for live imaging in thermophilic archaea has so far been unsuccessful. Given the significance of live protein localization in the field of archaeal cell biology, we aimed to identify fluorescent proteins for use in S. acidocaldarius. Methods We expressed various previously published and optimized thermostable fluorescent proteins along with fusion proteins of interest and analyzed the cells using flow cytometry and (thermo-) fluorescent microscopy. Results Of the tested proteins, thermal green protein (TGP) exhibited the brightest fluorescence when expressed in Sulfolobus cells. By optimizing the linker between TGP and a protein of interest, we could additionally successfully fuse proteins with minimal loss of fluorescence. TGP-CdvB and TGP-PCNA1 fusions displayed localization patterns consistent with previous immunolocalization experiments. Discussion These initial results in live protein localization in S. acidocaldarius at high temperatures, combined with recent advancements in thermomicroscopy, open new avenues in the field of archaeal cell biology. This progress finally enables localization experiments in thermophilic archaea, which have so far been limited to mesophilic organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Anderson MR, Dargatz CJ, Banerjee T, DeVore NM. Green, yellow, or cyan? Introduction of color change mutations into a green thermostable fluorescent protein and characterization during an introduction to biochemistry lab course. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 52:549-558. [PMID: 38850239 DOI: 10.1002/bmb.21841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 03/19/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
Green fluorescent protein has long been a favorite protein for demonstrating protein purification in the biochemistry lab course. The protein's vivid green color helps demonstrate to students the concept(s) behind affinity or ion exchange chromatography. We designed a series of introduction to biochemistry labs utilizing a thermostable green protein (TGP-E) engineered to have unusually high thermostability. This protein allows students to proceed through purification and characterization without the need to keep protein samples on ice. The 5-week lab series begins with an introduction to molecular biology techniques during weeks 1 and 2, where site-directed mutagenesis is used introduce, a single nucleotide change that shifts the fluorescent spectra of TGP-E to either cyan (CTP-E) or yellow (YTP-E). Students identify successful mutagenesis reaction by the color of a small expression sample after induction with IPTG. Next, students purify either the TGP-E (control-typically one group volunteers), YTP-E, or CTP-E protein as a 1-week lab. During the following week's lab, students run SDS-PAGE to verify protein purity, bicinchoninic acid assay to quantify protein yield, and absorbance and fluorescence spectra to characterize their protein's fluorescent character. The final lab in the series investigates the thermostability of YTP-E and CTP-E compared with TGP-E using a fluorescence plate reader. This 5-week series of experiments provide students with experience in several key biochemistry techniques and allows the students to compare properties of mutations. At the end of the course, the students will write a research report and give a short presentation over their results.
Collapse
Affiliation(s)
- Matthew R Anderson
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Cammi J Dargatz
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Tuhina Banerjee
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Natasha M DeVore
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| |
Collapse
|
4
|
Yang Y, Zhang J, Yang J, Luo H, Sun Y, Ke F, Wang Q, Gao X. Directed evolution of the fluorescent protein CGP with in situ biosynthesized noncanonical amino acids. Appl Environ Microbiol 2024; 90:e0186323. [PMID: 38446072 PMCID: PMC11022568 DOI: 10.1128/aem.01863-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
The incorporation of noncanonical amino acids (ncAAs) into proteins can enhance their function beyond the abilities of canonical amino acids and even generate new functions. However, the ncAAs used for such research are usually chemically synthesized, which is expensive and hinders their application on large industrial scales. We believe that the biosynthesis of ncAAs using metabolic engineering and their employment in situ in target protein engineering with genetic code expansion could overcome these limitations. As a proof of principle, we biosynthesized four ncAAs, O-L-methyltyrosine, 3,4-dihydroxy-L-phenylalanine, 5-hydroxytryptophan, and 5-chloro-L-tryptophan using metabolic engineering and directly evolved the fluorescent consensus green protein (CGP) by combination with nine other exogenous ncAAs in Escherichia coli. After screening a TAG scanning library expressing 13 ncAAs, several variants with enhanced fluorescence and stability were identified. The variants CGPV3pMeoF/K190pMeoF and CGPG20pMeoF/K190pMeoF expressed with biosynthetic O-L-methyltyrosine showed an approximately 1.4-fold improvement in fluorescence compared to the original level, and a 2.5-fold improvement in residual fluorescence after heat treatment. Our results demonstrated the feasibility of integrating metabolic engineering, genetic code expansion, and directed evolution in engineered cells to employ biosynthetic ncAAs in protein engineering. These results could further promote the application of ncAAs in protein engineering and enzyme evolution. IMPORTANCE Noncanonical amino acids (ncAAs) have shown great potential in protein engineering and enzyme evolution through genetic code expansion. However, in most cases, ncAAs must be provided exogenously during protein expression, which hinders their application, especially when they are expensive or have poor cell membrane penetration. Engineering cells with artificial metabolic pathways to biosynthesize ncAAs and employing them in situ for protein engineering and enzyme evolution could facilitate their application and reduce costs. Here, we attempted to evolve the fluorescent consensus green protein (CGP) with biosynthesized ncAAs. Our results demonstrated the feasibility of using biosynthesized ncAAs in protein engineering, which could further stimulate the application of ncAAs in bioengineering and biomedicine.
