1
|
Li T, Liu X, Wang Z, Liu C, Liu Y, Cui N, Meng F, Zhang W, Wang D, Xu Y, Zhu X, Guo C, Wang Y. Characterization and rational engineering of an alkaline-tolerant azoreductase derived from Roseibium sp. H3510 for enhanced decolorization of azo dyes. Int J Biol Macromol 2024; 280:135810. [PMID: 39322137 DOI: 10.1016/j.ijbiomac.2024.135810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
rAzoR2326, an azoreductase derived from Roseibium sp. H3510, functions as an FMN-dependent homodimer utilizing NADH as cofactor. It demonstrated maximum activity at 45 °C and retained moderate activity above 50 °C, exhibiting stability from pH 7-10. Evolution and structure guided rational design of wild-type rAzoR2326 (WT) efficiently yielded 6 single-point mutants with improved thermostability and activity from a 22-variant library. Further combinatorial mutation led to mutant M20 with substantially enhanced thermostability (15-fold longer half-life at 50 °C) and activity (3.24-fold higher kcat/Km). M20 exhibited superior catalytic properties for decolorizing Allura Red compared to WT. Specifically, its decolorization capacity at pH 10.0 was 4.26-fold higher than WT. Additionally, M20 demonstrated remarkable thermostability, retaining 76.83 % decolorization activity for Allura Red after 120 min at 50 °C, whereas WT nearly lost all catalytic activity under the same conditions. Molecular dynamics simulations revealed the structural changes in M20, such as improved hydrogen bonding and a new C-H···π interaction, led to a more compact and rigid enzyme structure. This resulted in a more stable FMN-binding pocket and substrate tunnel, thereby improving the catalytic stability and activity of M20. Given its enhanced dye decolorization ability and alkaline tolerance, M20 shows promise as a biocatalyst for treating azo dye effluents.
Collapse
Affiliation(s)
- Tao Li
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xinqi Liu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Ziwei Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Cong Liu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Ning Cui
- Xinxiang Medical University Sanquan Medical College, Xinxiang 453003, PR China
| | - Fanling Meng
- Academic Affairs Office, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Wenbo Zhang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Dandan Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yongtao Xu
- Henan Engineering Laboratory of Combinatorial Technique for Clinical & Biomedical Big Data, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xueyi Zhu
- Zhengzhou Feier Medical Laboratory Co., LTD, Zhengzhou 450099, PR China
| | - Changjiang Guo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yan Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
2
|
Zhang S, Feng L, Han Y, Xu Z, Xu L, An X, Zhang Q. Revealing the degrading-possibility of methyl red by two azoreductases of Anoxybacillus sp. PDR2 based on molecular docking. CHEMOSPHERE 2024; 351:141173. [PMID: 38232904 DOI: 10.1016/j.chemosphere.2024.141173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/27/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Azo dyes, as the most widely used synthetic dyes, are considered to be one of the culprits of water resources and environmental pollution. Anoxybacillus sp. PDR2 is a thermophilic bacterium with the ability to degrade azo dyes, whose genome contains two genes encoding azoreductases (named AzoPDR2-1 and AzoPDR2-2). In this study, through response surface methodology (RSM), when the initial pH, inoculation volume and Mg2+ addition amount were 7.18, 10.72% and 0.1 g/L respectively, the decolorization rate of methyl red (MR) (200 mg/L) could reach its maximum (98.8%). The metabolites after biodegradation were detected by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography mass spectrometry (LC-MS/MS), indicating that MR was successfully decomposed into 4-aminobenzoic acid and other small substrates. In homologous modeling, it was found that both azoreductases were flavin-dependent azoreductases, and belonged to the α/β structure, using the Rossmann fold. In their docking results with the cofactor flavin mononucleotide (FMN), FMN bound to the surface of the protein dimer. Nicotinamide adenine dinucleotide (NADH) was superimposed on the plane of the pyrazine ring between FMN and the activity pocket of protein. Besides, both azoreductase complexes (azoreductase-FMN-NADH) exhibited a substrate preference for MR. Asn104 and Tyr74 played an important role in the combination of the azoreductase AzoPDR2-1 complex and the azoreductase AzoPDR2-2 complex with MR, respectively. This provided assistance for studying the mechanism of azoreductase biodegradation of azo dyes in thermophilic bacteria.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Linlin Feng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Yanyan Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China.
