1
|
Gunawardana D, Wanigatunge RP, Wewalwela JJ, Vithanage M, Wijeyaratne C. Sulfur is in the Air: Cyanolichen Marriages and Pollution. Acta Biotheor 2023; 71:14. [PMID: 37148405 DOI: 10.1007/s10441-023-09465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
Cyanolichens are symbiotic organisms involving cyanobacteria and fungi (bipartite) or with the addition of an algal partner (tripartite). Cyanolichens are known for their heightened susceptibility to environmental pollution. We focus here on the impacts on cyanolichens due to rising air pollution; we are especially interested in the role of sulfur dioxide on cyanolichen biology. Cyanolichens due to air pollution including sulfur dioxide exposure, show symptomatic changes including degradation of chlorophyll, lipid membrane peroxidation, decrease in ATP production, changes in respiration rate, and alteration of endogenous auxins and ethylene production, although symptoms are known to vary with species and genotype. Sulfur dioxide has been shown to be damaging to photosynthesis but is relatively benign on nitrogen fixation which proposes as a hypothesis that the algal partner may be more in harm's way than the cyanobiont. In fact, the Nostoc cyanobiont of sulfur dioxide-susceptible Lobaria pulmonaria carries a magnified set of sulfur (alkane sulfonate) metabolism genes capable of alkane sulfonate transport and assimilation, which were only unraveled by genome sequencing, a technology unavailable in the 1950-2000 epoch, where most physiology- based studies were performed. There is worldwide a growing corpus of evidence that sulfur has an important role to play in biological symbioses including rhizobia-legumes, mycorrhizae-roots and cyanobacteria-host plants. Furthermore, the fungal and algal partners of L. pulmonaria appear not to have the sulfonate transporter genes again providing the roles of ambient-sulfur (alkanesulfonate metabolism etc.) mediated functions primarily to the cyanobacterial partner. In conclusion, we have addressed here the role of the atmospheric pollutant sulfur dioxide to tripartite cyanolichen viability and suggest that the weaker link is likely to be the photosynthetic algal (chlorophyte) partner and not the nitrogen-fixing cyanobiont.
Collapse
Affiliation(s)
- Dilantha Gunawardana
- Research Council, University of Sri Jayewardenepura, Nugegoda, Sri Jayewardenepura Kotte, 10250, Sri Lanka.
| | - Rasika P Wanigatunge
- Department of Plant and Molecular Biology, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | - Jayani J Wewalwela
- Department of Agricultural Technology, Faculty of Technology, University of Colombo, Colombo, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Jayewardenepura Kotte, 10250, Sri Lanka
| | - Chandrani Wijeyaratne
- Department of Botany, University of Sri Jayewardenepura, Nugegoda, Sri Jayewardenepura Kotte, 10250, Sri Lanka
| |
Collapse
|
2
|
Dong R, Liao M, Liu X, Penttinen L, Hakulinen N, Qin X, Wang X, Huang H, Luo H, Yao B, Bai Y, Tu T. Effectiveness of ruminal xylanase with an extra proline-rich C-terminus on lignocellulosic biomass degradation. BIORESOURCE TECHNOLOGY 2023; 372:128695. [PMID: 36731612 DOI: 10.1016/j.biortech.2023.128695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The efficient degradation of plant polysaccharides in agricultural waste requires xylanases with high catalytic activity. In this study, the C-terminal proline-rich GH10 xylanase XynA from sheep rumen was investigated using product analysis, structural characterization, truncated and site-directed mutagenesis, molecular dynamics simulation, and application evaluation, revealing that the proline-rich C-terminus contributes to the interaction at the substrate-binding pocket to reduce the binding free energy. Compared to the C-terminally truncated enzyme XynA-Tr, XynA has a more favorable conformation for proton transfer and affinity attack, facilitating the degradation of oligomeric and beechwood xylan without altering the hydrolysis pattern. Moreover, both the reduced sugar yield and weight loss of the pretreated wheat bran, corn cob, and corn stalk hydrolyzed by XynA for 12 h increased by more than 30 %. These findings are important to better understand the relationship between enzyme activities and their terminal regions and suggest candidate materials for lignocellulosic biomass utilization.