Collapse
Affiliation(s)
- Yanhong Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Huiwen Luo
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yingjie Sun
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Wang
- Dazhou Vocational College of Chinese Medicine, Dazhou, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, China
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Hung L, Terwilliger TC, Waldo GS, Nguyen HB. Engineering highly stable variants of Corynactis californica green fluorescent proteins. Protein Sci 2024; 33:e4886. [PMID: 38151801 PMCID: PMC10804665 DOI: 10.1002/pro.4886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Fluorescent proteins (FPs) are versatile biomarkers that facilitate effective detection and tracking of macromolecules of interest in real time. Engineered FPs such as superfolder green fluorescent protein (sfGFP) and superfolder Cherry (sfCherry) have exceptional refolding capability capable of delivering fluorescent readout in harsh environments where most proteins lose their native functions. Our recent work on the development of a split FP from a species of strawberry anemone, Corynactis californica, delivered pairs of fragments with up to threefold faster complementation than split GFP. We present the biophysical, biochemical, and structural characteristics of five full-length variants derived from these split C. californica GFP (ccGFP). These ccGFP variants are more tolerant under chemical denaturation with up to 8 kcal/mol lower unfolding free energy than that of the sfGFP. It is likely that some of these ccGFP variants could be suitable as biomarkers under more adverse environments where sfGFP fails to survive. A structural analysis suggests explanations of the variations in stabilities among the ccGFP variants.
Collapse
Affiliation(s)
- Li‐Wei Hung
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| | - Thomas C. Terwilliger
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
- New Mexico ConsortiumLos AlamosNew MexicoUSA
| | - Geoffrey S. Waldo
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| | - Hau B. Nguyen
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| |
Collapse
|
6
|
Lin T, Ge Y, Gao Q, Zhang D, Chen X, Hu Y, Fan J. Backbone Cyclization of Flavin Mononucleotide-Based Fluorescent Protein Increases Fluorescence and Stability. J Microbiol Biotechnol 2023; 33:1681-1691. [PMID: 37789714 PMCID: PMC10772547 DOI: 10.4014/jmb.2305.05011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023]
Abstract
Flavin mononucleotide-binding proteins or domains emit cyan-green fluorescence under aerobic and anaerobic conditions, but relatively low fluorescence and less thermostability limit their application as reporters. In this work, we incorporated the codon-optimized fluorescent protein from Chlamydomonas reinhardtii with two different linkers independently into the redox-responsive split intein construct, overexpressed the precursors in hyperoxic Escherichia coli SHuffle T7 strain, and cyclized the target proteins in vitro in the presence of the reducing agent. Compared with the purified linear protein, the cyclic protein with the short linker displayed enhanced fluorescence. In contrast, cyclized protein with incorporation of the long linker including the myc-tag and human rhinovirus 3C protease cleavable sequence emitted slightly increased fluorescence compared with the protein linearized with the protease cleavage. The cyclic protein with the short linker also exhibited increased thermal stability and exopeptidase resistance. Moreover, induction of the target proteins in an oxygen-deficient culture rendered fluorescent E. coli BL21 (DE3) cells brighter than those overexpressing the linear construct. Thus, the cyclic reporter can hopefully be used in certain thermophilic anaerobes.
