1
|
Liu WS, Li HG, Ding CH, Zhang HX, Wang RR, Li JQ. Screening potential FDA-approved inhibitors of the SARS-CoV-2 major protease 3CL pro through high-throughput virtual screening and molecular dynamics simulation. Aging (Albany NY) 2021; 13:6258-6272. [PMID: 33678621 PMCID: PMC7993695 DOI: 10.18632/aging.202703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 04/16/2023]
Abstract
It has been confirmed that the new coronavirus SARS-CoV-2 caused the global pandemic of coronavirus disease 2019 (COVID-19). Studies have found that 3-chymotrypsin-like protease (3CLpro) is an essential enzyme for virus replication, and could be used as a potential target to inhibit SARS-CoV-2. In this work, 3CLpro was used as the target to complete the high-throughput virtual screening of the FDA-approved drugs, and Indinavir and other 10 drugs with high docking scores for 3CLpro were obtained. Studies on the binding pattern of 3CLpro and Indinavir found that Indinavir could form the stable hydrogen bond (H-bond) interactions with the catalytic dyad residues His41-Cys145. Binding free energy study found that Indinavir had high binding affinity with 3CLpro. Subsequently, molecular dynamics simulations were performed on the 3CLpro and 3CLpro-Indinavir systems, respectively. The post-dynamic analyses showed that the conformational state of the 3CLpro-Indinavir system transformed significantly and the system tended to be more stable. Moreover, analyses of the residue interaction network (RIN) and H-bond occupancy revealed that the residue-residue interaction at the catalytic site of 3CLpro was significantly enhanced after binding with Indinavir, which in turn inactivated the protein. In short, through this research, we hope to provide more valuable clues against COVID-19.
Collapse
Affiliation(s)
- Wen-Shan Liu
- Shandong Key Laboratory of Clinical Applied Pharmacology, Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Han-Gao Li
- Shandong Key Laboratory of Clinical Applied Pharmacology, Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Chuan-Hua Ding
- Shandong Key Laboratory of Clinical Applied Pharmacology, Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Hai-Xia Zhang
- Shandong Key Laboratory of Clinical Applied Pharmacology, Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jia-Qiu Li
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| |
Collapse
|
2
|
Exploring the Binding Mechanism and Dynamics of EndoMS/NucS to Mismatched dsDNA. Int J Mol Sci 2019; 20:ijms20205142. [PMID: 31627318 PMCID: PMC6829318 DOI: 10.3390/ijms20205142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/03/2019] [Accepted: 10/12/2019] [Indexed: 12/15/2022] Open
Abstract
The well-known mismatch repair (MMR) machinery, MutS/MutL, is absent in numerous Archaea and some Bacteria. Recent studies have shown that EndoMS/NucS has the ability to cleave double-stranded DNA (dsDNA) containing a mismatched base pair, which suggests a novel mismatch repair process. However, the recognition mechanism and the binding process of EndoMS/NucS in the MMR pathway remain unclear. In this study, we investigate the binding dynamics of EndoMS/NucS to mismatched dsDNA and its energy as a function of the angle between the two C-terminal domains of EndoMS/NucS, through molecular docking and extensive molecular dynamics (MD) simulations. It is found that there exists a half-open transition state corresponding to an energy barrier (at an activation angle of approximately 80∘) between the open state and the closed state, according to the energy curve. When the angle is larger than the activation angle, the C-terminal domains can move freely and tend to change to the open state (local energy minimum). Otherwise, the C-terminal domains will interact with the mismatched dsDNA directly and converge to the closed state at the global energy minimum. As such, this two-state system enables the exposed N-terminal domains of EndoMS/NucS to recognize mismatched dsDNA during the open state and then stabilize the binding of the C-terminal domains of EndoMS/NucS to the mismatched dsDNA during the closed state. We also investigate how the EndoMS/NucS recognizes and binds to mismatched dsDNA, as well as the effects of K+ ions. The results provide insights into the recognition and binding mechanisms of EndoMS/NucS to mismatched dsDNA in the MMR pathway.
Collapse
|
3
|
Liu WS, Wang RR, Li WY, Rong M, Liu CL, Ma Y, Wang RL. Investigating the reason for loss-of-function of Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) caused by Y279C mutation through molecular dynamics simulation. J Biomol Struct Dyn 2019; 38:2509-2520. [DOI: 10.1080/07391102.2019.1634641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wen-Shan Liu
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Mei Rong
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Chi-Lu Liu
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Ying Ma
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Wang RR, Liu WS, Zhou L, Ma Y, Wang RL. Probing the acting mode and advantages of RMC-4550 as an Src-homology 2 domain-containing protein tyrosine phosphatase (SHP2) inhibitor at molecular level through molecular docking and molecular dynamics. J Biomol Struct Dyn 2019; 38:1525-1538. [DOI: 10.1080/07391102.2019.1613266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wen-Shan Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Liang Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Ospina-Villa JD, García-Contreras J, Rosas-Trigueros JL, Ramírez-Moreno E, López-Camarillo C, Zamora-López B, Marchat LA, Zamorano-Carrillo A. Importance of amino acids Leu135 and Tyr236 for the interaction between EhCFIm25 and RNA: a molecular dynamics simulation study. J Mol Model 2018; 24:202. [PMID: 30003410 DOI: 10.1007/s00894-018-3729-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/19/2018] [Indexed: 11/28/2022]
Abstract
The CFIm25 subunit of the heterotetrameric cleavage factor Im (CFIm) is a critical factor in the formation of the poly(A) tail at mRNA 3' end, regulating the recruitment of polyadenylation factors, poly(A) site selection, and cleavage/polyadenylation reactions. We previously reported the homologous protein (EhCFIm25) in Entamoeba histolytica, the protozoan causing human amoebiasis, and showed the relevance of conserved Leu135 and Tyr236 residues for RNA binding. We also identified the GUUG sequence as the recognition site of EhCFIm25. To understand the interactions network that allows the EhCFIm25 to maintain its three-dimensional structure and function, here we performed molecular dynamics simulations of wild-type (WT) and mutant proteins, alone or interacting with the GUUG molecule. Our results indicated that in the presence of the GUUG sequence, WT converged more quickly to lower RMSD values in comparison with mutant proteins. However, RMSF values showed that movements of amino acids of WT and EhCFIm25*L135 T were almost identical, interacting or not with the GUUG molecule. Interestingly, EhCFIm25*L135 T, which is the only mutant with a slight RNA binding activity experimentally, presents the same stabilization of bend structures and alpha helices as WT, notably in the C-terminus. Moreover, WT and EhCFIm25*L135 T presented almost the same number of contacts that mainly involve lysine residues interacting with the G4 nucleotide. Overall, our data proposed a clear description of the structural and mechanistic data that govern the RNA binding capacity of EhCFIm25.