Collapse
Affiliation(s)
- Ruyue Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Liao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Leena Penttinen
- Department of Chemistry, Joensuu Campus, University of Eastern Finland, FIN-80101 Joensuu, Finland
| | - Nina Hakulinen
- Department of Chemistry, Joensuu Campus, University of Eastern Finland, FIN-80101 Joensuu, Finland
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Dong R, Liu X, Wang Y, Qin X, Wang X, Zhang H, Wang Y, Luo H, Yao B, Bai Y, Tu T. Fusion of a proline-rich oligopeptide to the C-terminus of a ruminal xylanase improves catalytic efficiency. Bioengineered 2022; 13:10482-10492. [PMID: 35441569 PMCID: PMC9161913 DOI: 10.1080/21655979.2022.2061290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Xylanases are widely used in the degradation of lignocellulose and are important industrial enzymes. Therefore, increasing the catalytic activity of xylanases can improve their efficiency and performance. In this study, we introduced the C-terminal proline-rich oligopeptide of the rumen-derived XynA into XylR, a GH10 family xylanase. The optimum temperature and pH of the fused enzyme (XylR-Fu) were consistent with those of XylR; however, its catalytic efficiency was 2.48-fold higher than that of XylR. Although the proline-rich oligopeptide did not change the enzyme hydrolysis mode, the amount of oligosaccharides released from beechwood xylan by XylR-Fu was 17% higher than that released by XylR. This increase may be due to the abundance of proline in the oligopeptide, which plays an important role in substrate binding. Furthermore, circular dichroism analysis indicated that the proline-rich oligopeptide might increase the rigidity of the overall structure, thereby enhancing the affinity to the substrate and catalytic activity of the enzyme. Our study shows that the proline-rich oligopeptide enhances the catalytic efficiency of GH10 xylanases and provides a better understanding of the C-terminal oligopeptide-function relationships. This knowledge can guide the rational design of GH10 xylanases to improve their catalytic activity and provides clues for further applications of xylanases in industry.
Collapse
Affiliation(s)
- Ruyue Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Structural basis for glucosylsucrose synthesis by a member of the α-1,2-glucosyltransferase family. Acta Biochim Biophys Sin (Shanghai) 2022; 54:537-547. [PMID: 35607964 PMCID: PMC9909042 DOI: 10.3724/abbs.2022034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glucosylsucroses are potentially useful as additives in cosmetic and pharmaceutical formulations. Although enzymatic synthesis of glucosylsucroses is the most efficient method for their production, the key enzyme that produces them has remained unknown. Here, we report that glucosylsucrose synthase from (TeGSS) catalyzes the synthesis of glucosylsucrose using sucrose and UDP-glucose as substrates. These saccharides are homologous to glucosylsucroses produced by sp. PCC 7120 (referred to as protein alr1000). When the ratio of UDP-glucose to sucrose is relatively high, TeGSS from cyanobacteria can hydrolyze excess UDP-glucose to UDP and glucose, indicating that sucrose provides a feedback mechanism for the control of glucosylsucrose synthesis. In the present study, we solved the crystal structure of TeGSS bound to UDP and sucrose. Our structure shows that the catalytic site contains a circular region that may allow glucosylsucroses with a right-hand helical structure to enter the catalytic site. Because active site residues Tyr18 and Arg179 are proximal to UDP and sucrose, we mutate these residues (., Y18F and R179A) and show that they exhibit very low activity, supporting their role as catalytic groups. Overall, our study provides insight into the catalytic mechanism of TeGSS.