Collapse
Affiliation(s)
- Tingting Lin
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yuanyuan Ge
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Qing Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Di Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Xiaofeng Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yafang Hu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
7
|
Shen C, Zhang Y, Cui W, Zhao Y, Sheng D, Teng X, Shao M, Ichikawa M, Wang J, Hattori M. Structural insights into the allosteric inhibition of P2X4 receptors. Nat Commun 2023; 14:6437. [PMID: 37833294 PMCID: PMC10575874 DOI: 10.1038/s41467-023-42164-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
P2X receptors are ATP-activated cation channels, and the P2X4 subtype plays important roles in the immune system and the central nervous system, particularly in neuropathic pain. Therefore, P2X4 receptors are of increasing interest as potential drug targets. Here, we report the cryo-EM structures of the zebrafish P2X4 receptor in complex with two P2X4 subtype-specific antagonists, BX430 and BAY-1797. Both antagonists bind to the same allosteric site located at the subunit interface at the top of the extracellular domain. Structure-based mutational analysis by electrophysiology identified the important residues for the allosteric inhibition of both zebrafish and human P2X4 receptors. Structural comparison revealed the ligand-dependent structural rearrangement of the binding pocket to stabilize the binding of allosteric modulators, which in turn would prevent the structural changes of the extracellular domain associated with channel activation. Furthermore, comparison with the previously reported P2X structures of other subtypes provided mechanistic insights into subtype-specific allosteric inhibition.
Collapse
Affiliation(s)
- Cheng Shen
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuqing Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenwen Cui
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Danqi Sheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyu Teng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Miaoqing Shao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Muneyoshi Ichikawa
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jin Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
8
|
Wong TT, Liou GG, Kan MC. A Thermal-Stable Protein Nanoparticle That Stimulates Long Lasting Humoral Immune Response. Vaccines (Basel) 2023; 11:vaccines11020426. [PMID: 36851303 PMCID: PMC9962852 DOI: 10.3390/vaccines11020426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
A thermally stable vaccine platform is considered the missing piece of vaccine technology. In this article, we reported the creation of a novel protein nanoparticle and assessed its ability to withstand extended high temperature incubation while stimulating a long-lasting humoral immune response. This protein nanoparticle was assembled from a fusion protein composed of an amphipathic helical peptide derived from the M2 protein of the H5N1 influenza virus (AH3) and a superfolder green fluorescent protein (sfGFP). Its proposed structure was modeled according to transmission electronic microscope (TEM) images of protein nanoparticles. From this proposed protein model, we created a mutant with two gain-of-function mutations that work synergistically on particle stability. A protein nanoparticle assembled from this gain-of-function mutant is able to remove a hydrophobic patch from its surface. This gain-of-function mutant also contributes to the higher thermostability of protein nanoparticles and stimulates a long lasting humoral immune response after a single immunization. This assembled nanoparticle showed increasing particle stability at higher temperatures and salt concentrations. This novel protein nanoparticle may serve as a thermally-stable platform for vaccine development.
Collapse
Affiliation(s)
- Ten-Tsao Wong
- Department of Marine Biotechnology & Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltiomre, MD 21202, USA
| | - Gunn-Guang Liou
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Office of Research and Development, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ming-Chung Kan
- Vaxsia Biomedical Inc., Taipei 11503, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Anderson M, Padgett CM, Dargatz CJ, Nichols CR, Vittalam KR, DeVore NM. Engineering a Yellow Thermostable Fluorescent Protein by Rational Design. ACS OMEGA 2023; 8:436-443. [PMID: 36643458 PMCID: PMC9835079 DOI: 10.1021/acsomega.2c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Thermal green protein (TGP) is an extremely stable, highly soluble synthetic green fluorescent protein. The quantum yield of TGP is lower than the closest related natural fluorescent protein, monomeric Azami-Green. We improved the thermal recovery of TGP through the introduction of a chromophore mutation, Q66E. Furthermore, we developed a yellow thermal protein (YTP) via mutation of histidine 193 to tyrosine. Incorporation of Q66E into YTP (YTP-E) improved chemostability and pH stability. Both YTP and YTP-E have superior thermostability compared to TGP or TGP-E. These proteins offer a new option for green or yellow fluorescence under harsh chemical or thermal conditions.