Collapse
Affiliation(s)
- Juan David Ospina-Villa
- Programa Institucional de Biomedicina Molecular, Programa de Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Del. Gustavo A. Madero, CP 07320, Ciudad de México, Mexico
| | - Juan García-Contreras
- Programa Institucional de Biomedicina Molecular, Programa de Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Del. Gustavo A. Madero, CP 07320, Ciudad de México, Mexico
| | - Jorge Luis Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos, ESCOM, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Miguel Othón de Mendizábal, Col. Lindavista, Del. Gustavo A. Madero, CP 07738, Ciudad de México, Mexico
| | - Esther Ramírez-Moreno
- Programa Institucional de Biomedicina Molecular, Programa de Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Del. Gustavo A. Madero, CP 07320, Ciudad de México, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia del Valle, CP 03100, Ciudad de México, Mexico
| | - Beatriz Zamora-López
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, UNAM, Circuito Interior y Cerro del Agua, CP 04510, Ciudad de México, Mexico
| | - Laurence A Marchat
- Programa Institucional de Biomedicina Molecular, Programa de Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Del. Gustavo A. Madero, CP 07320, Ciudad de México, Mexico
| | - Absalom Zamorano-Carrillo
- Programa Institucional de Biomedicina Molecular, Programa de Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Del. Gustavo A. Madero, CP 07320, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Human transbodies that interfere with the functions of Ebola virus VP35 protein in genome replication and transcription and innate immune antagonism. Emerg Microbes Infect 2018; 7:41. [PMID: 29568066 PMCID: PMC5864874 DOI: 10.1038/s41426-018-0031-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 01/10/2023]
Abstract
Small molecular inhibitors and passive immunization against Ebola virus disease (EVD) have been tested in animal models, including rodents and non-human primates, as well as in clinical trials. Nevertheless, there is currently no Food and Drug Administration (FDA)-approved therapy, and alternative strategies must be pursued. The aim of this study was to produce cell-penetrable human single-chain antibodies (transbodies) that are able to interfere with the activities of interferon inhibitory domain (IID) of the VP35 protein, a multifunctional virulence factor of Ebola virus (EBOV). We speculated that effective VP35-IID-specific transbodies could inspire further studies to identify an alternative to conventional antibody therapies. Phage display technology was used to generate Escherichia coli-derived human single-chain antibodies (HuscFvs) that bind to IID. HuscFvs were linked to nona-arginine (R9) to make them cell penetrable. Transbodies of transformed E. coli clones 13 and 3, which were predicted to interact with first basic patch residues (R9-HuscFv13), central basic patch, and end-cap residues (R9-HuscFv3), effectively inhibited EBOV minigenome activity. Transbodies of E. coli clones 3 and 8 antagonized VP35-mediated interferon suppression in VP35-transduced cells. We postulate that these transbodies formed an interface contact with the IID central basic patch, end-cap, and/or residues that are important for IID multimeric formation for dsRNA binding. These transbodies should be evaluated further in vitro using authentic EBOV and in vivo in animal models of EVD before their therapeutic/prophylactic effectiveness is clinically evaluated.
Collapse
|
7
|
Insights into the homo-oligomerization properties of N-terminal coiled-coil domain of Ebola virus VP35 protein. Virus Res 2018; 247:61-70. [PMID: 29427597 DOI: 10.1016/j.virusres.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
Abstract
The multifunctional Ebola virus (EBOV) VP35 protein is a key determinant of virulence. VP35 is essential for EBOV replication, is a component of the viral RNA polymerase and participates in nucleocapsid formation. Furthermore, VP35 contributes to EBOV evasion of the host innate immune response by suppressing RNA silencing and blocking RIG-I like receptors' pathways that lead to type I interferon (IFN) production. VP35 homo-oligomerization has been reported to be critical for its replicative function and to increase its IFN-antagonism properties. Moreover, homo-oligomerization is mediated by a predicted coiled-coil (CC) domain located within its N-terminal region. Here we report the homo-oligomerization profile of full-length recombinant EBOV VP35 (rVP35) assessed by size-exclusion chromatography and native polyacrylamide gel electrophoresis. Based on our biochemical results and in agreement with previous experimental observations, we have built an in silico 3D model of the so-far structurally unsolved EBOV VP35 CC domain and performed self-assembly homo-oligomerization simulations by means of molecular dynamics. Our model advances the understanding of how VP35 may associate in different homo-oligomeric species, a crucial process for EBOV replication and pathogenicity.
Collapse
|