1
|
Fujiwara T, Mano E, Nango E. Structural basis for the minimal bifunctional alginate epimerase AlgE3 from Azotobacter chroococcum. FEBS Lett 2024; 598:1422-1437. [PMID: 38649293 DOI: 10.1002/1873-3468.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Among the epimerases specific to alginate, some of them in Azotobacter genera convert β-d-mannuronic acid to α-l-guluronic acid but also have lyase activity to degrade alginate. The remarkable characteristics of these epimerases make it a promising enzyme for tailoring alginates to meet specific demands. Here, we determined the structure of the bifunctional mannuronan C-5 epimerase AlgE3 from Azotobacter chroococcum (AcAlgE3) in complex with several mannuronic acid oligomers as well as in apo form, which allowed us to elucidate the binding manner of each mannuronic acid oligomer, and the structural plasticity, which is dependent on calcium ions. Moreover, a comprehensive analysis of the lyase activity profiles of AcAlgE3 combined with structural characteristics explained the preference for different chain length oligomers.
Collapse
Affiliation(s)
- Takaaki Fujiwara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Eriko Nango
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- RIKEN SPring-8 Center, Sayo-gun, Japan
| |
Collapse
|
2
|
Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev 2023; 47:fuad060. [PMID: 37884397 PMCID: PMC10644985 DOI: 10.1093/femsre/fuad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
The biofilm matrix is a fortress; sheltering bacteria in a protective and nourishing barrier that allows for growth and adaptation to various surroundings. A variety of different components are found within the matrix including water, lipids, proteins, extracellular DNA, RNA, membrane vesicles, phages, and exopolysaccharides. As part of its biofilm matrix, Pseudomonas aeruginosa is genetically capable of producing three chemically distinct exopolysaccharides - alginate, Pel, and Psl - each of which has a distinct role in biofilm formation and immune evasion during infection. The polymers are produced by highly conserved mechanisms of secretion, involving many proteins that span both the inner and outer bacterial membranes. Experimentally determined structures, predictive modelling of proteins whose structures are yet to be solved, and structural homology comparisons give us insight into the molecular mechanisms of these secretion systems, from polymer synthesis to modification and export. Here, we review recent advances that enhance our understanding of P. aeruginosa multiprotein exopolysaccharide biosynthetic complexes, and how the glycoside hydrolases/lyases within these systems have been commandeered for antimicrobial applications.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, 776 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH 43210, United States
- Department of Microbiology, The Ohio State University College, Biological Sciences Bldg, 105, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Health Sciences Bldg, 1705 NE Pacific St, Seattle, WA 98195-7735, United States
| | - P Lynne Howell
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Disrupting Irreversible Bacterial Adhesion and Biofilm Formation with an Engineered Enzyme. Appl Environ Microbiol 2021; 87:e0026521. [PMID: 33893112 DOI: 10.1128/aem.00265-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation is often attributed to postharvest bacterial persistence on fresh produce and food handling surfaces. In this study, a predicted glycosyl hydrolase enzyme was expressed, purified, and validated for the removal of microbial biofilms from biotic and abiotic surfaces under conditions used for chemical cleaning agents. Crystal violet biofilm staining assays revealed that 0.1 mg/ml of enzyme inhibited up to 41% of biofilm formation by Escherichia coli O157:H7, E. coli 25922, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes. Furthermore, the enzyme was effective at removing mature biofilms, providing a 35% improvement over rinsing with a saline solution alone. Additionally, a parallel-plate flow cell was used to directly observe and quantify the impact of enzyme rinses on E. coli O157:H7 cells adhering to spinach leaf surfaces. The presence of 1 mg/liter enzyme resulted in nearly 6-times-higher detachment rate coefficients than a deionized (DI) water rinse, while the total cells removed from the surface increased from 10% to 25% over the 30-min rinse time, reversing the initial phases of biofilm formation. Enzyme treatment of all 4 cell types resulted in significantly reduced cell surface hydrophobicity and collapse of negatively stained E. coli 25922 cells imaged by electron microscopy, suggesting potential polysaccharide surface modification of enzyme-treated bacteria. Collectively, these results point to the broad substrate specificity and robustness of the enzyme for different types of biofilm stages, solution conditions, and pathogen biofilm types and may be useful as a method for the removal or inhibition of bacterial biofilm formation. IMPORTANCE In this study, the ability of an engineered enzyme to reduce bacterial adhesion and biofilm formation of several foodborne pathogens was demonstrated, representing a promising option for enhancing or replacing chlorine and other chemical sanitizers in food processing applications. Specifically, significant reductions of biofilms of the pathogens Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes are observed, as are reductions in initial adhesion. Enzymes have the added benefits of being green, sustainable alternatives to chemical sanitizers, as well as having a minimal impact on food properties, in contrast to many alternative antimicrobial options such as bleach that aim to minimize food safety risks.