Collapse
Affiliation(s)
- Matthew
R. Anderson
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 South National Ave, Springfield, Missouri65897, United States
| | - Caitlin M. Padgett
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 South National Ave, Springfield, Missouri65897, United States
| | - Cammi J. Dargatz
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 South National Ave, Springfield, Missouri65897, United States
| | - Calysta R. Nichols
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 South National Ave, Springfield, Missouri65897, United States
| | - Keerti R. Vittalam
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 South National Ave, Springfield, Missouri65897, United States
- Greenwood
Laboratory School, 1024
E. Harrison, Springfield, Missouri65897, United
States
| | - Natasha M. DeVore
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 South National Ave, Springfield, Missouri65897, United States
| |
Collapse
|
10
|
Yao H, Cai H, Li D. Fluorescence-Detection Size-Exclusion Chromatography-Based Thermostability Assay for Membrane Proteins. Methods Mol Biol 2023; 2564:299-315. [PMID: 36107350 DOI: 10.1007/978-1-0716-2667-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Green fluorescent proteins (GFPs) have lightened up almost every aspect of biological research including protein sciences. In the field of membrane protein structural biology, GFPs have been used widely to monitor membrane protein localization, expression level, the purification process and yield, and the stability inside the cells and in the test tube. Of particular interest is the fluorescence-detector size-exclusion chromatography-based thermostability assay (FSEC-TS). By simple heating and FSEC, the generally applicable method allows rapid assessment of the thermostability of GFP-fused membrane proteins without purification. Here we describe the experimental details and some typical results for the FSEC-TS method.
Collapse
Affiliation(s)
| | | | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Sulatskaya AI, Kosolapova AO, Bobylev AG, Belousov MV, Antonets KS, Sulatsky MI, Kuznetsova IM, Turoverov KK, Stepanenko OV, Nizhnikov AA. β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis. Int J Mol Sci 2021; 22:11316. [PMID: 34768745 PMCID: PMC8582884 DOI: 10.3390/ijms222111316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] Open
Abstract
Insoluble protein aggregates with fibrillar morphology called amyloids and β-barrel proteins both share a β-sheet-rich structure. Correctly folded β-barrel proteins can not only function in monomeric (dimeric) form, but also tend to interact with one another-followed, in several cases, by formation of higher order oligomers or even aggregates. In recent years, findings proving that β-barrel proteins can adopt cross-β amyloid folds have emerged. Different β-barrel proteins were shown to form amyloid fibrils in vitro. The formation of functional amyloids in vivo by β-barrel proteins for which the amyloid state is native was also discovered. In particular, several prokaryotic and eukaryotic proteins with β-barrel domains were demonstrated to form amyloids in vivo, where they participate in interspecies interactions and nutrient storage, respectively. According to recent observations, despite the variety of primary structures of amyloid-forming proteins, most of them can adopt a conformational state with the β-barrel topology. This state can be intermediate on the pathway of fibrillogenesis ("on-pathway state"), or can be formed as a result of an alternative assembly of partially unfolded monomers ("off-pathway state"). The β-barrel oligomers formed by amyloid proteins possess toxicity, and are likely to be involved in the development of amyloidoses, thus representing promising targets for potential therapy of these incurable diseases. Considering rapidly growing discoveries of the amyloid-forming β-barrels, we may suggest that their real number and diversity of functions are significantly higher than identified to date, and represent only "the tip of the iceberg". Here, we summarize the data on the amyloid-forming β-barrel proteins, their physicochemical properties, and their biological functions, and discuss probable means and consequences of the amyloidogenesis of these proteins, along with structural relationships between these two widespread types of β-folds.