| |
Collapse
|
3
|
Mustafa G, Zahid MT, Bharat Kurade M, Mahadeo Patil S, Shakoori FR, Shafiq Z, Ihsan S, Ahn Y, Khan AA, Gacem A, Jeon BH. Molecular characterization of azoreductase and its potential for the decolorization of Remazol Red R and Acid Blue 29. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122253. [PMID: 37499970 DOI: 10.1016/j.envpol.2023.122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Azoreductase is a reductive enzyme that efficiently biotransformed textile azo dyes. This study demonstrated the heterologous overexpression of the azoreductase gene in Escherichia coli for the effective degradation of Remazol Red-R and Acid-Blue 29 dyes. The AzK gene of Klebsiella pneumoniae encoding a ≈22 kDa azoreductase enzyme was cloned into the pET21+C expression vector. The inoculum size of 1.5%, IPTG concentration of 0.5 mM, and incubation time of 6 h were optimized by response surface methodology a statistical tool. The crude extract showed 76% and 74%, while the purified enzyme achieved 94% and 93% decolorization of RRR and AB-29, respectively in 0.3 h. The reaction kinetics showed that RRR had a Km and Vmax value of 0.058 mM and 1416 U mg-1, respectively at an NADH concentration of 10 mM. HPLC and GC-MS analyses showed that RRR was effectively bio-transformed by azoreductase to 2-[3-(hydroxy-amino) benzene-1-sulfonyl and AB-29 to aniline and 3-nitrosoaniline. This study explored the potential of recombinant azoreductase isolated from K. pneumoniae in the degradation of toxic textile azo dyes into less toxic metabolites.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea; Department of Zoology, Government College University, Lahore, 54000, Lahore, Pakistan
| | - Muhammad Tariq Zahid
- Department of Zoology, Government College University, Lahore, 54000, Lahore, Pakistan
| | - Mayur Bharat Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Swapnil Mahadeo Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | | | - Zeeshan Shafiq
- Department of Zoology, Government College University, Lahore, 54000, Lahore, Pakistan
| | - Sidra Ihsan
- Department of Zoology, Government College University, Lahore, 54000, Lahore, Pakistan
| | - Yongtae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, 21000, Algeria
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
4
|
Wang X, Sun B, Ye Z, Zhang W, Xu W, Gao S, Zhou N, Wu F, Shen J. Enzyme-Responsive COF-Based Thiol-Targeting Nanoinhibitor for Curing Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38483-38496. [PMID: 35989491 DOI: 10.1021/acsami.2c08845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pathogen infections impose severe challenges in clinical practice, especially for patients infected with antibiotic-resistant microbes. The thioredoxin (Trx) system in Gram-positive bacteria serves as an ideal antimicrobial target for novel medicine design due to the structural differences from corresponding system in mammals. However, a backup thiol-dependent antioxidant glutathione (GSH) system limits the effectiveness of drugs in many Gram-negative bacteria. Herein, we synthesize a thiol-targeting nanoinhibitor based on an enzyme-responsive covalent organic framework (COF) coloaded with silver nanoparticles (AgNPs) and ebselen (EBS) (Ag-TA-CON@EBS@PEG) to exert synergistic antibacterial effects. Since azoreductase can dissociate the enzyme-responsive COF, we adopt this strategy to achieve the accurate release of EBS and Ag+ at infection sites. Our research identifies that the functionalized nanoinhibitor shows excellent bactericidal performance for Gram-positive and Gram-negative bacteria in vitro and exhibits low toxicity to normal cells. Besides, the nanoinhibitor presents favorable biocompatibility, anti-inflammatory property, and effective wound healing ability in mice. This paper provides a promising clinical strategy for synergistic antibacterial therapy and enhanced wound healing properties via an optimized combination of the targeted nanomedicines with an intelligent drug conveying platform.
Collapse
Affiliation(s)
- Xinye Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Baohong Sun
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiu Ye
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenjia Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wang Xu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shurui Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ninglin Zhou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fan Wu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|