Collapse
|
5
|
Zhang R, Kennedy MA. Current Understanding of the Structure and Function of Pentapeptide Repeat Proteins. Biomolecules 2021; 11:638. [PMID: 33925937 PMCID: PMC8145042 DOI: 10.3390/biom11050638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/28/2022] Open
Abstract
The pentapeptide repeat protein (PRP) superfamily, identified in 1998, has grown to nearly 39,000 sequences from over 3300 species. PRPs, recognized as having at least eight contiguous pentapeptide repeats (PRs) of a consensus pentapeptide sequence, adopt a remarkable structure, namely, a right-handed quadrilateral β-helix with four consecutive PRs forming a single β-helix coil. Adjacent coils join together to form a β-helix "tower" stabilized by β-ladders on the tower faces and type I, type II, or type IV β-turns facilitating an approximately -90° redirection of the polypeptide chain joining one coil face to the next. PRPs have been found in all branches of life, but they are predominantly found in cyanobacteria. Cyanobacteria have existed on earth for more than two billion years and are thought to be responsible for oxygenation of the earth's atmosphere. Filamentous cyanobacteria such as Nostoc sp. strain PCC 7120 may also represent the oldest and simplest multicellular organisms known to undergo cell differentiation on earth. Knowledge of the biochemical function of these PRPs is essential to understanding how ancient cyanobacteria achieved functions critical to early development of life on earth. PRPs are predicted to exist in all cyanobacteria compartments including thylakoid and cell-wall membranes, cytoplasm, and thylakoid periplasmic space. Despite their intriguing structure and importance to understanding ancient cyanobacteria, the biochemical functions of PRPs in cyanobacteria remain almost completely unknown. The precise biochemical function of only a handful of PRPs is currently known from any organisms, and three-dimensional structures of only sixteen PRPs or PRP-containing multidomain proteins from any organism have been reported. In this review, the current knowledge of the structures and functions of PRPs is presented and discussed.
Collapse
Affiliation(s)
| | - Michael A. Kennedy
- Department of Chemistry and Biochemistry, 106 Hughes Laboratories, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
6
|
Inactivation of Three RG(S/T)GR Pentapeptide-Containing Negative Regulators of HetR Results in Lethal Differentiation of Anabaena PCC 7120. Life (Basel) 2020; 10:life10120326. [PMID: 33291589 PMCID: PMC7761841 DOI: 10.3390/life10120326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. PCC 7120 produces, during the differentiation of heterocysts, a short peptide PatS and a protein HetN, both containing an RGSGR pentapeptide essential for activity. Both act on the master regulator HetR to guide heterocyst pattern formation by controlling the binding of HetR to DNA and its turnover. A third small protein, PatX, with an RG(S/T)GR motif is present in all HetR-containing cyanobacteria. In a nitrogen-depleted medium, inactivation of patX does not produce a discernible change in phenotype, but its overexpression blocks heterocyst formation. Mutational analysis revealed that PatX is not required for normal intercellular signaling, but it nonetheless is required when PatS is absent to prevent rapid ectopic differentiation. Deprivation of all three negative regulators—PatS, PatX, and HetN—resulted in synchronous differentiation. However, in a nitrogen-containing medium, such deprivation leads to extensive fragmentation, cell lysis, and aberrant differentiation, while either PatX or PatS as the sole HetR regulator can establish and maintain a semiregular heterocyst pattern. These results suggest that tight control over HetR by PatS and PatX is needed to sustain vegetative growth and regulated development. The mutational analysis has been interpreted in light of the opposing roles of negative regulators of HetR and the positive regulator HetL.
Collapse
|
7
|
Harish, Seth K. Molecular circuit of heterocyst differentiation in cyanobacteria. J Basic Microbiol 2020; 60:738-745. [DOI: 10.1002/jobm.202000266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Harish
- Plant Biotechnology Laboratory, Department of Botany; Mohanlal Sukhadia University; Udaipur Rajasthan India
| | - Kunal Seth
- Department of Botany; Government Science College; Pardi Valsad Gujarat India
| |
Collapse
|