Collapse
Affiliation(s)
- Anna I. Sulatskaya
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anastasiia O. Kosolapova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia;
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia;
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russia; (I.M.K.); (K.K.T.); (O.V.S.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 3 Podbelskogo Sh., Pushkin, 196608 St. Petersburg, Russia; (A.I.S.); (A.O.K.); (M.V.B.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| |
Collapse
|
12
|
Engineering an efficient and bright split Corynactis californica green fluorescent protein. Sci Rep 2021; 11:18440. [PMID: 34531533 PMCID: PMC8445986 DOI: 10.1038/s41598-021-98149-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/03/2021] [Indexed: 11/08/2022] Open
Abstract
Split green fluorescent protein (GFP) has been used in a panoply of cellular biology applications to study protein translocation, monitor protein solubility and aggregation, detect protein–protein interactions, enhance protein crystallization, and even map neuron contacts. Recent work shows the utility of split fluorescent proteins for large scale labeling of proteins in cells using CRISPR, but sets of efficient split fluorescent proteins that do not cross-react are needed for multiplexing experiments. We present a new monomeric split green fluorescent protein (ccGFP) engineered from a tetrameric GFP found in Corynactis californica, a bright red colonial anthozoan similar to sea anemones and scleractinian stony corals. Split ccGFP from C. californica complements up to threefold faster compared to the original Aequorea victoria split GFP and enable multiplexed labeling with existing A. victoria split YFP and CFP.
Collapse
|
13
|
Gomes LR, Durans AM, Napoleão-Pêgo P, Waterman JA, Freitas MS, De Sá NBR, Pereira LV, Furtado JS, Aquino RG, Machado MCR, Fintelman-Rodrigues N, Souza TML, Morel CM, Provance DW, De-Simone SG. Multiepitope Proteins for the Differential Detection of IgG Antibodies against RBD of the Spike Protein and Non-RBD Regions of SARS-CoV-2. Vaccines (Basel) 2021; 9:986. [PMID: 34579223 PMCID: PMC8473315 DOI: 10.3390/vaccines9090986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/04/2021] [Accepted: 08/28/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has exposed the extent of global connectivity and collective vulnerability to emerging diseases. From its suspected origins in Wuhan, China, it spread to all corners of the world in a matter of months. The absence of high-performance, rapid diagnostic methods that could identify asymptomatic carriers contributed to its worldwide transmission. Serological tests offer numerous benefits compared to other assay platforms to screen large populations. First-generation assays contain targets that represent proteins from SARS-CoV-2. While they could be quickly produced, each actually has a mixture of specific and non-specific epitopes that vary in their reactivity for antibodies. To generate the next generation of the assay, epitopes were identified in three SARS-Cov-2 proteins (S, N, and Orf3a) by SPOT synthesis analysis. After their similarity to other pathogen sequences was analyzed, 11 epitopes outside of the receptor-binding domain (RBD) of the spike protein that showed high reactivity and uniqueness to the virus. These were incorporated into a ß-barrel protein core to create a highly chimeric protein. Another de novo protein was designed that contained only epitopes in the RBD. In-house ELISAs suggest that both multiepitope proteins can serve as targets for high-performance diagnostic tests. Our approach to bioengineer chimeric proteins is highly amenable to other pathogens and immunological uses.
Collapse
Affiliation(s)
- Larissa R. Gomes
- FIOCRUZ, Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (A.M.D.); (P.N.-P.); (J.A.W.); (M.S.F.); (N.F.-R.); (T.M.L.S.); (C.M.M.); (D.W.P.)
| | - Andressa M. Durans
- FIOCRUZ, Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (A.M.D.); (P.N.-P.); (J.A.W.); (M.S.F.); (N.F.-R.); (T.M.L.S.); (C.M.M.); (D.W.P.)
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Paloma Napoleão-Pêgo
- FIOCRUZ, Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (A.M.D.); (P.N.-P.); (J.A.W.); (M.S.F.); (N.F.-R.); (T.M.L.S.); (C.M.M.); (D.W.P.)
| | - Jessica A. Waterman
- FIOCRUZ, Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (A.M.D.); (P.N.-P.); (J.A.W.); (M.S.F.); (N.F.-R.); (T.M.L.S.); (C.M.M.); (D.W.P.)
| | - Mariana S. Freitas
- FIOCRUZ, Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (A.M.D.); (P.N.-P.); (J.A.W.); (M.S.F.); (N.F.-R.); (T.M.L.S.); (C.M.M.); (D.W.P.)