Collapse
|
4
|
Khan F, Oloketuyi SF, Kim YM. Diversity of Bacteria and Bacterial Products as Antibiofilm and Antiquorum Sensing Drugs Against Pathogenic Bacteria. Curr Drug Targets 2020; 20:1156-1179. [PMID: 31020938 DOI: 10.2174/1389450120666190423161249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
The increase in antibiotic resistance of pathogenic bacteria has led to the development of new therapeutic approaches to inhibit biofilm formation as well as interfere quorum sensing (QS) signaling systems. The QS system is a phenomenon in which pathogenic bacteria produce signaling molecules that are involved in cell to cell communication, production of virulence factors, biofilm maturation, and several other functions. In the natural environment, several non-pathogenic bacteria are present as mixed population along with pathogenic bacteria and they control the behavior of microbial community by producing secondary metabolites. Similarly, non-pathogenic bacteria also take advantages of the QS signaling molecule as a sole carbon source for their growth through catabolism with enzymes. Several enzymes are produced by bacteria which disrupt the biofilm architecture by degrading the composition of extracellular polymeric substances (EPS) such as exopolysaccharide, extracellular- DNA and protein. Thus, the interference of QS system by bacterial metabolic products and enzymatic catalysis, modification of the QS signaling molecules as well as enzymatic disruption of biofilm architecture have been considered as the alternative therapeutic approaches. This review article elaborates on the diversity of different bacterial species with respect to their metabolic products as well as enzymes and their molecular modes of action. The bacterial enzymes and metabolic products will open new and promising perspectives for the development of strategies against the pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea
| | | | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
5
|
Dharani SR, Srinivasan R, Sarath R, Ramya M. Recent progress on engineering microbial alginate lyases towards their versatile role in biotechnological applications. Folia Microbiol (Praha) 2020; 65:937-954. [DOI: 10.1007/s12223-020-00802-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/16/2020] [Indexed: 11/30/2022]
|
6
|
Yan Z, Huang M, Melander C, Kjellerup BV. Dispersal and inhibition of biofilms associated with infections. J Appl Microbiol 2019; 128:1279-1288. [PMID: 31618796 DOI: 10.1111/jam.14491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 12/26/2022]
Abstract
As bacteria aggregate and form biofilms on surfaces in the human body such as tissues, indwelling medical devices, dressings and implants, they can cause a significant health risk. Bacterial biofilms possess altered phenotypes: physical features that facilitate antibiotic resistance and evasion of the host immune response. Since metabolic and physical factors contribute to biofilm maturation and persistence, an objective in antibiofilm therapy is to target these factors to deliver innovative approaches for solving these important health problems. Currently, there is little research on the direct immunological effects resulting from the introduction of foreign components to the body pertaining to biofilm inhibition methods. Detailed research involving animal models is necessary to better understand the biological side effects of synthetic peptides, genetically modified bacteriophages and isolated proteins and any resistance that may develop from these approaches.
Collapse
Affiliation(s)
- Z Yan
- Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, MD, USA
| | - M Huang
- Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, MD, USA
| | - C Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - B V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, MD, USA
| |
Collapse
|
7
|
Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol 2019; 234:14689-14708. [PMID: 30693517 DOI: 10.1002/jcp.28225] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.
Collapse
Affiliation(s)
- Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
|
9
|
Low KE, Howell PL. Gram-negative synthase-dependent exopolysaccharide biosynthetic machines. Curr Opin Struct Biol 2018; 53:32-44. [DOI: 10.1016/j.sbi.2018.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
|
10
|
Belik AA, Silchenko AS, Kusaykin MI, Zvyagintseva TN, Ermakova SP. Alginate Lyases: Substrates, Structure, Properties, and Prospects of Application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Snarr BD, Howell PL, Sheppard DC. Hoisted by their own petard: do microbial enzymes hold the solution to treating and preventing biofilm infections? Future Microbiol 2018; 13:395-398. [PMID: 29441819 DOI: 10.2217/fmb-2017-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Brendan D Snarr
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.,Department of Medicine, Infectious Diseases & Immunity in Global Health Program, Centre for Translational Biology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Donald C Sheppard
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.,Department of Medicine, Infectious Diseases & Immunity in Global Health Program, Centre for Translational Biology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|