| | - Nathalia B. R. De Sá
- AIDS & Molecular Immunology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
| | - Lilian V. Pereira
- Angra dos Reis Health Department, Angra dos Reis 23906-10, Brazil; (L.V.P.); (J.S.F.); (R.G.A.)
| | - Jéssica S. Furtado
- Angra dos Reis Health Department, Angra dos Reis 23906-10, Brazil; (L.V.P.); (J.S.F.); (R.G.A.)
| | - Romário G. Aquino
- Angra dos Reis Health Department, Angra dos Reis 23906-10, Brazil; (L.V.P.); (J.S.F.); (R.G.A.)
| | | | - Natalia Fintelman-Rodrigues
- FIOCRUZ, Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (A.M.D.); (P.N.-P.); (J.A.W.); (M.S.F.); (N.F.-R.); (T.M.L.S.); (C.M.M.); (D.W.P.)
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Thiago M. L. Souza
- FIOCRUZ, Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (A.M.D.); (P.N.-P.); (J.A.W.); (M.S.F.); (N.F.-R.); (T.M.L.S.); (C.M.M.); (D.W.P.)
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Carlos M. Morel
- FIOCRUZ, Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (A.M.D.); (P.N.-P.); (J.A.W.); (M.S.F.); (N.F.-R.); (T.M.L.S.); (C.M.M.); (D.W.P.)
| | - David W. Provance
- FIOCRUZ, Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (A.M.D.); (P.N.-P.); (J.A.W.); (M.S.F.); (N.F.-R.); (T.M.L.S.); (C.M.M.); (D.W.P.)
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Salvatore G. De-Simone
- FIOCRUZ, Center of Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), Rio de Janeiro 21040-900, Brazil; (L.R.G.); (A.M.D.); (P.N.-P.); (J.A.W.); (M.S.F.); (N.F.-R.); (T.M.L.S.); (C.M.M.); (D.W.P.)
- Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil
| |
Collapse
|
14
|
Velappan N, Close D, Hung LW, Naranjo L, Hemez C, DeVore N, McCullough DK, Lillo AM, Waldo GS, Bradbury ARM. Construction, characterization and crystal structure of a fluorescent single-chain Fv chimera. Protein Eng Des Sel 2021; 34:gzaa029. [PMID: 33586761 PMCID: PMC7901706 DOI: 10.1093/protein/gzaa029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/12/2022] Open
Abstract
In vitro display technologies based on phage and yeast have a successful history of selecting single-chain variable fragment (scFv) antibodies against various targets. However, single-chain antibodies are often unstable and poorly expressed in Escherichia coli. Here, we explore the feasibility of converting scFv antibodies to an intrinsically fluorescent format by inserting the monomeric, stable fluorescent protein named thermal green, between the light- and heavy-chain variable regions. Our results show that the scTGP format maintains the affinity and specificity of the antibodies, improves expression levels, allows one-step fluorescent assay for detection of binding and is a suitable reagent for epitope binning. We also report the crystal structure of an scTGP construct that recognizes phosphorylated tyrosine on FcεR1 receptor of the allergy pathway.
Collapse
Affiliation(s)
- Nileena Velappan
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Microbiology Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Devin Close
- ARUP Laboratories, Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA
- Microbiology Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Li-Wei Hung
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Microbiology Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Leslie Naranjo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Specifica Inc., Santa Fe, NM 87505, USA
| | - Colin Hemez
- Graduate Program in Biophysics, Harvard University, Boston, MA 02115 USA
| | - Natasha DeVore
- Chemistry Department, Missouri State University, Springfield, MO 65897, USA
| | - Donna K McCullough
- Microbiology Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Antonietta M Lillo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Geoffrey S Waldo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
15
|
Cai H, Yao H, Li T, Hutter CAJ, Li Y, Tang Y, Seeger MA, Li D. An improved fluorescent tag and its nanobodies for membrane protein expression, stability assay, and purification. Commun Biol 2020; 3:753. [PMID: 33303987 PMCID: PMC7729955 DOI: 10.1038/s42003-020-01478-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
Green fluorescent proteins (GFPs) are widely used to monitor membrane protein expression, purification, and stability. An ideal reporter should be stable itself and provide high sensitivity and yield. Here, we demonstrate that a coral (Galaxea fascicularis) thermostable GFP (TGP) is by such reasons an improved tag compared to the conventional jellyfish GFPs. TGP faithfully reports membrane protein stability at temperatures near 90 °C (20-min heating). By contrast, the limit for the two popular GFPs is 64 °C and 74 °C. Replacing GFPs with TGP increases yield for all four test membrane proteins in four expression systems. To establish TGP as an affinity tag for membrane protein purification, several high-affinity synthetic nanobodies (sybodies), including a non-competing pair, are generated, and the crystal structure of one complex is solved. Given these advantages, we anticipate that TGP becomes a widely used tool for membrane protein structural studies.
Collapse
Affiliation(s)
- Hongmin Cai
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Hebang Yao
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Tingting Li
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Yanfang Li
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Yannan Tang
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Dianfan Li
- University of Chinese Academy of Sciences, National Center for Protein Science Shanghai, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.
| |
Collapse
|
16
|
Yao H, Cai H, Li D. Thermostabilization of Membrane Proteins by Consensus Mutation: A Case Study for a Fungal Δ8-7 Sterol Isomerase. J Mol Biol 2020; 432:5162-5183. [PMID: 32105736 DOI: 10.1016/j.jmb.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 11/15/2022]
Abstract
Membrane proteins are generally challenging to work with because of their notorious instability. Protein engineering has been used increasingly to thermostabilize labile membrane proteins such as G-protein-coupled receptors for structural and functional studies in recent years. Two major strategies exist. Scanning mutagenesis systematically eliminates destabilizing residues, whereas the consensus approach assembles mutants with the most frequent residues among selected homologs, bridging sequence conservation with stability. Here, we applied the consensus concept to stabilize a fungal homolog of the human sterol Δ8-7 isomerase, a 26.4 kDa protein with five transmembrane helices. The isomerase is also called emopamil-binding protein (EBP), as it binds this anti-ischemic drug with high affinity. The wild-type had an apparent melting temperature (Tm) of 35.9 °C as measured by the fluorescence-detection size-exclusion chromatography-based thermostability assay. A total of 87 consensus mutations sourced from 22 homologs gained expression level and thermostability, increasing the apparent Tm to 69.9 °C at the cost of partial function loss. Assessing the stability and activity of several systematic chimeric constructs identified a construct with an apparent Tm of 79.8 °C and two regions for function rescue. Further back-mutations of the chimeric construct in the two target regions yielded the final construct with similar apparent activity to the wild-type and an elevated Tm of 88.8 °C, totaling an increase of 52.9 °C. The consensus approach is effective and efficient because it involves fewer constructs compared with scanning mutagenesis. Our results should encourage more use of the consensus strategy for membrane protein thermostabilization.
Collapse
Affiliation(s)
- Hebang Yao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Hongmin Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Dianfan Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China.
| |
Collapse
|
17
|
Eason MG, Damry AM, Chica RA. Structure-guided rational design of red fluorescent proteins: towards designer genetically-encoded fluorophores. Curr Opin Struct Biol 2017; 45:91-99. [PMID: 28038355 DOI: 10.1016/j.sbi.2016.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/26/2023]
Abstract
Red fluorescent proteins (RFPs) have become an integral part of modern biological research due to their longer excitation and emission wavelengths. Protein engineering efforts have improved many key properties of RFPs for their practical use in imaging. Even so, continued engineering is required to overcome the shortcomings of the red chromophore and create RFPs with photophysical properties rivalling those of their optimized green and yellow counterparts. Here, we highlight recent examples of structure-guided rational design of RFPs to improve brightness, monomerization, maturation, and photostability, and discuss possible pathways for the future engineering of designer RFPs tailored to specific applications.
Collapse
Affiliation(s)
- Matthew G Eason
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Adam M Damry
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Roberto A Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
18
|
Wingen M, Jaeger KE, Gensch T, Drepper T. Novel Thermostable Flavin-binding Fluorescent Proteins from Thermophilic Organisms. Photochem Photobiol 2017; 93:849-856. [DOI: 10.1111/php.12740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/28/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Marcus Wingen
- Institute of Molecular Enzyme Technology; Heinrich Heine University Düsseldorf; Forschungszentrum Jülich; Jülich Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology; Heinrich Heine University Düsseldorf; Forschungszentrum Jülich; Jülich Germany
- Institute of Bio- and Geosciences; IBG-1: Biotechnology; Forschungszentrum Jülich; Jülich Germany
| | - Thomas Gensch
- Institute of Complex Systems 4 (Cellular Biophysics); Forschungszentrum Jülich; Jülich Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology; Heinrich Heine University Düsseldorf; Forschungszentrum Jülich; Jülich Germany
| |
Collapse
|
19
|
Banerjee S, Schenkelberg CD, Jordan TB, Reimertz JM, Crone EE, Crone DE, Bystroff C. Mispacking and the Fitness Landscape of the Green Fluorescent Protein Chromophore Milieu. Biochemistry 2017; 56:736-747. [PMID: 28074648 PMCID: PMC6193456 DOI: 10.1021/acs.biochem.6b00800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The autocatalytic maturation of the chromophore in green fluorescent protein (GFP) was thought to require the precise positioning of the side chains surrounding it in the core of the protein, many of which are strongly conserved among homologous fluorescent proteins. In this study, we screened for green fluorescence in an exhaustive set of point mutations of seven residues that make up the chromophore microenvironment, excluding R96 and E222 because mutations at these positions have been previously characterized. Contrary to expectations, nearly all amino acids were tolerated at all seven positions. Only four point mutations knocked out fluorescence entirely. However, chromophore maturation was found to be slower and/or fluorescence reduced in several cases. Selected combinations of mutations showed nonadditive effects, including cooperativity and rescue. The results provide guidelines for the computational engineering of GFPs.
Collapse
Affiliation(s)
- Shounak Banerjee
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Christian D. Schenkelberg
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Thomas B. Jordan
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Julia M. Reimertz
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Emily E. Crone
- Department of Biology, Colgate University, Hamilton, New York 13346, United States
| | - Donna E. Crone
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Christopher Bystroff
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
20
|
Don Paul C, Traore DAK, Olsen S, Devenish RJ, Close DW, Bell TDM, Bradbury A, Wilce MCJ, Prescott M. X-Ray Crystal Structure and Properties of Phanta, a Weakly Fluorescent Photochromic GFP-Like Protein. PLoS One 2015; 10:e0123338. [PMID: 25923520 PMCID: PMC4414407 DOI: 10.1371/journal.pone.0123338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/02/2015] [Indexed: 01/07/2023] Open
Abstract
Phanta is a reversibly photoswitching chromoprotein (ΦF, 0.003), useful for pcFRET, that was isolated from a mutagenesis screen of the bright green fluorescent eCGP123 (ΦF, 0.8). We have investigated the contribution of substitutions at positions His193, Thr69 and Gln62, individually and in combination, to the optical properties of Phanta. Single amino acid substitutions at position 193 resulted in proteins with very low ΦF, indicating the importance of this position in controlling the fluorescence efficiency of the variant proteins. The substitution Thr69Val in Phanta was important for supressing the formation of a protonated chromophore species observed in some His193 substituted variants, whereas the substitution Gln62Met did not significantly contribute to the useful optical properties of Phanta. X-ray crystal structures for Phanta (2.3 Å), eCGP123T69V (2.0 Å) and eCGP123H193Q (2.2 Å) in their non-photoswitched state were determined, revealing the presence of a cis-coplanar chromophore. We conclude that changes in the hydrogen-bonding network supporting the cis-chromophore, and its contacts with the surrounding protein matrix, are responsible for the low fluorescence emission of eCGP123 variants containing a His193 substitution.
Collapse
Affiliation(s)
- Craig Don Paul
- Department of Neuro- and Sensory Physiology, University Medicine, Göttingen, 37073, Göttingen, Germany
| | - Daouda A. K. Traore
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Seth Olsen
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Devin W. Close
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton campus, Victoria, 3800, Australia
| | - Andrew Bradbury
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
- * E-mail: (MP); (MCJW)
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton campus, Victoria, 3800, Australia
- * E-mail: (MP); (MCJW)
| |
Collapse
|